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Brief 

 

 

This document is intended as an aid for revision.  Although it includes some examples 

and explanation, it is primarily not for learning content, but for becoming familiar with 

the requirements of the course as regards formulae and results.  It cannot replace the 

use of a text book, and nothing produces competence and familiarity with 

mathematical techniques like practice.  This document was produced as an addition to 

classroom teaching and textbook questions, to provide a summary of key points and, 

in particular, any formulae or results you are expected to know and use in this module.   
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Chapter 1 – Advancing from GCSE maths: algebra review 
 

An equation of the form �� � � � �, where � and � are constants, is said to be a linear equation 

with variable �.   

 

The method of solving linear equations is to collect all the terms involving � on one side of the 

equation and everything else on the other side.   

 

Sometimes linear equations involve fractions.  To convert this to a linear equation with integer 

coefficients, multiply through by the lowest common multiple of the denominators.   

 

Eg: �
� � �

	 � �� 


� ���������������������������������
� �� 

	� � � � ��� 
�	��������������������������������
�	� 

� � ��� 
� ���������������������������������
� �� �
�� � � 

 

One method for solving simultaneous linear equations is the elimination method.  Coefficients of 

one of the variables are made equal and then the equations are effectively added or subtracted from 

one another to eliminate this variable.   

 

Eg: 

(1)   �� � �� � � 

 

(2)   �� � �� � � 

 

(1)×2   ��� � �� � �� 

 

(2)+(1’)  ��� � ������ � ����� � ��
�� � �

� � ���� 

 

Sub into (2)  �  ��! � �� � ����� � ������ � � � �
� � ��

� ����� ����� � ��
" � ��	�� 
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More generally, a wider range of simultaneous equations can be solved more easily using 

substitution.   

 

Eg:  

(1)   � � � � �� 

 

(2)   �� � 	�� � � 

 

Rearrange (1)  � � �� � � 

 

Sub into (2)  
�� � �� � 	�� � � 

 

Rearrange (2’) �� � �� � � � � 

 

Solve (2’)  
� � �
� � � � ����� � ����� � ������#$����� � � 

 

Sub into (1’)  � � �
�� � � � �	����#$����� � �
� � � � � 

 

Write out solutions � � ����� � �	����#$����� � ���� � � 

 

Note: Take care to pair up the correct values of � and � – they represent the coordinates of the 

crossing points for the two equations.   

 

When solving an inequality, if you multiply or divide by a negative, you must reverse the sign.   

 

Note: The reason for this is clear when you consider 	 % �.  By subtracting 8 from each side we get 

�� % �	, which is of course perfectly correct.  But notice that this is equivalent to �	 & �� which 

not only has different signs to the original statement but also has the inequality sign reversed.   

 

A function is any rule that produces an output value for a given input.  The function ', when applied 

to the input value �, is written as '
�.   

 

Eg: 

The function which subtracts 2 and then squares the result would be written as: '
� � 
� � �� 

 

Note: Numbers may be substituted into functions simply by replacing �: 

 

'
� � 
� � �� � � 
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Chapter 2 – Surds 
 

The counting numbers, or natural numbers are a subset of all whole numbers, or integers, which 

are themselves a subset of rational numbers (numbers which can be written as a fraction).  The 

rationals are a subset of real numbers, which also include numbers called irrational numbers 

which cannot be written as fractions (and therefore also not as either terminating or recurring 

decimals).   

 

Examples of irrational numbers include (, ), *�, *�+
.  Irrational numbers involving roots, such as *� 

or � � *	,
, are known as surds.   

 

Multiplication or division within a root can be brought outside the root.  In general: 

 

*�� � *� � *������-.����/�
� � *�

*� 

 

Eg: 

Simplify *��� � �*�� 

 

*��� � *	� � *	 � �*	�����-.����*�� � *� � *	 � 	*	 

 

*��� � �*�� � �*	 � 	*	 � �*	 

 

Note: The equivalent for addition and subtraction is not valid.  Eg *� � �� 0 *� � *�� 

 

If a fraction is written with a surd in the denominator, it is often useful to be able to rewrite it so 

that the denominator is a rational number.  This is known as rationalising the denominator, and is 

accomplished by multiplying top and bottom of the fraction by a number which will have the desired 

effect.   

 

Eg: 

�
*	 � �*	

	  

 

*	
� � *� � *	1� � *�2

�� � *	1*� � �2 

 

�
� � 	*� � �1� � 	*�2

�� � �� � ��1� � 	*�2
��  
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Chapter 3 – Coordinate geometry of straight lines 
 

The distance between two points can be calculated by constructing a right-angled triangle between 

the coordinates and applying Pythagoras’ Theorem: 

 

3456�-7)��)68))-�
��9 ����-.�
��9 ��:����;
�� � ��� � 
�� � ��� 

 

The midpoint of the line between the points 
��9 �� and 
��9 �� is given by: 

 

<�� � ��
� 9 �� � ��

� = 

 

Note: This is simply the average of the � coordinates and the average of the � coordinates.   

 

The gradient of the line between the points 
��9 �� and 
��9 �� is given by: 

 

> � �� � ��
�� � �� 

 

Note: This is often described as ‘� step over � step’, or ‘rise over run’.   

 

Lines with gradients >� and >� are parallel if >� � >�.  They are perpendicular if >�>� � ��.   

 

Note: The concepts behind the above results are more important (and more easily memorable) than 

the formulae used to describe them mathematically.  The result below is the only one where 

memorising the formula gives an advantage to quickly solving problems.   

 

Given the gradient, >, and a single point, 
��9 ��, the equation of a line can be generated using: 

 

� � �� � >
� � �� 

 

Given two points, the equation of a line can be generated using: 

 � � ��
�� � �� � � � ��

�� � �� 

 

Note: The above result is simply a combination of the definition of gradient and the gradient & point 

formula above.  As such it is not necessary to memorise this form if you are already confident with 

finding the gradient between two points and can recall � � �� � >
� � ��.   

 

The crossing point of two lines directly corresponds with the values of � and ? which satisfy both 

equations.  This can be found either by reading off the graph, or – more precisely – by solving the 

equations simultaneously.   
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Chapter 4 – Quadratics and their graphs 
 

A quadratic function can be written in the form � � ��� � �� � 7, and the shape of the graph 

produced is known as a parabola.  It is symmetrical, and resembles either a U shape (for � & �) or 

an inverted U (for � % �).  If it crosses the �-axis, the equation ��� � �� � 7 � � has two distinct 

solutions.  If it only touches at one point this will be at its maximum or minimum and the equation 

will have one (repeated) solution.  If the graph doesn’t touch the �-axis at all, the equation will have 

no real solutions.   

 

A quadratic can sometimes be factorised; that is, written in the form 
� � �
� � � � �, and in this 

case the solutions are � � � and � � �, giving crossing points of 
�9 � and 
�9 �.   

 

Note: These values of � and � could be positive or negative, or even fractional.  For more difficult 

examples, an alternative method of solving might be used (completing the square or using the 

quadratic formula).   

 

Note: Some simple cases can be solved more easily.  For instance, if 7 � �, one factor will always be �, 

giving one of the solutions as � � �, and if � � �, the equation can be directly rearranged to make � 

the subject, giving the solutions as � � @/� A
B.   

 

Any quadratic can be rearranged into the completed square form: 

 

C
� � D� � E 

 

Note: This form allows you not only to solve a quadratic equation through a few quick steps of 

rearrangement, but also provides a useful method for identifying a maximum or minimum.  Note that 

the stationary point will occur when � � �D, and will take the value � � E; that is, 
– D9 E.   

 

The transformation represented by a change from � � '
� to � � '
� � � � � is a translation of 

G��H.  This means the graph has effectively moved � to the right and � up.   

 

The solutions of any quadratic (if they exist) can be found using the quadratic formula: 

 

� � �� @ *�� � ��7
��  

 

Note: This formula is a direct result of solving the general equation ��� � �� � 7 � � by completing 

the square.   

 

The discriminant of a quadratic enables us to determine whether the equation will have 0, 1 or 2 

real roots.  For �� � ��7 % �, since we can’t square root a negative, there are no real roots.   

For �� � ��7 � �, there is one (repeated) root, and for �� � ��7 & � there are two roots.   
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Chapter 5 – Polynomials 
 

A polynomial of degree - is an expression of the form: 

 

��I � ��IJ� � 7�IJ� �K� L�� � M� � $ 

 

Where �9 �9 7 etc are constants, � 0 �, and - is a positive integer (the degree is the highest power).   

 

Note: Two polynomials can be added to make a new polynomial.  To combine, simply collect like 

terms.   

 

Note: The number in front of a particular power of � is known as its coefficient.   

 

Eg: Find the coefficient of �N in 
��� � ��N � � � 
��N � 	�� � � 

 

��� � ��N � � � 
��N � 	�� � � � ��� � ��N � � � ��N � 	�� � � � ��� � 	�N � 	�� � � � � 

 

The coefficient of �N is 	.   

 

Note: Recall that when multiplying brackets it is necessary to multiply every term in the first bracket 

by every term in the second.   

 

Eg: Multiply out: 
�� � 	� � �
�� � � 

 

�� � 	� � �
�� � � � ��N � ��� � ��� � ��� � �� � �� � ��N � �� � ��� � �� 
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Chapter 6 – Factors, remainders and cubic graphs 
 

The factor theorem: 

 

� � ��45���'�76#$�#'�L#O�-#>4�O�P
� ���Q ����P
� � � 

 

Note: This means that if we know a factor of a polynomial, we can find the corresponding root (or solution), 

and vice versa.   

 

To factorise a cubic, first find a root by trial and error, then use the factor theorem to generate a 

linear factor.  Finally, use inspection to find the remaining (quadratic) factor, and factorise this, 

where possible.   

 

Eg: Factorise fully ��N � 	�� � ��� � �� 

 

P
� � ��N � �� � ��� � �� 

 

P
� � �� 0 not a root.   

P
� � � 1 is a root.   

P
� � ����� � ���� 
� � ����45���'�76#$ 

 

��N � �� � ��� � �� � 
� � �
R  

 

By inspection, we need ��� in the second bracket to give the ��N term in the cubic.   

We also need ��� in the second bracket to give the �� term in the cubic.   

 

P
� � 
� � �
��� �K� �� 

 

To get the �� term we need to examine the � terms from each, as well as the combination of the �� 

and constant terms.  Since we already have �� � ��� giving ����, we need �� to give the result – ��.  

This must be achieved by � multiplied by the second bracket’s � term which therefore must be 

simply �.   

 

P
� � 
� � �
��� � � � �� 

 

Finally, factorise the quadratic if possible: 

 

P
� � 
� � �
�� � �
� � 	 

 

To sketch the graph of a cubic: 

Step 1: Determine the overall direction by looking at the sign of the coefficient of �N.   

Step 2: Find the �-intercept by looking at the constant term (evaluate � at � � �).   

Step 3: Find any points where the graph crosses the �-axis by solving � � �.  Repeated roots 

represent points where the graph touches the axis but does not cross it.   

Step 4: Plot the points and sketch the graph.  Check some additional points if necessary.   



Page 9 of 25 

When a polynomial is divided by a linear expression, the following is true: 

 

P
� � 
� � �S
� � T 

Where: 

P
� is a polynomial of degree - 


� � � is the divisor of degree 1 (linear) 

S
� is the quotient of degree - � � 

T is the remainder of degree 0 (constant) 

 

Note: By considering the case when � � �, we produce the remainder theorem.   

 

The remainder theorem: 

 

When a polynomial P
� is divided by 
� � �, the remainder is T � P
� and vice versa.   

 

Note: The factor theorem is a corollary of the remainder theorem, for the case where T � �.   

 

Eg:  When the polynomial �N � ��� � � � �� is divided by 
� � 	 it has a remainder of  �.  Find �.   

 

P
	 � ����� � ���� 	N � �
	� � 	 � �� � ����� � ����	� � �� � ����� � ����� � �	 

 

Note: Often it will be necessary to combine knowledge of the factor theorem and the remainder 

theorem and use simultaneous equations to solve a problem.   

 

Eg:  The polynomial 	�� � ��� � L� � M has 
�� � 	 as a factor, but gives a remainder � when 

divided by 
� � �.  Find L and M.   

 

By the factor theorem: 

	 <�	
�=

�
� �<�	

�=
�
� L <�	

�= � M � � 

 

���� ��	�� � ��
� � 	L

� � M � ����� � �����	 � ��L � ��M � � 

 

By the remainder theorem: 

	
�� � �
�� � L
� � M � ����� � ������� � �L � M � � 

 

Solving simultaneously: 

(1)  �	 � ��L � ��M � � 

 

(2)  ��� � �L � M � � 

 

(2)� �  40�� � ��L � �M � � 

(1)�(2’) ���� � ��M � ����� � ����M � ��UU
��  

 

Sub into (1)  �	 � ��L � ��  ��UU�� ! � � 

 

� ���L � ������
��  
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Chapter 7 – Simultaneous equations and quadratic inequalities 
 

Simultaneous equations can sometimes be solved by elimination of one or other of the variables.   

 

Simultaneous equations can be used to find the intersection of two lines, a line and a curve or even 

two curves.  Where elimination is unsuitable, substitution is another valid method.   

 

Note: See chapter 1 for detailed examples of these methods.   

 

When dealing with the intersection of a line and a parabola, the resulting equation will be a 

quadratic.  Two solutions correspond to two crossing points, no solutions to no crossing points, and 

exactly one solution (a repeated root) means the line is a tangent to the curve at that point.   

 

To solve a quadratic inequality, use the equivalent equation to determine ‘critical values’, then 

consider the graph to determine the range of solutions for the inequality.   

 

Eg: Solve the inequality �� � �� � � & �� � �.   

 

VW45�45�)MX4Y�O)-6�6#:������ � 	� � � & � 

 

E$4647�O�Y�OX)5��6: 
�� � 	� � � � ����� � ���� 
� � �
� � � � ����� � ����� � ����-.��� � � 

 

 
 

VW)�Z$�LW�45���#Y)�6W)���45��)'#$)�� � ���-.��'6)$�� � � 

 

VW)$)'#$)��� � 	� � � & �����'#$����� % �����#$����� & � 
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A quadratic inequality can also be solved using a sign diagram which indicates whether the graph is 

positive or negative in each region.   

 

Eg: Find all values of � which satisfy the inequality 
� � �
� � � & �.   

 

[.)-64'��7$4647�O�Y�OX)5:����� � �����#$����� � � 

 

\4Z-�.4�Z$�>: 

 
 

� % �����#$����� & � 

 

Writing a quadratic in completed square form can help to identify the signs for each region.  It may 

be useful to note the following two results (visualising them as a graph can help): 

 

�� & �� ����� ����� % ������#$����� & � 

 

�� % �� ���������� % � % � 

 

Eg: Solve the inequality �� � �� � � ] � 

 

�� � �� � � ] ����� � ���� 
� � �� � � ] ����� � ���� 
� � �� ] � 

 

�����*� ] � � � ] *� 

 

Note: Frequently knowledge of the discriminant is combined with solving quadratic inequalities.   

 

Eg: For what values of ^ does the quadratic �� � ^� � �^ � � have no solutions? 

 

�� � ^� � �^ � ��W�5�-#�5#OX64#-5 

����� �� � ��7 % � 

����� ^� � �^ % � 

 

E$4647�O�Y�OX)5��6:����^
^ � � � � 

� ����^ � �����#$����^ � � 

 

 

 

� % ^ % � 
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Chapter 8 – Coordinate geometry of circles 
 

The equation of a circle with centre 
�9� and radius $ is given by: 

 

�� � �� � $� 

 

Note: This can be understood by considering any point on the circle and constructing a right-angled 

triangle, with the line from the origin to the point as the hypotenuse.  By Pythagoras’ Theorem, the 

square of the radius must be equal to the sum of the squares of the � and � coordinates.   

 

The general equation of a circle with centre 
�9 � and radius $ is given by: 

 

� � �� � 
� � �� � $� 

 

Note: This is simply a translation on the original circle – centre 
�9� – by the translation vector G��H.   
 

Eg: The circle 
� � 	� � �� � ��: 

 

 

 

 

 

Note: The most common mistakes to watch out 

for when interpreting a circle equation are 

getting the signs wrong for the centre 

coordinates or forgetting to square root the 

number on the right to get the radius.   

 
 

Recall that a translation by the vector G��H represents a movement of � in the positive � direction and 

a movement of � in the positive � direction.   

 

Note: This transformation can be applied repeatedly.  It is often easiest to consider where the centre 

of a circle is, and where the centre of the new circle will be after the translation.   

 

Eg: Translate the circle 
� � �� � 
� � �� � �� by vector G �
��H.   

 

E)-6$)�
�9 ����-.�$�.4X5�*����� 
 

_)8�74$7O):�7)-6$)�
�9 ����-.�6W)�5�>)�$�.4X5��� 
 

����� 
� � �� � 
� � �� � �� 
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To sketch a circle: 

Step 1: Find the radius and centre from the equation.   

Step 2: Mark the centre.   

Step 3: Use the radius to mark on the four points directly above, below and to either side.   

Step 4: Draw the circle through these four points, indicating where the circle crosses the axes, if 

applicable.   

 

Note: It may be necessary, when finding the centre and radius of a circle, to rearrange the equation 

into the desired form.  This is accomplished by completing the square separately for � and �.   

 

Eg: Find the centre and radius of the circle whose equation is �� � �� � �� � �� � 	 � � 

 

�� � �� � �� � �� � 	 � ����� � ���� `�� � ��a � `�� � ��a � 	 � � 

 

����� `
� � �� � �a � `
� � 	� � �a � 	 � � 

 

����� 
� � �� � 
� � 	� � ������ � ����E)-6$): 
�9 �	���T�.4X5: � 

 

To find the equation of a circle given the end points of the diameter, calculate the midpoint and 

the distance between the points (see chapter 3).  This will give you the centre and the diameter.  

Halve the diameter to get the radius, then put into the form 
� � �� � 
� � �� � $�.   

 

The perpendicular bisector of any chord passes through the centre.   

 

Note: This means the centre of a circle can be found by finding the intersection of any two such 

perpendicular bisectors.  All that is required is two chords (which means a minimum of 3 points).   

 

Eg: Find the coordinates of the centre of the circle through the points 
�9�9 
	9 ����-.�
�9�.   

 

Using > � bJcdef
gJcdef and � � �� � >
� � ��, then midpoints and >� � � �

hi
 for perpendicular lines: 

 

Points 
�9� and 
	9 ��: EW#$.���O4-)�)MX�64#-:����� � � �  � U
N! 
� � � ���� ����� � � U

N� � � 

P)$L)-.47XO�$��45)76#$�#'�7W#$.��:����� � 
���� � <	�= 
� � ��� ����� ����� � 	
� � � ��

�  

Points 
�9� and 
�9�: EW#$.���O4-)�)MX�64#-:����� � � �  ��! 
� � � ���� ����� � �
� � � � 

P)$L)-.47XO�$��45)76#$�#'�7W#$.��:����� � ��� � 
��
� � � ���� ����� � ��� � 	�� 

 

D45)76#$5�7$#55��6 	� � � ��
� � ��� � 	������ � ����� � ��

�� ����VW)$)'#$)�� � �� <����= � 	�� � ���
�� 

 

E)-6$):  Uj�k 9 � ��
�k!  Note: By finding the distance from the centre to one of the points, we could also 

find the radius, and thus the equation of the circle, if required.   
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Like any other curve, and as discussed in chapter 7, finding the crossing points of a line and a circle 

can be found by solving simultaneously (using the substitution method).   

 

Note: Just like with a line crossing a parabola, the discriminant can be used to determine if the line 

passes through the circle (cutting it at two points; positive discriminant), lies tangent to the circle 

(one, repeated, root; zero discriminant) or misses the circle completely (no solutions; negative 

discriminant).   

 

Eg: For which values of ^ does the line � � ^� � � lie tangent to the circle 
� � �� � 
� � �� � �?   

 

Substituting for �: 

� � �� � 
^� � � � �� � � 

 

Multiplying out and rearranging: 

�� � ��� � 	� � ^��� � �^� � � � ����� � ���� 
� � ^��� � 1��
	 � ^2� � 	� � � 

 

Using the discriminant condition: 

l-)�5#OX64#-�8W)-��� � ��7 � ����� � ������
	 � ^� � �
	�
� � ^� � � 

 

Simplifying: 

� � �^ � ^� � �
� � ^� � ����� � ����� � �^ � ^� � � � �^� � � 

 

Rearranging and solving: 

��^� � �^ � ����� � ����^
�^ � 	 � ����� � ����^ � �����#$����^ � 	
� 

 

(optional) Verify solution graphically: 
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A tangent to the circle at a particular point is a line which touches the circle only at that point.  It is 

always perpendicular to the radius.   

 

A normal to the circle at a particular point is a line passing through a circle which is perpendicular 

to the tangent at that point.   

 

Note: The normal line at any point on a circle will pass through the centre, since it is perpendicular to 

the tangent which is perpendicular to the radius.   

 

To find the equation of a tangent or normal at a particular point: 

Step 1: Find the centre of the circle.   

Step 2: Calculate the gradient of the line segment from the centre to your point.   

Step 3i:   For a normal, use this gradient and your point in the formula � � �� � >
� � ��.   

Step 3ii: For a tangent, first find the tangent gradient by using >� � � �
hi, then use the formula.   

 

Eg: Find the equation of the tangent to the circle 
� � �� � 
� � 	� � 	� at the point 
�9�.   

 

E)-6$):����
��9	 

 

m$�.4)-6�#'�O4-)�5)Z>)-6:��� � � 	
� � 
�� �

�
	 

 

 

m$�.4)-6�#'�6�-Z)-6:��� � �
�	
� �	

� 

 

nMX�64#-�#'�6�-Z)-6:����� � � � �	
� 
� � � ����� ����� � �	

� � � ��
�  
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Chapter 9 – Introduction to differentiation: gradient of curves 
 

Differentiation is a method for finding the gradient of a curve at any given point.  It can be thought of 

as the rate of change of � with respect to �.   

 

For a small change in � and a corresponding small change in �, the gradient of a chord can be 

written as: 

 o�
o� 

 

Note: In this case, ‘chord’ refers to a straight line segment drawn between two nearby points on a 

curve.   

 

We define the gradient of a curve at a particular point as the gradient of the tangent to the curve at 

that point.   

 

Note: As the end-points get closer together, the gradient of the chord approaches the gradient of the 

tangent at each point (ie, the gradient of the curve).  This is the basis for differentiation – the limit to 

which the gradients of the ever-decreasing chords tends is the gradient of the curve at that point.   

 

The limit of 
pb
pg as o�9 o� q � is written as 

rb
rg and is known as the differential of � with respect to �.   

 

Note: The proof of this idea is given in the textbook, but while it is worth understanding it is not 

necessary to memorise the proof.   

 

� � �I ����� ��� .�.� � -�IJ� 

 

Note: This can be thought of as “bring the power down in front, then reduce the power by one”.   

Note: If there is a constant multiplied by the �I term, this is not affected by differentiating.   

 

Eg: 

� � ��� ����� ��� .�.� � ���N 

 

� � '
� @ Z
� ���� ��� .�.� � 's
� @ Zs
� 

 

Note: 's
� is the notation sometimes used to denote the derivative of '
�.  It means the same as, 

but is less cumbersome than, 
r1t
g2

rg .   

 

Eg: The differential of ��� � ��� � � is ��N � ��� (note that any constants differentiate to �).   
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To find the gradient of a curve at a particular point, calculate 
rb
rg and substitute in the � coordinate.   

 

Eg: Find the gradient of the curve � � 
�� � 	
�� � � at the point 
�9 ��.   

 

Multiply out: 

� � 
�� � 	
�� � � � ��N � 	�� � ��� � �� 

 

Differentiate: .�
.� � ��� � �� � �� 

 

Substitute in � � �: 

C6�� � ����� .�.� � �
�� � �
� � �� � ������ � ����m$�.4)-6 � �� 

 

To find a point on a curve with a given gradient, differentiate then set your expression equal to the 

gradient and solve for �.  Finally, substitute into the original equation for a corresponding value for �.   

 

Eg: Find any points on the curve � � �N � 	� where the gradient is ��.   

 

Differentiate: .�
.� � 	�� � 	 

 

Rewrite using 
rb
rg � ��: 

�� � 	�� � 	���� � ���� �� � � � ������ � ���� �� � ������ � ����� � @� 

 

Substitute back into the original equation: 

u#$�� � �:����� � �N � 	
� � ������ � ���� 
�9�� 

 

u#$�� � ��:����� � 
��N � 	
�� � ������� � ���� 
��9��� 

 

  



Page 18 of 25 

Chapter 10 – Applications of differentiation: tangents, normals and 

rates of change 
 

Given the gradient of a curve at a particular point, we can find the equation of the tangent using 

� � �� � >
� � �� where 
��9 �� is the point on the curve and > is the gradient.   

 

Note: We can calculate the gradient for a particular point on a curve using differentiation.  (see 

chapter 9).  Also note that, when dealing with circles, although this method does work, it requires 

knowledge beyond the scope of this module to apply, and it is still more straightforward to use the 

method described in chapter 8 using the centre and a normal line.   

 

Eg: Find the equation of the tangent to the curve � � ��N � � at the point 
�9 ��.   

 

Differentiate: .�
.� � ���� 

 

Substitute in � � �: 

> � ��
�� � �� 

 

Use � � �� � >
� � ��: 

� � 
�� � ��
� � � ���� ���� � ��� � �� 

 

Recall that 
rb
rg means the rate of change of � with respect to �.   

 .�
.� & ����� � ������4-7$)�5)5��5���4-7$)�5)5 

 .�
.� % ����� � ������.)7$)�5)5��5���4-7$)�5)5 

 

Note: Often the rate of change will be with respect to time.   
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Eg: 

The height W metres of a skydiver at time 6 seconds is modelled by the equation: 

W � ���� � �6 � �6� 

Calculate the skydiver’s rate of descent when he has fallen 1000 metres.   

 

Substitute in W � ���� to find the time at which he is at a height of 1000: 

���� � ���� � �6 � �6� ����� ���� 6� � 6 � ��� � � 

 

Solve (using the quadratic formula) to find 6 (note: only positive values are valid for this problem): 

6 � �
�� @ ;� � �
�
����
�
� � � @ *���

� � �������#$� � �	������� � ����6 � ������5)7#-.5 

 

Find the rate of descent (in other words, speed) by differentiating: .W
.6 � � � ��6 

 

Substitute 6 � ����� to find the rate of descent at this time: .W
.6 � � � ��
����� � � � ����� � �������>)6$)5�L)$�5)7#-. 

 

Note: This is negative as it is the rate of change of height, so the rate of descent is �����>v5.   

 

If 's
� & � for all values in a given interval, the function is said to be increasing for this interval.   

 

If 's
� % � for all values in a given interval, the function is said to be decreasing for this interval.   

 

Note: You may be asked to show that a given function is either increasing or decreasing for a given 

range.  You would do this by finding the gradient by differentiating and showing that the expression 

you have found fits the criteria above.   
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Chapter 11 – Maximum and minimum points and optimisation 
 

We can find a point on a curve with a particular gradient (see chapter 9).  If we look specifically for 

points where the gradient is zero, these must correspond to points on the curve which are either 

maxima, minima or turning points.  These points are known as stationary points.   

 

Stationary points occur when: .�
.� � � 

 

For a minimum on a curve, such as the lowest point of a parabola, the gradient must be negative just 

before the minimum and positive just after.   

 

For a maximum, the gradient is positive just before and negative just after.   

 

Note: This is one way we can determine if a given stationary point is a maximum or a minimum.   

 

 
 

If we differentiate a function a second time we get the rate of change of the gradient.  This can be 

written as: 

'ss
�����#$���� .
��

.�� 

 

Note: These are usually said as “'-double-dashed of �” and “.-two-� by .-�-squared”.   

 

Another way of testing the nature of a stationary point is to calculate the second derivative.   

 

.�

.� � ������-.���� .
��

.�� & ����� � ����w4-4>X>�������������� .�.� � ������-.��� .
��

.�� % ����� � ����w��4>X> 

 

Note: Since this is the rate at which the gradient changes, if the stationary point is  a minimum the 

gradient goes from negative to positive; it is increasing which means its rate of change is positive.   
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If the gradient is �, the curve may be at a local maximum or minimum, or it might be at a point of 

inflection.  This means the gradient goes to zero, but then continues with the same type of gradient 

(positive or negative) it had before.   

 

 
 

A point of inflection can be either positive or negative.  A positive point of inflection has a positive 

gradient either side, and a negative point of inflection has a negative gradient.   

 

One common application of stationary points is optimisation problems.  If a problem can be formulated 

algebraically and we are aiming to maximise or minimise something (eg maximum volume, or minimum 

surface area for a given shape), we can use differentiation to find the required value of �.   

 

Eg: A box is to be made by cutting corners from a square sheet of 

cardboard and folding up the edges as shown.  The original square 

measures ��7> by ��7>.  Find the maximum volume for the 

resulting box and the corresponding height.   

 

Let � be the height of the cuboid; then: 

x � 
�� � ��� � ��� � ��� 
 

Differentiate to find stationary points: .x
.� � �� � �� � ����� � ����� � 	 

 

Find the resulting volume: 

E � 1�� � �
	2
	 � ��7>N  
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Chapter 12 – Integration 

 

Integration is the reverse of differentiation.  If you know the derivative of a function, the process 

of finding the function itself is known as integration.   

 

If 's
� is the differential of '
� then: 

y's
� .� � '
� � E 

 

Note: This would be described as “The integral of 's
� with respect to �”.   

Note: The ��E on the end is due to the fact that any constant would differentiate to �, therefore, for 

instance, �N � � differentiates to the same thing as �N � �.  By including this arbitrary ‘constant of 

integration’ we are describing all possible functions (the ‘family of functions’) which differentiate to 

the function we are integrating.    

 

y�I .� � �Iz�
- � � � E 

 

Note: This can be thought of as “increase the power by one, then divide by the new power”.   

 

Since integration in this way always yields an arbitrary constant, and therefore cannot give a single 

unique value, the integral is known as an indefinite integral.   

 

Note: The specific solution for a particular case can be found provided initial conditions are 

provided – typically a value for � at � � �, but could be any specific point on the curve.   

 

Eg: A function has derivative 
rb
rg � 	�� � � and goes through the point 
�9�.  Find � in terms of �.   

 

� � y	�� � �.� � �N � �� � E 

 

\X�5646X64-Z�4-�� � ���6�� � �:����� � �N � �
� � E���� � ����E � ��� 

 

T)8$464-Z�846W�^-#8-�Y�OX)�'#$�E:����� � �N � �� � �� 

 

A result concerning combinations of functions has been given for differentiation (see chapter 9).  

An equivalent result is valid for integration: 

 

yC'
� � DZ
�.� � Cy'
� .� � DyZ
� .� 

 

Note: It may often be necessary to multiply out brackets in order to turn a function into an easily 

integrable form.   
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In the same way that differentiation can be thought of as finding the gradient of a curve at any 

point, integration is a way of finding the area under a curve between any two points.   

 

Finding the area under a curve using integration requires the use of limits.  The resulting integral is 

known as a definite integral, since the effect of any arbitrary constant is cancelled out and is 

therefore superfluous.   

 

Note: It is important to be aware of the shape of the graph, since integration will yield a negative 

result for any section of the area which lies below the � axis.   

 

Eg: Find the area bounded by the curve � � ��U � ��� � �, the � axis and the lines � � � and � � �.   

 

y ��N �
�

�
��� � ��. � {�� � �

	�N � ��|
�

�
 

 

� <�� � ��
	 � �= � <� � �

	 � �= 

 

� ��
	 ����� ����C$)� � ��

	  

 

 
 

In this example, there is no problem because the entire region lies above the axis.  The positive value 

given by integration is equal to the area.   

 

Eg: Find the area bounded by the curve � � 	�N � ���� � �, the � axis and the lines � � � and � � 	.   

 

y 	�N �
N

�
���� � ��.� � {	� �� � ��N � ��|

�

N
 

 

� <��	� � ��� � ��= � 
�� � 	� � � 

 

� ����
� ����� ����C$)� � ���

�  

  
  

Here, since the whole region is below the axis, the integral is negative, but the same size as the area.  

All that is necessary is to change the sign from negative to positive.   
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Eg: Find the area bounded by the curve � � �� � �� � 	, the � axis and the lines � � � and � � �.   

 

y �� � �� � 	
N

�
.� � {�	 �N � ��� � 	�|

�

N
 

 

� 
� � �� � � � <�	 � � � �= 

 

� ��
	 ����� ����C$)� � �

	 

 

y �� � �� � 	
�

N
.� � {�	 �N � ��� � 	�|

N

�
 

 

� <��	 � 	� � ��= � 
� � �� � � 

 

� �
	 ����� ����C$)� � �

	 

 

� ����V#6�O�C$)� � �
	 � �

	 � � 

 

 

Here, because part of the integral would be negative, it would cancel out with some of the positive 

part, so we need to separate and integrate each region independently.  In this case, the � axis 

crossing points are obvious because the function is a quadratic that easily factorises.  In other cases, 

more work may be necessary.   

 

The area under a line can be found using integration, just like any function of �, but it is generally 

quicker to consider it as a trapezium.   

 

Eg: The area under the line � � 	� � � between � � � and � � � can be calculated by: 

 

Using integration: 

y 	� � �
k

�
.� � {	� �� � �|

�

k
 

 

� 
�� � � � 
�� � � 

 

� ������ � ����C$)� � �� 

Using area of a trapezium: 

C � � � �
� W 

 

� � 	
� � � � ����������� � 	
� � � � ����������W � � � � � � 

 

C$)� � �� � ��
� 
� � �� 
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To find the area of a region bounded by a curve and a line, it is necessary to calculate the points of 

intersection, and then calculate the difference between the area under the curve and the area under 

the line.   

 

Eg: Find the area bounded by the curve � � �� � �� � �� and the line � � �� � 	.   

 

Find points of intersection: 

�� � �� � �� � �� � 	 

 

�� � �� � �� � ����� � ���� 
� � �
� � � � � 

 

� ���� � ������-.����� � � 

 

Find area under line (note: this is a trapezium): � � �
� W � 
�
� � 	 � 
�
� � 	

� 
� � � � �� 

 

Find area under curve: 

y �� � �� � ��
k

�
.� � {�	 �N � 	�� � ���|

�

k
 

 

� 
�� � ��� � �� � <�	 � �� � 	�= � ���
	  

 

Calculate the difference to find the area in between: 

C$)� � �� � ���
	 � ��
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