CORE 1

1 Linear Graphs and Equations

$$
\text { gradient }=\frac{\operatorname{increase~in~} y_{\text {increase in } x}^{y=m x+c} \text { y intercept }}{\text { inder }}
$$

Gradient Facts

- Lines that have the same gradient are PARALLEL
- If 2 lines are PERPENDICULAR then $m_{1} \times m_{2}=-1$ or $m_{2}=-\frac{1}{m_{1}}$
e.g. $2 y=4 x-8$

$$
\begin{aligned}
\text { e.g. } 2 y=4 x-8 & \\
y=2 x-4 & \text { gradient }=2 \\
& \text { gradient of perpendicular line }=-1 / 2
\end{aligned}
$$

Finding the equation of a straight line
e.g. Find the equation of the line which passes through $(2,3)$ and $(4,8)$

$$
\text { GRADIENT }=\frac{y_{1}-y_{2}}{x_{1}-x_{2}} \quad \text { GRADIENT }=\frac{3-8}{2-4}=\frac{-5}{-2}=\frac{5}{2}
$$

Method 1

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Using the point $(2,3)$

$$
\begin{aligned}
& y-3=\frac{5}{2}(x-2) \\
& y=\frac{5}{2} x-2 \\
& 2 y=5 x-4
\end{aligned}
$$

Method 2

$$
y=m x+c
$$

Using the point $(2,3)$

$$
\begin{aligned}
& 3=\frac{5}{2} \times 2+c \\
& c=-2 \\
& y=\frac{5}{2} x-2 \\
& 2 y=5 x-4
\end{aligned}
$$

Finding the Mid-Point
Given the points
$\left(\begin{array}{ll}x_{1} & y_{1}\end{array}\right)$ and $\left(x_{2} y_{2}\right)$ the midpoint is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Finding the point of Intersection
Treat the equations of the graphs as simultaneous equations and solve Find the point of intersection of the graphs $y=2 x-7$ and $5 x+3 y=45$

Substituting $y=2 x-7$ gives

$$
\begin{aligned}
5 x+3(2 x-7) & =45 \\
5 x+6 x-21 & =45 \\
11 x & =66 \\
x & =6 \\
& y=2 \times 6-7 \\
& y=5
\end{aligned}
$$

Point of intersection $=(6,5)$

2 Surds

- A root such as $\sqrt{ } 5$ that cannot be written exactly as a fraction is IRRATIONAL
- An expression that involves irrational roots is in SURD FORM e.g. $3 \sqrt{ } 5$
- $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
- $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$

$$
\text { e.g } \begin{aligned}
& \sqrt{75}-\sqrt{12} \\
& =\sqrt{5 \times 5 \times 3}-\sqrt{2 \times 2 \times 3} \\
& =5 \sqrt{3}-2 \sqrt{3} \\
& =3 \sqrt{3}
\end{aligned}
$$

- RATIONALISING THE DENOMINATOR
$3+\sqrt{ } 2$ and $3 \sqrt{ } 2$ is called a pair of CONJUGATES
The product of any pair of conjugates is always a rational number e.g. $\quad(3+\sqrt{ } 2)(3 \sqrt{ } 2)=9 \quad 3 \sqrt{ } 2+3 \sqrt{ } 22$

$$
=7
$$

Rationalise the denominator of

$$
\frac{2}{1-\sqrt{5}}
$$

$$
\begin{aligned}
& \frac{2}{1-\sqrt{5}} \times \frac{1+\sqrt{5}}{1+\sqrt{5}}=\frac{2+2 \sqrt{5}}{1-5} \\
& =\frac{2+2 \sqrt{5}}{-4} \\
& =\frac{-1-\sqrt{5}}{2}
\end{aligned}
$$

3. Quadratic Graphs and Equations

Solution of quadratic equations

- Factorisation

$$
\begin{aligned}
& x^{2}-3 x-4=0 \\
& (x+1)(x-4)=0 \\
& x=-1 \text { or } x=4
\end{aligned}
$$

- Completing the square

$$
\begin{aligned}
& x^{2}-4 x-3=0 \\
& (x-2)^{2}-(2)^{2}-3=0 \\
& (x-2)^{2}-7=0 \\
& (x-2)^{2}=7 \\
& x-2= \pm \sqrt{7} \\
& x=2+\sqrt{7} \text { or } x=2-\sqrt{7}
\end{aligned}
$$

- Using the formula to solve $a x^{2}+b x+c=0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

E. g Solve $\mathrm{x}^{2}-4 \mathrm{x}-3=0$

$$
\begin{aligned}
x & =\frac{-(-4) \pm \sqrt{(-4)^{2}-4 \times 1 \times(-3)}}{2 \times 1} \\
& =\frac{4 \pm \sqrt{28}}{2} \\
& =2 \pm \sqrt{7}
\end{aligned}
$$

- The graph of $y=a x^{2}+b x+c$ crosses the y axis at $y=c$

It crosses or touches the x-axis if the equation has real solutions
The DISCRIMINANT of $a x^{2}+b x+c=0$ is the expression $b^{2}-4 a c$
If $b^{2}-4 a c>0$ there are 2 real distinct roots
If $b^{2}-4 a c=0$ there is one repeated root
If $b^{2}-4 a c<0$ there are no real roots

Graphs of Quadratic Functions

- The graph of any quadratic expression in x is called a PARABOLA
- The graph of $y-q=k(x-p)^{2}$ is a TRANSLATION of the graph $y=k x^{2}$

In VECTOR notation this translation can be described as $\left[\begin{array}{l}p \\ q\end{array}\right]$
The equation can also be written as $y=k(x-p)^{2}+q$
The VERTEX of the graph is (p, q)
The LINE OF SYMMETRY is $x=p$

$$
2 x^{2}+4 x+5=2(x+1)^{2}+3
$$

Vertex $(-1,3)$
Line of symmetry $x=-1$

4 Simultaneous Equations

- Simultaneous equations can be solved by substitution to eliminate one of the variables

Solve the simultanoeus equations $y=2 x-7$ and $x^{2}+x y+2=0$

$$
\begin{aligned}
& y=7+2 x \\
& \text { so } \quad x^{2}+x(7+2 x)+2=0 \\
& \quad 3 x^{2}+7 x+2=0 \\
& \quad(3 x+1)(x+2)=0 \\
& \quad x=-\frac{1}{3} \quad y=6 \frac{1}{3} \quad \text { or } x=-2 y=3
\end{aligned}
$$

- A pair of simultaneous equations can be represented as graphs and the solutions interpreted as points of intersection.
If they lead to a quadratic equation then the DISCRIMINANT tells you the geometrical relationship between the graphs of the functions

$$
\begin{array}{ll}
b^{2}-4 a c<0 & \text { no points of intersection } \\
b^{2}-4 a c=0 & 1 \text { point of intersection } \\
b^{2}-4 a c>0 & 2 \text { points of intersection }
\end{array}
$$

5 Inequalities

Linear Inequality

- Can be solved like a linear equation except

Multiplying or dividing by a negative value reverses the direction of the inequality sign

e.g Solve $-3 x+10 \leq 4$
$-3 x+10 \leq 4$
$-3 x \leq-6$
$x \geq 2$
Quadratic Inequality

- Can be solved by either a graphical or algebraic approach.
e.g. solve the inequality $x^{2}+4 x-5<0$

Algebraic $x^{2}+4 x-5<0$ factorising gives $(x+5)(x-1)<0$
Using a sign diagram

$$
\begin{array}{ccc}
x+5 & --0+++++++ \\
x-1 & -\cdots-\cdots+++ \\
(x+5)(x-1) & +++0--0+++
\end{array}
$$

The product is negative for $-5<x<1$

Graphical

The curve lies below the

$$
x \text {-axis for }-5<x<1
$$

6

Polynomials
Translation of graphs
To find the equation of a curve after a translation of $\left[\begin{array}{l}p \\ q\end{array}\right]$ replace x with $(x-p)$ and replace y with ($\mathrm{y}-\mathrm{p}$)
e.g The graph of $y=x^{3}$ is translated by $\left[\begin{array}{c}3 \\ -1\end{array}\right]$

The equation for the new graph is

$$
y=(x-3)^{3}-1
$$

Polynomial Functions

A polynomial is an expression which can be written
 in the form $a+b x+c x^{2}+d x^{3}+e x^{4}+f x^{5} \quad(a, b, c .$. are constants)

- Polynomials can be divided to give a QUOTIENT and REMAINDER

$$
\begin{array}{rrr}
& x^{2}-3 x+7 & \\
x+2 & x^{3}-x^{2}+x+15 & \\
x^{3}+2 x^{2} & \text { Qutoient } \\
-3 x^{2}+x & \\
-3 x^{2}-6 x & \\
& 7 x+15 & \\
7 x+14 & \text { Remainder } & 1
\end{array}
$$

- REMAINDER THEOREM

When $P(x)$ is divided by $(x-a)$ the remainder is $P(a)$

- FACTOR THEOREM

If $P(a)=0$ then $(x-a)$ is a factor of $P(x)$
e.g. The polynomial $f(x)=h x^{3}-10 x^{2}+k x+26$ has a factor of $(x-2)$

When the polynomial is divided by $(x+1)$ the remainder is 15 .
Find the values of h and k.
Using the factor theorem $f(2)=0$

$$
\begin{aligned}
& 8 h-40+2 k+26=0 \\
& 8 h+2 k=14
\end{aligned}
$$

Using the remainder theorem $f(-1)=15$

$$
\begin{aligned}
& -h-10-k+26=14 \\
& h+k=2
\end{aligned}
$$

Solving simultaneously k=2-h

$$
\begin{array}{r}
8 h+2(2-h)=14 \\
6 h+4=14
\end{array}
$$

Equation of a Circle

- A circle with centre $(0,0)$ and radius r has the equation $x^{2}+y^{2}=r^{2}$
- A circle with centre (a, b) and radius r has the equation $(x-a)^{2}+(y-b)^{2}=r^{2}$
e.g. A circle has equation $x^{2}+y^{2}+2 x-6 y=0$

Find the radius of the circle and the coordinates of its centre.

$$
\begin{aligned}
& x^{2}+2 x+y^{2}-6 y=0 \\
& (x+1)^{2}-1+(y-3)^{2}-9=0 \\
& (x+1)^{2}+(y-3)^{2}=10
\end{aligned}
$$

Centre $(1,3) \quad$ radius $=\sqrt{ } 10$

- A line from the centre of a circle to where a tangent touches the circle is perpendicular to the tangent. A perpendicular to a tangent is called a NORMAL.
e.g. $C(-2,1)$ is the centre of a circle and $S(-4,5)$ is a point on the circumference. Find the equations of the normal and the tangent to the circle at S .

Gradient of SC is $\frac{1-5}{-2(-4)}=\frac{-4}{2}=-2$
Equation of SC $y=-2 x+7$
Gradient of the tangent $=-\frac{1}{-2}=\frac{1}{2}$
Equation of $y=\frac{1}{2} x+7$

- Solving simultaneously the equations of a line and a circle results in a quadratic equation.
$b^{2}-4 a c>0$ the line intersects the circle
$b^{2}-4 a c=0 \quad$ the line is a tangent to the circle
$b^{2}-4 a c<0 \quad$ the line fails to meet the circle

8 Rates of Change

- The gradient of a curve is defined as the gradient of the tangent

Gradient is denoted $\frac{d y}{d x}$ if y is given as a function of x
Gradient is denoted by $f^{\prime}(x)$ if the function is given as $f(x)$

- The process of finding $\frac{d y}{d x}$ or $\mathrm{f}^{\prime}(\mathrm{x})$ is known as DIFFERENTIATING
- Derivatives

$$
\begin{aligned}
& f(x)=x^{n} \quad f^{\prime}(x)=n x^{n-1} \\
& f(x)=a \quad f^{\prime}(x)=0
\end{aligned}
$$

$$
\begin{aligned}
& y=x^{3}+4 x^{2}-3 x+6 \\
& \frac{d y}{d x}=3 x^{2}+8 x-3
\end{aligned}
$$

9 Using Differentiation

- If the value of $\frac{d y}{d x}$ is positive at $\mathrm{x}=\mathrm{a}$, then y is increasing at $\mathrm{x}=\mathrm{a}$
- If the value of $\frac{d y}{d x}$ is negative at $\mathrm{x}=\mathrm{a}$, then y is decreasing at $\mathrm{x}=\mathrm{a}$
- Points where $\frac{d y}{d x}=0$ are called stationary points

Minimum and Maximum Points (Stationary Points)
Local Maximum

GRADIENT

Stationary points can be investigated

- by calculating the gradients close to the point (see above)
- by differentiating again to find $\frac{d^{2} y}{d x^{2}}$ or f " (x)
- $\frac{d^{2} y}{d x^{2}}>0$ then the point is a local minimum
- $\frac{d^{2} y}{d x^{2}}<0$ then the point is a local maximum

Optimisation Problems

Optimisation means getting the best result. It might mean maximising (e.g. profit) or minimising (e.g. costs)

10 Integration

- Integration is the reverse of differentiation

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+c \longleftarrow \text { Constant of integration }
$$

e.g. Given that

$$
\begin{aligned}
f^{\prime}(x)=8 x^{3} & -6 x \text { and that } f(2)=9 \text { find } f(x) \\
f(x) & =\int 8 x^{3}-6 x d x \\
& =\frac{8 x^{4}}{4}-\frac{6 x^{2}}{2}+c \\
& =2 x^{4}-3 x^{2}+c
\end{aligned}
$$

To find cuse $f(2)=9$

$$
\begin{array}{ll}
32-12+c=9 & \\
c=-11 & \text { So } f(x)=2 x^{4}-3 x^{2}-11
\end{array}
$$

11 Area Under a Graph

- The are under the graph of $y=f(x)$ between $x=a$ and $x=b$ is found by evaluating the definite integral

$$
\int_{a}^{b} f(x) d x
$$

e.g. Calculate the area under the graph of $y=4 x-x^{3}$ between the
lines $x=0$ and $x=2$

$$
\begin{aligned}
& \int_{0}^{2} 4 x-x^{3} d x= \\
& \quad=2 x^{2}-\frac{x^{4}}{4} \\
& \quad=(8-4)-(0-0) \\
& =4
\end{aligned}
$$

- An area BELOW the x-axis has a NEGATIVE VALUE

