
Setting the Standard
for Reliability

Today’s call 1. Introductions & objectives

2. Reliability trends & challenges

3. How Gremlin helps

4. Demo

5. Discussion & next steps

2

…but it’s harder than ever to get it right

Reliability is table stakes

Large enterprises are
moving to DevOps

Running complex
cloud infrastructure

Automating the
software lifecycle

Trying to catch or
keep pace with cloud
native companies

4

But DevOps velocity is in
conflict with reliability

5

Expensive Downtime

Pausing Software
Development

Manual Engineering
Processes

6

And the
cost of unreliability
has never been higher

7

SREs can’t scale
with demand.

Observability
isn’t predictive

Incident response
is too late.

There is no reliability
solution for modern
development

Reliability
needs a strategy

Proactive

Standards-based

Automated

Built-in

How teams proactively
improve reliability at
every stage of maturity.

Standardized
Reliability Tests

10

Custom Chaos Tests
& Experiments

Automated & Scaled
Reliability Programs

Shifting from observing to improving
Gremlin proactively improves reliability at every stage of maturity.

Pre-built test harness to cover the
most common reliability risks.

Get started in minutes.

Standardized scoring and measurement
tools to identify and prioritize risks, and

automate reliability programs.

Robust, customizable chaos tests to
safely replicate any incident scenario.

StandardizingExperimenting Scaling

Implementing Improvements & Expanding Scope

Demo

How Gremlin
helps improve
reliability at scale

Manage to Standards
Discuss outcomes with teams. Identify changes,
risks and potential improvements.

Automate and Integrate
Automatically run validations on a schedule to
ensure reliability as systems change. Integrate
with CI/CD tools to prevent or roll-back unreliable
releases.

Understand reliability risks
Identify hidden reliability risks at every level of
your technology stack.

Trusted by
global leaders

Gremlin Reliability Management (RM) provides the
essential elements to start or scale standardized reliability
programs.

Gremlin Fault Injection (FI) is a toolset for teams
performing custom chaos engineering experiments at the
infrastructure layer.

Gremlin
Product Suite
Gremlin enables teams to both standardize reliability at
scale and perform custom chaos engineering experiments.

Gremlin RM Gremlin FI

Start or scale
reliability programs

Perform custom
chaos tests

Reliability Scores & Dashboard
Reliability Tests

Dependency Discovery

✔

✔

✔

Custom Fault Injections
Custom Scenarios

GameDay Manager

✔

✔

✔

API Integration
CI/CD Integrations

✔

✔

✔

✔

Annual Pricing $3k/Service $50k+

Thank you

Total Reliability Score ranges from 0 to 100

Each Category is equally weighted

Each Test is worth:
● No points for untested
● Half points for failed test
● Full points for passed test

Test score degrades by 25% if not tested in past seven days

The Gremlin
Reliability Score
A standards-based, proactive approach
to measure reliability.

R E L I A B I L I T Y S C O R E

Host + Zone

CPU + Memory

Dependency Latency

Dependency Loss

Certificate Expiration

C A T E G O R Y T E S T

Scores are created by running pre-defined
reliability tests across common reliability risks.

Gremlin
Architecture

Health Checks
Gremlin determines if your
service passes or fails a reliability
test by connecting to your critical
service monitors and watching
the alert thresholds you’ve set.

We recommend starting with the
four Golden Signals: these are the
essential indicators of service
health for SRE teams.

Latency
The time it takes a system to
respond to a request

Traffic
How much your service
is in demand

Errors
The rate of requests that fail
explicitly, implicitly, or by policy

Saturation
How much memory or CPU
resources your system is utilizing

Integrates with

& any other via webhook

By making each service more reliable, you make the entire
application more reliable.

In Gremlin, you define the service by identifying a process running
on one or more hosts, containers, or Kubernetes resources.

Examples:
● Java application running simultaneously on two servers
● with a load balancer directing traffic between them
● Kubernetes deployment running two instances of the
● same container

Service
Identification
A service is the specific functionality provided by one or more
systems within an environment, such as a checkout service or
authentication service. Services have clear interfaces and can be
independently deployed. For Gremlin, it’s the unit of reliability
measurement and improvement.

Gremlin is
Enterprise-ready

Simple
Intuitive interface and
well-documented API

Safe
Safely halt and roll
back any validation

Secure
SOC II Certified
RBAC, MFA, SSO

Cloud Native
Runs in all
environments: AWS,
Azure, GCP, bare metal

Guided
Recommended
workflows and
validations

Breadth
Supports Linux,
Windows, Kubernetes,
and more

	슬라이드 1: Setting the Standard for Reliability
	슬라이드 2: Today’s call
	슬라이드 3: Reliability is table stakes
	슬라이드 4: Large enterprises are moving to DevOps
	슬라이드 5: But DevOps velocity is in conflict with reliability
	슬라이드 6: And the cost of unreliability has never been higher
	슬라이드 7: There is no reliability solution for modern development
	슬라이드 8: Reliability needs a strategy
	슬라이드 9: How teams proactively improve reliability at every stage of maturity.
	슬라이드 10: Shifting from observing to improving Gremlin proactively improves reliability at every stage of maturity.
	슬라이드 11: Demo
	슬라이드 12: How Gremlin helps improve reliability at scale
	슬라이드 13: Trusted by global leaders
	슬라이드 14: Gremlin Product Suite
	슬라이드 16: Thank you
	슬라이드 17: The Gremlin Reliability Score
	슬라이드 18: Gremlin Architecture
	슬라이드 19: Health Checks
	슬라이드 20: Service Identification
	슬라이드 21: Gremlin is Enterprise-ready

