\qquad
\qquad

Strategies (All)

1. What is the value of the expression $a^{2}+2 a+2 a b+$ $2 b+b^{2}$ when $a+b=25$?
A) 25
B) 625
C) 675
D) 2600
2. Which of the following (x, y) pairs is a solution to the equations $x-y=7$ and $4 x-y=46$?
A) $(6,13)$
B) $(7,14)$
C) $(13,6)$
D) $(14,7)$
3. Heading into the last test of the semester, Julian had scored $78,91,64$, and 95 on the previous four exams. After the last test, Julian had an overall test average somewhere in the B range $(80 \%-89 \%)$ for the semester. Which of the following could NOT have been the score of his final exam?
A) 68
B) 72
C) 95
D) 100
4. If a is an odd integer and b is an even integer, then which of the following produces an odd integer?
A) $2 a+b$
B) $2 a-b$
C) $a b$
D) $3 a-b$
5. A function $f(x)$ is defined as $f(x)=4^{5 x-7}$. What is x when $f(x)=64$?
A) 2
B) 3
C) 4
D) 5
6. In the $x y$-plane, line y has slope $\frac{2}{5}$, and line z has slope $\frac{5}{2}$. Both lines contain the point $(0,0)$. For which of these lines is $y<x$ for all negative values of x ?
I. Line y
II. Line z
A) I only
B) II only
C) I and II
D) Neither I nor II
7. Given that $h>j>0$ and $(h+j)<\left(h^{2}-j^{2}\right)$, then ($h-j$) must be:
A) less than 1 .
B) greater than 1 .
C) greater than $(h+j)$.
D) equal to $(h+j)$.
8. $\quad x^{2}-2 x-4=0$

What is a solution to the given equation?
A) $-2+\sqrt{10}$
B) $-1+\sqrt{5}$
C) $1+\sqrt{5}$
D) $2+\sqrt{10}$
9. At the beginning of a certain year, the price of a restaurant's burger was $\$ 12$. By the end of that year, the price had increased by $q \%$. Which expression represents the price of the restaurant's burger, in dollars, at the end of that year?
A) $12+q$
B) $12(1+q)$
C) $(12 q)(100)$
D) $12\left(1+\frac{q}{100}\right)$
10. The polynomial $81 x^{2}+27 x-10$ is equivalent to the product of $(9 x+5)$ and which of the following binomials?
A) $(-9 x-9)$
B) $(-9 x-2)$
C) $(9 x+2)$
D) $(9 x-2)$
11. A line contains the points A, B, C, and D. Point D is between points A and B. Point C is between points D and B. Which of the following inequalities must be true about the lengths of these segments?
A) $B C<C D$
B) $C D<B C$
C) $A B<D B$
D) $D B<A B$
12.

$$
\frac{x^{2}(x-4)-16(x-4)}{x^{2}-8 x+16}
$$

If $x>4$, which of the following expressions is equivalent to the given expression?
A) $x+4$
B) $(x+4)(x-4)$
C) $(x-4)^{2}$
D) $(x+4)^{2}$
13. In a right triangle, one angle measures x°, and $\sin x^{\circ}=\frac{3}{5}$. What is $\cos \left(90-x^{\circ}\right) ?$
A) $\frac{2}{5}$
B) $\frac{3}{5}$
C) $\frac{3}{4}$
D) $\frac{4}{5}$
14.

$$
x^{2}+b=0
$$

In the quadratic equation shown, b is a constant. For which of the following values of b will the equation have one real solution?
A) -4
B) -2
C) 0
D) 2
15. The side of a square is t feet longer than the side of a second square. How many feet longer is the diagonal of the first square than the diagonal of the second square?
A) $\sqrt{2} t$
B) $2 t$
C) $4 t$
D) t^{2}
16. A circle in the $x y$-plane intersects the y-axis at $(0,8)$ and $(0,-8)$. The radius of the circle is 10 coordinate units. Which of the following could be the center of the circle?
I. $(-6,0)$
II. $(0,0)$
III. $(6,0)$
A) I only
B) II only
C) III only
D) I and III only

