\qquad
\qquad

Nonlinear Systems of Equations

Multiple Choice

1.

$$
\begin{gathered}
x^{2}-6 x+10=y \\
x=y+2
\end{gathered}
$$

When the system of equations shown above is graphed in the $x y$-plane, which of the following is a y coordinate of an intersection point (x, y) of the graphs of the two equations? (NO CALCULATOR)
A) -3
B) -1
C) 1
D) 3
2.

A system of three equations is shown above. How many solutions does this system have?
A) None
B) One
C) Two
D) Three
3.

$$
\begin{gathered}
x^{2}+y=11 \\
x-y=19
\end{gathered}
$$

Which of the following is a y-coordinate of a solution to the system of equations shown above?
A) -14
B) -6
C) -5
D) 5
4.

A system of three equations is shown above. How many solutions does this system have?
A) None
B) One
C) Two
D) Three
5.

$$
\begin{aligned}
& y=-2 \\
& y+18=x^{2}
\end{aligned}
$$

If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are solutions to the system of equations above, what are the values of x_{1} and x_{2} ?
A) $-2 \sqrt{5}$ and $2 \sqrt{5}$
B) $-3 \sqrt{2}$ and $3 \sqrt{2}$
C) -3 and 3
D) -4 and 4

Grid-In

6. In the $x y$-plane, the graph of the equation
$y=12 x-11$ intersects the graph of the equation
$y=x^{2}$ at exactly two points. What is the sum of the x-coordinates of the two points?
(NO CALCULATOR)
7.

The graph of the function f, defined by $f(x)=-\frac{1}{2}(x-2)^{2}+10$, is shown in the $x y$-plane above. If the function g (not shown) is defined by $g(x)=-x+8$, what is one possible value of a such that $f(a)=g(a)$? (NO CALCULATOR)
8. In the $x y$-plane, a line with the equation $y=c$ for some constant c has exactly one point of intersection with a parabola. If the parabola has the equation
$y=-x^{2}+8 x$, what is the value of c ?
9.

The graph of the function f, defined by $f(x)=-(x-3)^{2}+8$ is shown in the $x y$-plane above.
If the function g (not shown) is defined by
$g(x)=-\frac{4}{5} x+8$, what is one possible value of a such
that $f(a)=g(a)$? (NO CALCULATOR)
10. In the $x y$-plane, there is a parabola with the equation $y=x^{2}-7 x+c^{2}$. For what value of c will this parabola intersect with a line with the equation $y=0$ at exactly one point?

