\qquad
\qquad

Quadratics (Intermediate)

Multiple Choice

1. In the quadratic equation $x^{2}-k=0, k$ is a constant. For which of the following values of k will the equation have no real solutions?
A) -4
B) 0
C) 1
D) 4
2. In the $x y$-plane, the graph of $y=x^{2}+b x+c$, where b and c are constants, has roots at $x=-5$ and $x=6$. What is the value of b ?
A) -30
B) -1
C) 1
D) 30
3. In the standard (x, y) coordinate plane, the graph of $y=24(x+12)^{2}-21$ is a parabola. What are the coordinates of the vertex of the parabola?
A) $(24,21)$
B) $(12,-21)$
C) $(-12,-21)$
D) $(-12,21)$
4. If the quadratic equation $x^{2}-k x+36=0$ has one real solution, what is the value of k ?
A) -6
B) 0
C) 6
D) 12
5. The graph of the quadratic function f crosses the x-axis at $(3,0)$ and $(-5,0)$. Which of the following could define f ?
A) $x^{2}+2 x-15=0$
B) $x^{2}-2 x-15=0$
C) $x^{2}-15 x-2=0$
D) $(x+3)^{2}-5=0$
6. Which of the following could be the graph of $y=x^{2}-3 x+2$?

7. A candy store owner found that when peanut butter cups were sold for $\$ 1.50$, a total of 75 peanut butter cups were sold each day. For every $\$ 0.20$ decrease in the price of a peanut butter cup, 5 more peanut butter cups were sold each day. Which equation models the total amount collected P, in dollars, from peanut butter cup sales each day, where x is the number of $\$.20$ price decreases?
A) $P=(1.50-x)(75-5 x)$
B) $P=(1.50-x)(75+5 x)$
C) $P=(1.50-.20 x)(75-5 x)$
D) $P=(1.50-.20 x)(75+5 x)$
8.

The graph of the function g is shown. Which of the following could define g ?
A) $g(x)=x^{2}-3 x+4$
B) $g(x)=x^{2}+5 x-4$
C) $g(x)=-x^{2}-3 x+4$
D) $g(x)=-x^{2}+5 x-4$
9. If the graph of $y=-x^{2}+4 x+a$ in the $x y$-plane does NOT touch the x-axis, which of the following is a possible value of a ?
A) -6
B) -4
C) 0
D) 4
10.

$$
h(t)=-16 t^{2}+64 t+80
$$

The function above models the height, h, in meters, of an object t seconds after it is launched straight up in the air. Which of the following methods can be used to find n, the time, in seconds, at which the object reaches its maximum height?
A) Rewrite h as $h(t)=-16(t+1)(t-5)$, with the constant 1 representing n.
B) Rewrite h as $h(t)=-16(t+1)(t-5)$, with the constant 5 representing n.
C) Rewrite h as $h(t)=-16(t-2)^{2}+144$, with the constant 2 representing n.
D) Rewrite h as $h(t)=-16(t-2)^{2}+144$, with the constant 144 representing n.

Grid In

11. What is the sum of the solutions to the quadratic
equation $6 x^{2}-5 x+10=0$?
12. In the $x y$-plane, the graph of the quadratic function f is a parabola with vertex $(-3,2)$. The function g is defined by $g(x)=f(x)+1$, and the graph of g has vertex (h, k). What is the value of k ?
13. $f(x)=4 x^{2}-3 x-7$

For the function f shown above, for what value of x does $f(x)$ obtain its minimum value?
14. $\quad 4(x-50)^{2}=100$

What is the smaller of the two solutions to the equation shown above?
15. $(x-3)=(x+2)(x-3)$

What is the sum of the solutions to the given equation?

