\qquad
\qquad

Equations of Circles

Multiple Choice

1. A circle in the $x y$-plane has center $(-2,4)$ and radius 4 . Which of the following is an equation of the circle?
A) $(x-2)^{2}+(y+4)^{2}=16$
B) $(x+2)^{2}+(y-4)^{2}=16$
C) $(x-2)^{2}+(y+4)^{2}=4$
D) $(x+2)^{2}+(y-4)^{2}=4$
2.

Circle $R: x^{2}+y^{2}=64$
Circle $S:(x-3)^{2}+y^{2}=64$
In the $x y$-plane, which translation of the graph of circle R would result in the graph of circle S ?
A) 3 units right
B) 3 units left
C) 3 units up
D) 3 units down
3. Which of the following is an equation of a circle in the $x y$-plane with center $\left(\frac{1}{5}, \frac{1}{5}\right)$ and a radius with endpoint $\left(1, \frac{4}{5}\right)$?
A) $\left(x+\frac{1}{5}\right)^{2}+\left(y+\frac{1}{5}\right)^{2}=\frac{1}{25}$
B) $\left(x-\frac{1}{5}\right)^{2}+\left(y-\frac{1}{5}\right)^{2}=\frac{1}{25}$
C) $\left(x+\frac{1}{5}\right)^{2}+\left(y+\frac{1}{5}\right)^{2}=1$
D) $\left(x-\frac{1}{5}\right)^{2}+\left(y-\frac{1}{5}\right)^{2}=1$
4. In the $x y$-plane, an equation of circle G is $x^{2}+(y+2)^{2}=1$. Circle H is obtained by shifting circle G two units up. Which of the following is an equation of circle H ?
A) $x^{2}+y^{2}=1$
B) $x^{2}+(y+4)^{2}=1$
C) $(x-2)^{2}+(y+2)^{2}=1$
D) $(x-2)^{2}+(y+2)^{2}=1$
5. \quad Circle $A: x^{2}+y^{2}=9$

$$
\text { Circle } B: 3 x^{2}+3 y^{2}=27
$$

Which statement accurately compares the graphs of the given equations in the $x y$-plane?
A) The graph of circle B is the same as the graph of circle A.
B) The radius of circle B is three times the length of the radius circle A.
C) The graph of circle B is the result of translating the graph of circle A three units to the left.
D) The graph of circle B is the result of translating the graph of circle A three units to the right.
6. The graph of the equation $x^{2}+8 x+y^{2}-16 y=0$ is a circle in the $x y$-plane. What are the coordinates (x, y) of the center of the circle?
A) $(-4,8)$
B) $(-4,-8)$
C) $(-8,16)$
D) $(-8,-16)$
7.

$$
x^{2}+y^{2}+8 x-2 y-64=0
$$

In the $x y$-plane, the graph of the given equation is a circle. What are the coordinates (x, y) of the center of the circle?
A) $(16,1)$
B) $(8,-2)$
C) $(0,-64)$
D) $(-4,1)$
8. In the $x y$-plane, the points $(3,6)$ and $(-3,-6)$ are the endpoints of a diameter of a circle. Which of the following is an equation of the circle?
A) $(x-3)^{2}+(y+6)^{2}=180$
B) $(x-3)^{2}+(y+6)^{2}=45$
C) $x^{2}+y^{2}=180$
D) $x^{2}+y^{2}=45$
9. \quad Circle $P:(x-2)^{2}+y^{2}=9$

Circle $Q:(x-4)^{2}+y^{2}=9$
If the given equations are graphed in the $x y$-plane, what statement is true?
A) The center of circle Q is 2 units to the right of the center of circle P.
B) The center of circle Q is 2 units to the left of the center of circle P
C) The center of circle Q is 2 units up from the center of circle P.
D) The center of circle Q is 4 units up from the center of circle P.
10.

$$
x^{2}+y^{2}+14 x-12 y+4=0
$$

In the $x y$-plane, the graph of the given equation is a circle. What is the length of the radius of the circle?
A) 3
B) 6
C) 9
D) 81

Grid-In

11. A circle in the $x y$-plane has its center at $(-1,6)$ and has a radius of 4 . An equation of this circle is $x^{2}+y^{2}+$ $d x+e y+f=0$. What is the value of f ?
12. A circle in the $x y$-plane has a diameter with endpoints $(1,-4)$ and $(7,4)$. If the point $(0, c)$ lies on the circle and $c>0$, what is the value of c ?
13. A circle in the $x y$-plane is centered at $(-2,12)$ and is tangent to the line $x=-5$. What is the length of the diameter of the circle?
14.

$$
(x-3)^{2}+(y+2)^{2}=9
$$

In the $x y$-plane, the graph of the equation above is a circle. Point R is on the circle and has coordinates $(6,-2)$. If $\overline{R S}$ is a diameter of the circle, what is the x coordinate of Point S ?
15. In the $x y$-plane, the graph of $2 x^{2}+4 x+2 y^{2}-20 y=$ 110 is a circle. What is the radius of the circle?

