\qquad
\qquad

Factoring Polynomials (Basic)

Multiple Choice

1. What are the solutions of the quadratic equation
$x^{2}-x-6=0$?
A) $x=2$ and $x=-3$
B) $x=-2$ and $x=3$
C) $x=-6$ and $x=-1$
D) $x=6$ and $x=1$
2. $x^{2}+5=9$

What is the positive solution to the given equation?
A) 2
B) 3
C) 4
D) 5
3. What are the solutions of the quadratic equation $x^{2}+3 x-28=0$?
A) $x=-14$ and $x=2$
B) $x=-4$ and $x=7$
C) $x=4$ and $x=-7$
D) $x=14$ and $x=-2$
4. If $x^{2}-6 x+9=0$, what is the value of $x-3$?
A) -6
B) -3
C) 0
D) 3
5.

$$
x^{2}-2 x-4=0
$$

What is a solution to the given equation?
A) $-2+\sqrt{10}$
B) $-1+\sqrt{5}$
C) $1+\sqrt{5}$
D) $2+\sqrt{10}$
6. What are the solutions of the quadratic equation $x^{2}-3 x+2=0$?
A) $x=-1$ and $x=-2$
B) $x=1$ and $x=-2$
C) $x=1$ and $x=2$
D) $x=-1$ and $x=2$
7. What are the solutions of the quadratic equation $12 x^{2}-2 x-4=0 ?$
A) $x=\frac{2}{3}$ and $x=-\frac{1}{2}$
B) $x=\frac{1}{3}$ and $x=-\frac{3}{2}$
C) $x=-\frac{2}{3}$ and $x=\frac{1}{2}$
D) $x=\frac{3}{2}$ and $x=-\frac{1}{3}$
8. Which value is a solution to the equation $x(x+2)=7$?
A) $1+2 \sqrt{7}$
B) $1-2 \sqrt{2}$
C) $-1+2 \sqrt{7}$
D) $-1-2 \sqrt{2}$
9. $x^{2}-8 x+d=0$

In the equation above, d is a constant such that $0 \leq d<$ 16. Which of the following is the lesser of the two solutions to the equation, in terms of d ?
A) $\frac{-8+\sqrt{64-4 d}}{2}$
B) $\frac{-8-\sqrt{64-4 d}}{2}$
C) $\frac{8+\sqrt{64-4 d}}{2}$
D) $\frac{8-\sqrt{64-4 d}}{2}$
10.

$$
x^{2}+4 x-6=0
$$

What is a value of x that satisfies the given equation?
A) $-4-\sqrt{40}$
B) $-2-\sqrt{10}$
C) $2-\sqrt{10}$
D) $4-\sqrt{40}$

Grid-In

11. What is the solution of the quadratic equation $x^{2}-8 x-9=0$, given that $x>0$?
12. What is the solution of the quadratic equation $(x-1)^{2}-1=0$, given that $x>0$?
13. $\quad 3(x-5)^{2}=27$

What is the larger of the two solutions of the equation shown?
14. What is the solution of the quadratic equation $(x-3)^{2}-9=0$, given that $x>0$?
15. $x^{2}-5 x+5=0$

The solutions to the equation above can be written in the form $\frac{5 \pm \sqrt{d}}{2}$, where d is a constant. What is the value of d ?

