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1. Introduction	
	
We	propose	a	new	mathematical	system	for	predicting	outcomes	of	NBA	draft	prospects	based	on	
the	statistical	concept	of	relevance.	This	new	approach	to	prediction	identifies	the	combinations	of	
previously	drafted	players	and	predictive	variables	that	are	most	informative	for	each	individual	
prediction	task.	Additionally,	this	method	provides	a	measure	of	fit	for	each	prediction,	which	
enables	teams	to	assess	in	advance	the	unique	reliability	of	each	individual	prediction	task,	thereby	
offering	guidance	about	how	committed	they	should	be	to	a	draft	prospect.	Relevance-based	
prediction	addresses	hidden	complexities	that	are	beyond	the	reach	of	conventional	prediction	
models,	but	in	a	way	that	is	more	transparent,	more	flexible,	and	more	theoretically	justified	than	
widely	used	machine	learning	algorithms.			

We	proceed	by	first	describing	the	key	tenets	of	relevance-based	prediction	conceptually	and	
mathematically.	We	then	compare	relevance-based	prediction	to	linear	regression	analysis	and	
machine	learning.	Next,	we	illustrate	our	relevance-based	prediction	system	by	showing	how	it	
would	have	predicted	VORP	(value	over	replacement	player)1	and	total	minutes	played	of	NBA	
players	during	their	rookie	seasons,	based	on	certain	attributes	of	these	players	and	their	pre-NBA	
basketball	performance,	as	well	as	attributes	and	performance	of	NBA	players	who	came	before	
them,	and	we	compare	our	predictions	to	the	draft	prospects’	actual	outcomes	in	the	NBA.	We	
conclude	with	a	summary.	

	

2. Relevance-Based	Prediction	
	
Relevance-based	prediction	rests	on	three	key	tenets:	relevance,	which	measures	the	importance	of	
a	previously	drafted	player	to	a	prediction;	fit,	which	measures	the	reliability	of	each	individual	
prediction	task;	and	codependence,	which	is	the	notion	that	the	efficacy	of	previously	drafted	
players	for	a	given	prediction	task	depends	on	the	selected	predictive	variables,	and	the	efficacy	of	
predictive	variables	depends	on	the	selected	players.	

2.1. Relevance	
	
Relevance	has	three	components:	the	similarity	of	a	previously	drafted	player	to	the	draft	prospect,	
the	informativeness	of	the	previously	drafted	player,	and	the	informativeness	of	the	draft	prospect,	
as	shown	in	Equation	1.		

	
1 VORP (value over replacement player) is an estimate of the points per 100 team possessions a player scores over 
a replacement player during the entire season assuming his teammates perform in line with the average of all NBA 
players. Replacement players are bench players and have a VORP of -2. 
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𝑟!" = sim(𝑥! , 𝑥") +
1
2
-info(𝑥! , 𝑥̅) + info(𝑥" , 𝑥̅)2	 (1)	

In	Equation	1,	similarity	and	informativeness	are	computed	as	Mahalanobis	distances	(Mahalanobis	
1936)	rather	than	absolute	distances	or	Euclidean	distances.			

sim(𝑥! , 𝑥") = − #
$
(𝑥! − 𝑥")Ω%#(𝑥! − 𝑥")& 	 (2)	

info(𝑥! , 𝑥̅) = (𝑥! − 𝑥̅)Ω%#(𝑥! − 𝑥̅)& 	 (3)	

info(𝑥" , 𝑥̅) = (𝑥" − 𝑥̅)Ω%#(𝑥" − 𝑥̅)& 	 (4)	

In	Equations	1	through	4,	𝑥! 	is	a	row	vector	of	the	values	of	the	predictive	variables	for	a	previously	
drafted	player,	𝑥"	is	a	row	vector	of	the	values	of	the	predictive	variables	for	the	draft	prospect,	𝑥̅	is	
a	vector	of	the	average	values	of	the	predictive	variables	for	the	previously	drafted	players,	Ω!"	is	
the	inverse	covariance	matrix	of	the	values	of	the	predictive	variables	for	all	previously	drafted	
players	in	the	sample,	and	′	denotes	matrix	transpose.		

The	vector	(𝑥! − 𝑥")	measures	how	different	a	previously	drafted	player	is	from	the	draft	prospect,	
whereas	the	vector	(𝑥! − 𝑥̅)	measures	how	different	he	is	from	average,	and	(𝑥" − 𝑥̅)	measures	how	
different	the	draft	prospect	is	from	average.	By	multiplying	these	vectors	by	the	inverse	of	the	
covariance	matrix,	we	capture	the	correlation	of	the	attributes	of	the	previously	drafted	players.	
Also,	this	calculation	implicitly	standardizes	the	differences	by	dividing	them	by	variance.	By	
multiplying	the	product	by	the	transpose	of	the	vector	we	consolidate	the	outcome	into	a	single	
number,	which	represents	the	covariance-adjusted	distance	between	the	two	vectors.			

Notice	that	in	the	formula	for	similarity	we	multiply	the	Mahalanobis	distance	of	a	previously	
drafted	player	from	the	draft	prospect	by	negative	one	half.	The	negative	sign	converts	a	measure	of	
difference	into	a	measure	of	similarity.	We	multiply	by	one	half	because	the	average	squared	
distances	between	pairs	of	players	is	twice	as	large	as	the	players’	average	squared	differences	
from	the	average	of	all	players.	When	we	measure	informativeness,	we	retain	its	positive	sign,	and	
we	need	not	multiply	by	one	half.	By	measuring	informativeness	as	a	difference	from	average,	we	
are	recognizing	that	unusual	players	contain	more	information	than	typical	players.	Intuitively,	this	
occurs	because	the	outcomes	for	an	unusual	player	are	likely	to	reveal	underlying	relationships	to	
his	personal	attributes	and	circumstances,	whereas	outcomes	for	highly	typical	players	are	likely	to	
contain	more	noise	and	less	information.	Finally,	note	that	we	measure	the	unusualness	of	the	draft	
prospect.	We	do	so	to	center	our	measure	of	relevance	on	zero.	All	else	being	equal,	previously	
drafted	players	who	are	like	the	draft	prospect	but	different	from	the	average	of	all	previously	
drafted	players	are	more	relevant	to	a	prediction	than	those	who	are	not.			

This	definition	of	relevance	is	not	arbitrary.	We	know	from	the	Central	Limit	Theorem	that	
aggregations	of	independent	events	generally	tend	toward	a	normal	distribution,	which	establishes	
the	fundamental	importance	of	the	normal	distribution	in	statistics	and	explains	its	prevalence	in	
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empirical	data.	We	also	know	that	the	relative	likelihood	of	an	observation	from	a	multivariate	
normal	distribution	is	proportional	to	the	exponential	of	a	negative	Mahalanobis	distance:			

likelihood(𝑥!) ∝ 𝑒
%!"((#%(̅)+

$!((#%(̅)% 	 (5)	

Additionally,	we	know	from	foundational	principles	of	information	theory	(Shannon	1948)	that	the	
information	contained	in	an	observation	is	the	negative	logarithm	of	its	likelihood.	Therefore,	the	
information	contained	in	a	point	on	a	multivariate	normal	distribution	is	proportional	to	a	
Mahalanobis	distance.	

information(𝑥!) ∝ (𝑥! − 𝑥̅)Ω%#(𝑥! − 𝑥̅)&	 (6)	

We	can	also	justify	the	non-arbitrariness	of	relevance	in	the	following	sense.	As	we	show	in	the	
Appendix,	a	relevance	weighted	average	of	outcomes	for	the	full	sample	of	previously	drafted	
players	yields	a	prediction	that	is	precisely	equivalent	to	the	prediction	that	would	result	from	a	
linear	regression	equation.	Therefore,	the	theoretical	justification	of	linear	regression	analysis	
applies	as	well	to	relevance-based	prediction.	We	also	show	in	the	Appendix	that	our	definition	of	
relevance	aligns	with	the	key	breakthrough	that	enables	large	language	models	such	as	ChatGPT.		

The	equivalence	of	relevance	and	linear	regression	reveals	an	intriguing	insight.	A	linear	regression	
equation	places	as	much	emphasis	on	non-relevant	previously	drafted	players	as	it	does	on	relevant	
players;	it	just	flips	the	sign	of	how	a	non-relevant	player	informs	the	prediction.	Relevance-based	
prediction,	by	contrast,	forms	a	prediction	as	a	relevance-weighted	average	of	a	subsample	of	
relevant	players.	This	approach	to	prediction	is	called	partial	sample	regression.	The	weights	that	
are	used	to	form	the	prediction	in	partial	sample	regression	are	given	by	Equation	7.		

𝑤!",-./ =
#
0
+ 1"

2%#
(𝛿(𝑟!")𝑟!" − 𝜑𝑟̅.34) 	 (7)	

In	Equation	7,	𝛿(𝑟!")	is	a	censoring	function	that	equals	1	if	𝑟!" ≥ 𝑟∗	and	0	otherwise,	in	which	𝑟∗	is	
the	threshold	for	relevance.	For	notational	concision	we	write	the	number	of	players	for	which	
𝛿(𝑟!") = 1	as	𝑛 = ∑ 𝛿(𝑟!")! 	and	the	proportion	of	all	players	for	which	𝛿(𝑟!") = 1	as:	

𝜑 = 2
0

 	 (8)	

In	addition,	we	write	the	subsample	average	of	relevance	over	the	retained	players	as:	

𝑟̅.34 =
#
2
∑ 𝛿(𝑟!")𝑟!"!  	 (9)	

Finally,	we	include	a	term:	
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𝜆$ =
6&,()**
"

6&,+,&-#,*
" =

!
.$!∑ /#-

"
#

!
/$!

∑ 8(/#-)/#-
"

#
 	 (10)	

To	the	extent	it	differs	from	1,	𝜆$	compensates	for	a	bias	that	would	otherwise	arise	from	focusing	
on	a	small	subsample	of	highly	relevant	players.	The	partial	sample	regression	prediction	is	given	
by	a	weighted	average	of	prior	outcomes,	𝑦!:	

𝑦H",-./ = ∑ 𝑤!",-./𝑦!!  	 (11)	

We	now	turn	to	the	second	key	tenet	of	relevance-based	prediction,	fit.	

2.2. Fit	
	
Fit	is	a	critical	component	of	relevance-based	prediction.	It	reveals	how	much	confidence	we	should	
have	in	a	specific	prediction	task,	separately	from	the	confidence	we	have	in	the	overall	prediction	
system.	In	addition,	it	enables	us	to	increase	our	prediction’s	reliance	on	information	from	the	
combinations	of	predictive	variables	and	previously	drafted	players	that	are	most	informative	for	
each	prediction	task.		

Consider,	for	example,	a	pair	of	previously	drafted	players	who	are	used,	in	part,	to	form	the	
prediction	of	an	outcome	for	a	draft	prospect.	Each	previously	drafted	player	has	a	relevance	
weight	and	an	outcome.	We	are	interested	in	the	alignment	of	the	relevance	weights	of	the	two	
previously	drafted	players	with	their	outcomes.	But	we	must	standardize	them	by	subtracting	the	
average	value	and	dividing	by	standard	deviation	–	in	essence,	converting	them	to	z-scores.	We	
then	measure	their	alignment	by	taking	the	product	of	the	standardized	values.	If	this	product	is	
positive,	their	relevance	is	aligned	with	their	outcomes,	and	the	larger	the	product,	the	stronger	the	
alignment.	We	perform	this	calculation	for	every	pair	of	previously	drafted	players	in	our	sample.	
We	should	also	note	that	all	the	formulas	we	have	thus	far	considered	for	the	relevance	weights	rely	
only	on	the	𝑥!𝑠,	the	𝑥"𝑠,	and	the	𝑥̅𝑠.	They	do	not	make	use	of	any	of	the	information	from	observed	
player	outcomes.	To	determine	fit,	however,	we	must	consider	outcomes	(the	𝑦!s).	We	express	fit	as	
a	pairwise	sum	that	involves	the	relevance	of	weights	and	outcomes	for	both	players	in	all	pairs.			

𝑓𝑖𝑡" =
#

(0%#)"
∑ ∑ 𝑟-𝑤!" , 𝑤9"2𝑟-𝑦! , 𝑦929!  	 (12)	

In	Equation	12:	

𝑟-𝑤!" , 𝑤9"2 =
(:#-%:;)<:0-%:;=

61"
 	 (13)	

𝑟-𝑦! , 𝑦92 =
(>#%>?)<>0%>?=

62"
 	 (14)	

From	Equations,	12,	13,	and	14,	we	can	restate	fit	in	terms	of	normalized	z-scores	as	shown	in	
Equation	15	or	as	a	squared	correlation	as	in	Equation	16:		
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𝑓𝑖𝑡" =
#

(0%#)"
∑ ∑ 𝑧:#-𝑧:0-𝑧>#𝑧>09!  	 (15)	

𝑓𝑖𝑡" = 𝜌(𝑤" , 𝑦)$ 	 (16)	

Equation	16	intuitively	describes	fit	as	the	squared	correlation	of	relevance	weights	and	outcomes,	
which	conceptually	matches	the	notion	of	the	conventional	R-squared	statistic.	As	we	soon	show,	
this	connection	of	fit	to	R-squared	is	critically	important.		

Although	we	compute	fit	from	the	full	sample	of	players,	the	weights	that	determine	fit	vary	with	
the	threshold	we	choose	to	define	the	relevant	subsample.	As	we	focus	the	subsample	on	players	
who	are	more	relevant,	we	should	expect	the	fit	of	the	subsample	to	increase,	but	we	should	also	
expect	more	noise	as	we	shrink	the	number	of	players.	The	fit	across	pairs	of	all	players	in	the	full	
sample	implicitly	captures	this	tradeoff	between	subsample	fit	and	noise	by	overweighting	players	
who	are	more	relevant	and	underweighting	players	who	are	less	relevant	accordingly.	

Like	relevance,	fit	is	not	arbitrary.	The	informativeness-weighted	average	fit	across	all	prediction	
tasks	in	a	sample	equals	the	classical	R-squared	statistic	in	the	case	of	full	sample	linear	regression	
(Czasonis,	Kritzman,	and	Turkington	2022):			

𝑅$ = #
@%#

∑ 𝑖𝑛𝑓𝑜(𝑥")𝑓𝑖𝑡""   	 (17)	

This	convergence	of	fit	to	R-squared	reveals	an	intriguing	insight.	R-squared	is	the	result	of	some	
good	predictions,	some	average	predictions,	and	some	bad	predictions;	that	is,	some	predictions	
with	high	fit,	some	with	average	fit,	and	some	with	low	fit.	R-squared	reveals	the	average	reliability	
of	a	prediction	model.	It	reveals	much	less	about	the	reliability	of	a	specific	prediction	task,	which	
can	vary	substantially.	Fit	is	much	more	nuanced.	It	gauges	the	reliability	of	a	specific	prediction	
task	in	a	non-arbitrary	way,	as	demonstrated	by	its	convergence	to	R-squared.	Fit	is	the	
fundamental	building	block	of	R-squared.	To	compute	fit,	we	must	know	the	weight	of	each	
observation	in	a	prediction.	These	weights	are	inherent	to	relevance-based	prediction,	but	they	are	
not	available	in	model-based	prediction	algorithms	which	rely	exclusively	on	calibrated	parameters	
rather	than	weighted	observations	to	form	predictions.		

This	notion	of	prediction-specific	fit	warrants	particular	emphasis.	Because	it	offers	advance	
guidance	of	a	specific	prediction’s	reliability,	it	enables	analysts	to	discard	or	view	with	greater	
caution	predictions	that	are	foreseen	to	be	unreliable.	As	we	show	later,	this	feature	further	enables	
analysts	to	form	predictions	that	are	significantly	more	reliable	than	those	generated	by	linear	
regression	analysis.		

2.3. Codependence	
	

We	have	thus	far	shown	how	to	form	a	prediction	as	a	relevance-weighted	average	of	player	
outcomes.	And	we	have	shown	how	we	can	use	fit	to	measure	the	reliability	of	a	specific	prediction	
task.	But	we	have	left	unanswered	the	question	of	how	to	determine	the	threshold	for	the	
subsample	of	relevant	players.	We	have	only	noted	that	a	partial	sample	regression	prediction	
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depends	on	the	choice	of	a	parameter,	𝑟∗,	which	is	the	censoring	threshold	for	relevance.	In	
addition,	we	have	implicitly	assumed	up	to	this	point	that	the	full	menu	of	predictive	variables	is	
used	to	measure	relevance	and	form	a	partial	sample	prediction.	However,	it	is	possible	that	a	
subset	of	the	predictive	variables	will	render	a	better	prediction	for	a	specific	prediction	task.	The	
efficacy	of	previously	drafted	players	for	a	given	prediction	task	depends	on	the	predictive	
variables,	and	the	efficacy	of	the	predictive	variables	depends	on	the	players.	These	choices	are	
codependent.	We,	therefore,	turn	to	the	third	key	feature	of	relevance-based	prediction,	which	is	
codependence.	But	before	we	show	how	to	form	predictions	that	consider	a	range	of	alternative	
calibrations,	we	must	first	describe	an	enhanced	version	of	fit	called	adjusted	fit.	

Partial	sample	prediction	using	relevance	is	more	effective	to	the	extent	there	is	strong	alignment	
between	relevance	and	outcomes,	as	measured	by	fit.	It	is	also	more	effective	to	the	extent	there	is	
asymmetry	between	the	fit	of	the	retained	subsample	of	previously	drafted	players	and	the	fit	of	the	
censored	players.	In	the	presence	of	asymmetry,	we	trust	the	more	relevant	sample	on	principle.	In	
the	absence	of	asymmetry,	the	full	sample	relationship	is	linear,	and	linear	regression	will	suffice.	
Therefore,	to	compare	properly	the	efficacy	of	two	predictions	formed	from	different	values	of	𝑟∗,	
we	need	a	way	to	measure	not	only	fit	but	asymmetry.		

We	measure	asymmetry	between	the	fit	of	the	retained	and	censored	subsamples	as	shown	by	
Equation	18.	The	plus	superscript	designates	weights	formed	from	the	retained	subsample	of	
players	while	the	negative	superscript	designates	weights	formed	from	the	complementary	sample	
of	censored	players.	Asymmetry	recognizes	the	benefit	of	censoring	non-relevant	observations	that	
contradict	the	predictive	relationships	that	exist	among	the	relevant	observations.		

𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦" =
#
$ S𝜌 T𝑤"

(A), 𝑦U − 𝜌 T𝑤"
(%), 𝑦UV

$
  	 (18)	

To	calculate	adjusted	fit,	we	add	asymmetry	to	fit	and	multiply	this	sum	by	𝐾,	the	number	of	
predictive	variables,	as	shown	by	Equation	19.	Multiplication	by	the	number	of	predictive	variables	
allows	us	to	compare	predictions	based	on	different	numbers	of	predictive	variables.	It	corrects	a	
bias	that	would	otherwise	occur,	whereby	adding	a	pure	noise	variable	decreases	fit	in	proportion	
to	the	increase	in	the	number	of	variables,	even	if	the	predictions	themselves	do	not	change	
(consider,	for	example,	the	case	of	a	full	sample	linear	regression	analysis	with	a	large	sample	of	
observations).	Another	way	to	view	the	intuition	for	𝐾	is	that	we	are	more	likely	to	observe	a	
spurious	relationship	from	weights	based	on	any	one	variable	in	isolation	than	we	are	based	on	a	
collection	of	many	variables.		

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝑓𝑖𝑡" = 𝐾(𝑓𝑖𝑡" + 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦")  	 (19)	

We	now	return	to	the	question	of	how	to	form	a	prediction	given	uncertainty	in	the	calibration	of	𝑟∗	
and	variable	selection,	which	are	codependent	choices.	To	address	this	issue,	CKT	regression	
(Czasonis,	Kritzman,	and	Turkington	2023)	considers	every	possible	calibration	that	combines	a	
choice	of	𝑟∗	with	a	choice	of	a	subset	of	variables,	and	it	selects	the	prediction	with	the	greatest	
expected	reliability.	It	is	critical	to	remember	that	the	assessment	of	reliability	using	adjusted	fit	is	
made	before	the	prediction	is	rendered	and	the	subsequent	outcome	is	known.	And	it	is	also	critical	
to	remember	that	the	assessment	of	reliability	is	specific	to	the	prediction	task.		
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In	this	paper,	we	introduce	a	further	extension	to	CKT	regression.	Instead	of	selecting	one	optimal	
calibration	for	a	given	prediction	task,	we	compute	a	composite	prediction	as	a	reliability-weighted	
average	of	the	predictions	from	all	possible	calibrations.	Equation	20	defines	reliability	weights,	𝜓B ,	
as	the	adjusted	fit	for	a	parameter	calibration,	𝜃,	divided	by	the	sum	of	all	adjusted	fits	across	all	
parameter	calibrations.		

𝜓B =
CD93."ED	G!"3

∑ CD93."ED	G!"3434
  	 (20)	

Equation	21	describes	the	composite	prediction.		

𝑦H",H/!D = ∑ 𝜓B𝑦H",BB   	 (21)	

Figure	1	gives	a	visual	representation	of	CKT	grid	prediction,	based	on	a	contrived	data	set	of	four	
predictive	variables	and	400	randomly	simulated	observations.	The	column	labels	represent	
alternative	variable	subsets,	and	the	row	labels	represent	alternative	previously	drafted	player	
subsets.	Each	cell	represents	a	codependent	calibration	𝜃;	that	is,	a	unique	combination	of	
predictive	variables	and	previously	drafted	players.	The	values	in	the	cells	are	the	weights	(𝜓B)	we	
apply	to	the	calibration-specific	predictions	to	form	the	overall	CKT	grid	prediction.		Cells	that	are	
shades	of	red	are	less	important	to	forming	the	prediction	while	blue	shaded	cells	are	more	
important.	This	grid	prediction	method	is	not	computationally	trivial.	In	our	subsequent	empirical	
illustrations,	we	consider	four	thresholds	for	player	sample	sizes,	14	predictive	variables,	and	two	
censoring	criteria	(which	we	soon	describe).	Because	we	consider	all	combinations	of	predictive	
variables,	we	evaluate	131,064	separate	calibrations	for	each	player	prediction.	

Figure	1:	CKT	Grid	Prediction	–	Toy	Example	

	

ABCD ABC ABD ACD BCD AB AC AD BC BD CD A B C D

0 1.5% 1.5% 1.1% 1.0% 1.2% 1.0% 0.9% 0.7% 1.4% 0.8% 0.0% 0.4% 0.7% 0.0% 0.0%

0.1 0.7% 0.8% 0.6% 0.5% 0.6% 0.5% 0.5% 0.4% 0.8% 0.4% 0.1% 0.2% 0.4% 0.1% 0.0%

0.2 0.7% 1.0% 0.7% 0.5% 0.6% 0.7% 0.6% 0.4% 0.9% 0.4% 0.1% 0.3% 0.5% 0.1% 0.1%

0.3 0.9% 1.2% 0.8% 0.6% 0.6% 0.8% 0.7% 0.5% 1.1% 0.4% 0.2% 0.4% 0.6% 0.1% 0.1%

0.4 0.9% 1.3% 0.8% 0.6% 0.6% 1.0% 0.8% 0.5% 1.3% 0.4% 0.2% 0.4% 0.6% 0.2% 0.1%

0.5 0.9% 1.4% 0.9% 0.7% 0.7% 1.0% 0.8% 0.5% 1.3% 0.5% 0.2% 0.4% 0.7% 0.2% 0.1%

0.6 1.0% 1.4% 0.9% 0.7% 0.7% 1.0% 0.8% 0.5% 1.3% 0.5% 0.2% 0.4% 0.7% 0.2% 0.1%

0.7 1.0% 1.5% 0.9% 0.7% 0.7% 1.0% 0.8% 0.6% 1.4% 0.5% 0.4% 0.4% 0.7% 0.3% 0.2%

0.8 1.0% 1.6% 0.9% 0.7% 0.7% 1.0% 0.9% 0.6% 1.6% 0.5% 0.4% 0.5% 0.8% 0.4% 0.2%

0.9 1.2% 1.6% 1.1% 0.8% 0.7% 1.1% 1.0% 0.7% 1.2% 0.6% 0.1% 0.5% 0.6% 0.1% 0.1%

Variable combinations

r*
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Note	that	each	cell’s	prediction	is	a	linear	function	of	player	observations,	and	the	grid	prediction	is	
a	linear	function	of	each	cell’s	prediction.	Therefore,	we	can	express	the	grid	prediction	in	terms	of	
composite	weights	applied	to	each	observation,	as	shown	in	Equation	22.	Composite	weights	are	
important	because	they	preserve	the	transparency	of	how	each	previously	drafted	player	
contributes	to	the	current	prediction	task,	and	they	allow	us	to	calculate	fit	from	composite	weights	
as	a	final	gauge	of	the	grid	prediction’s	reliability.		

𝑤!",H/!D = ∑ 𝜓B𝑤!",BB    	 (22)	

One	final	point	is	worth	noting	about	CKT	grid	prediction.	For	some	prediction	tasks,	it	may	be	
preferable	to	select	the	subsample	of	players	and	predictive	variables	based	on	similarity	rather	
than	relevance.	We	need	not	worry	whether	we	should	use	similarity	or	relevance	to	identify	the	
optimal	combination	of	players	and	variables.	We	simply	include	these	observation	censoring	rules	
as	candidates	in	the	grid.	However,	even	when	we	censor	based	on	similarity,	we	should	still	form	
the	predictions	as	a	relevance-weighted	average	of	the	retained	observations.		

	

3. Relevance-Based	Prediction	and	Linear	Regression	Analysis	
	
The	most	common	approach	to	statistical	prediction	is	linear	regression	analysis.	Linear	regression	
analysis	focuses	on	the	use	of	preselected	predictive	variables	that	are	weighted	based	on	an	
assumed	linear	relationship	between	the	values	for	the	predictive	variables	and	the	outcomes,	to	
give	a	prediction	of	a	new	outcome	given	a	new	set	of	values	for	the	predictive	variables.	The	
weights	that	are	applied	to	the	predictive	variables	are	derived	by	fitting	a	line	through	a	scatter	
plot	of	values	for	the	predictive	variables	and	outcomes	such	that	the	sum	of	the	squared	distances	
of	the	observations	from	the	line	is	minimized.	Carl	Friedrich	Gauss,	who	originated	this	method	of	
least	squares	circa	1795,	proved	that	it	gives	a	prediction	whose	expected	variance	from	the	truth	is	
lower	than	any	other	linear	and	unbiased	prediction.2		

However,	linear	regression	analysis	is	limited	in	a	significant	way.	It	assumes	that	the	relationship	
between	the	predictive	variables	and	the	outcomes	is	static	across	all	observations,	or	put	
differently,	linear.	Consider,	for	example,	the	scatter	plot	shown	in	Figure	2	in	which	there	is	an	
asymmetric	relationship	between	the	predictive	variable	and	the	outcome.	Because	linear	
regression	analysis	uses	all	the	observations,	the	subset	of	observations	that	are	positively	
correlated	offset	the	subset	of	negatively	correlated	observations.	Linear	regression	analysis	cannot	
detect	these	subsample	relationships	and	therefore	gives	as	its	prediction	the	average	outcome	for	
the	dependent	variable,	at	least	in	this	contrived	example.	We	contrived	this	extreme	example	to	
illustrate	our	point.	Nonetheless,	even	though	asymmetry	is	typically	less	extreme,	it	may	be	more	
subtle	and	more	pervasive	when	we	include	more	predictive	variables.			

	
2 Gauss’s original proof that the least squares line gives the best estimate of the true relationship rests on the 
assumption that the errors around the least squares line are normally distributed. It is now known from the Gauss-
Markov Theorem that the optimality of least squares requires less strict assumptions, specifically that the errors are 
spherically distributed (which means they are centered on zero), are independent, and have finite variance.  
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Figure	2:	Asymmetric	Relationship	between	Predictive	Variable	(horizontal	axis)	and	Outcomes	
(vertical	axis)	

	

Relevance-based	prediction	overcomes	the	inability	of	linear	regression	analysis	to	address	
asymmetry	by	favoring	observations	from	the	positively	correlated	subsample	when	they	are	
relevant	to	the	prediction	task	and	observations	from	the	negatively	correlated	subsample	when	
they	are	relevant.	It	also	favors	subsamples	for	predictions	that	rely	on	variables	with	more	
complex	asymmetries.	For	example,	if	the	relationship	between	certain	predictive	variables	and	
outcomes	differs	depending	on	whether	the	relationship	is	measured	from	regular	season	games	or	
playoff	games,	relevance-based	prediction	will	automatically	capture	this	distinction	whereas	linear	
regression	analysis	will	fail	to	detect	it.		

	

4. Relevance-Based	Prediction	and	Machine	Learning	
	
Prior	to	relevance-based	prediction,	the	standard	tool	for	addressing	asymmetry	has	been	machine	
learning.	It	is	convenient	to	separate	machine	learning	algorithms	into	two	broad	categories:	
model-based	algorithms	such	as	lasso	regression	and	neural	networks,	and	model-free	algorithms	
such	as	nearest	neighbor	and	Gaussian	kernels.			

Model-based	algorithms	are	essentially	extensions	of	regression	analysis,	albeit	very	complex	
extensions,	as	some	neural	networks	include	billions	of	parameters.	A	distinguishing	feature	of	
model-based	algorithms	is	that	their	parameters	are	determined	in	advance	of	their	application	and	
fixed	for	all	prediction	tasks.	To	carry	out	a	new	prediction	task	that	depends	on	features	of	the	
data	not	originally	considered	by	the	model’s	parameters,	one	must	reconstruct	the	model	to	
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address	the	specific	circumstances	of	this	new	prediction	task.3	Relevance-based	prediction,	by	
contrast,	automatically	adapts	to	new	prediction	tasks.	Rather	than	rely	on	pre-trained	parameters,	
relevance-based	prediction	retains	all	prior	observations	and	prioritizes	the	appropriate	
subsamples	for	each	new	prediction	task.	Essentially,	it	is	a	dynamic	alternative	to	a	pre-trained	
fixed	algorithm.	Relevance-based	prediction	also	compares	favorably	to	model-based	algorithms	by	
its	transparency.	It	reveals	precisely	how	each	previously	drafted	player	informs	the	prediction,	
whereas	most	model-based	algorithms	are	highly	opaque.	Relevance-based	prediction	is	therefore	
less	susceptible	to	overfitting	than	model-based	algorithms.	And	relevance-based	prediction,	as	we	
have	shown	earlier,	is	theoretically	grounded,	whereas	model-based	algorithms	rely	on	rules	that	
are	determined	by	trial	and	error.	

Model-free	algorithms	form	predictions	as	weighted	averages	of	past	values	of	the	outcomes.	In	this	
sense,	they	serve	as	a	bridge	to	relevance-based	prediction.	In	fact,	we	can	think	of	our	relevance-
based	system	as	a	theoretically	grounded	refinement	to	kernel	regression.	For	example,	a	Gaussian	
kernel	regression	forms	a	prediction	as	a	weighted	average	of	local	observations,	by	applying	a	
Gaussian	decay	to	normalized	Euclidean	distances	to	compute	the	weight	of	each	player.	Our	
relevance-based	approach,	by	contrast,	uses	the	Mahalanobis	distance	instead	of	the	Euclidean	
distance	to	measure	nearness,	and,	critically,	it	adds	the	component	of	informativeness	to	
determine	relevance.	Furthermore,	it	combines	these	components	in	precisely	the	correct	way,	by	
which	we	mean	the	only	way	that	gives	the	same	answer	as	linear	regression	analysis	when	applied	
across	the	full	sample.	

	

5. Illustration	of	Relevance-Based	Prediction	for	NBA	Outcomes	
	
To	illustrate	how	relevance-based	prediction	is	used	to	predict	player	outcomes,	we	apply	it	to	
predict	VORP	and	the	total	number	of	minutes	played	during	their	NBA	rookie	year	for	players	
drafted	in	2018,	2021,	and	2022	subject	to	data	availability.	We	chose	to	predict	VORP	because	it	
reflects	a	variety	of	ways	in	which	a	player	affects	scoring	and	therefore	has	the	potential	to	
incorporate	hidden	complexities.	We	chose	to	predict	total	minutes	played	because	it	implicitly	
summarizes	all	the	factors,	as	perceived	by	the	coach,	that	bear	upon	a	player’s	potential	to	impact	
the	outcome	of	a	game.	It	also	allows	teams	to	standardize	how	they	compensate	players.	But	
mainly,	we	chose	to	predict	these	player	outcomes	because	we	think	they	are	reasonable	and	
uncontroversial.	Having	said	that,	we	wish	to	emphasize	that	relevance-based	prediction	can	be	
applied	to	predict	any	player	outcome.	

Our	full	data	sample	comprises	359	players	who	were	drafted	in	the	years	2011,	2012,	2013,	2014,	
2015,	2016,	2017,	2018,	2021,	and	2022	from	Division	I	U.S.	colleges	who	played	at	least	one	
season	in	the	NBA.	We	excluded	players	from	2019	and	2020	to	avoid	distortions	that	might	have	
occurred	from	the	effect	of	COVID	on	both	the	collegiate	and	NBA	player	statistics.	For	each	player	
in	the	2018,	2021,	and	2022	drafts	and	for	each	previously	drafted	player,	we	collect	data	in	four	
categories:	physical	attributes,	individual	college	performance,	team	performance	in	college,	and	

	
3 Online learning algorithms adapt automatically to new circumstances, but only in a limited way. They adapt by 
applying a correction algorithm based on observed errors, but they do not re-estimate the algorithm from the full 
sample of previously used data. Relevance-based prediction, by contrast, retrieves all the previously used data for 
each new set of prediction circumstances.  
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team	performance	in	the	NBA.	We	chose	these	predictive	variables	merely	to	illustrate	our	
relevance-based	prediction	system.	We	do	not	have	expertise	in	determining	the	most	effective	
predictive	variables.	For	each	prediction,	we	use	training	data	from	previously	drafted	players	that	
would	have	been	available	at	the	time	of	that	year’s	draft.		

Prediction	tasks:	
§ Rookie	year	VORP	for	2018,	2021,	and	2022	draft	cohorts	
§ Rookie	year	total	minutes	played	in	the	season	for	2018,	2021,	and	2022	draft	cohorts	

Training	sample:	
§ Players	drafted	from	2011	through	2021	who	were	drafted	prior	to	the	draft	class	that	is	

currently	being	predicted,	excluding	2019	and	2020,	from	Division	I	colleges	with	at	least	
one	NBA	season	

Predictive	variables:	
§ Physical	attributes	

o Height	
o Weight	

§ College	performance	(final	college	season)	
o True	shooting	percentage	
o Free	throws/minute	
o 3-point	shots/minute	
o 2-point	shots/minute	
o Offensive	rebounds/minute		
o Defensive	rebounds/minute		
o Assists/minute	
o Average	player	game	score	

§ Non-player	factors	–	College:	
o School’s	conference	winning	percentage	(final	college	season)	
o Number	of	players	from	school	drafted	into	the	NBA	(prior	10	years)	

§ Non-player	factors	–	NBA	team	(prior	season):	
o Win	percentage	
o Average	point	spread	

	

As	we	discussed	previously,	CKT	grid	prediction	considers	many	subsets	of	previously	drafted	
players	and	predictive	variables	for	each	individual	prediction	task.	The	information	from	every	cell	
in	the	grid	is	aggregated	to	form	one	composite	vector	of	weights	across	all	previously	drafted	
players.	These	weights	directly	determine	the	prediction:	it	equals	the	weighted	average	of	player	
outcomes.	The	weights	also	contain	other	important	information.	For	illustrative	purposes,	let	us	
consider	the	VORP	predictions	for	the	2022	draft	cohort.	The	left-hand	side	of	Figure	2	shows	the	fit	
of	each	prediction,	which	equals	the	squared	correlation	of	weights	and	outcomes.	These	results	
reveal	that	expected	reliability	varies	dramatically	from	one	prediction	to	the	next.	The	right-hand	
side	of	Figure	2	shows	the	degree	of	concentration	in	the	weights	vector,	which	we	measure	as	the	
sum	of	squared	weights.	Equal	weights	to	all	prior	players	would	have	the	lowest	possible	
concentration	(1/𝑁),	and	reliance	on	a	single	player	would	have	the	highest	possible	concentration	
(1).	The	prediction	for	Mark	Williams	is	the	most	concentrated,	and	it	also	has	a	high	fit.	This	means	
that	players	who	are	relevant	to	Mark	Williams	tend	to	have	consistent	outcomes	that	warrant	
large	weights,	whereas	non-relevant	players	do	not.	The	consistency	in	the	retained	sample	is	
strong	enough	that	it	outweighs	the	noise	of	a	smaller	sample,	and	the	overall	fit	is	high.	The	draft	
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prospect	with	the	highest	fit,	Blake	Wesley,	has	less	concentrated	weights	and	thus	benefits	from	a	
broader	set	of	relevant	players.	Meanwhile,	the	prediction	for	Moussa	Diabate,	with	a	similar	
concentration,	has	one	of	the	lowest	fits.		
	
Figure	3:	Fit	and	Grid	Weight	Concentration	(VORP	Predictions	for	2022	Draft	Cohort)	

	

One	of	the	most	powerful	features	of	relevance-based	prediction	is	that	it	reveals	precisely	how	
each	previously	drafted	player	informs	the	prediction.	For	example,	Figure	4	shows	the	three	most	
relevant	and	three	least	relevant	players	for	forming	the	VORP	prediction	for	Mark	Williams	who	
was	drafted	15th	by	the	Charlotte	Hornets	in	the	2022	draft.	It	is	affirming	to	note	that	relevance-
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based	prediction	identified	three	players	of	similar	height	as	most	relevant	to	forming	Mark	
Williams’	VORP	prediction,	and	three	significantly	shorter	players	as	least	relevant	to	forming	his	
prediction.	And	it	successfully	identified	a	set	of	most	relevant	players	with	similar	rookie	season	
VORPs	as	what	subsequently	occurred	for	Williams,	and	a	set	of	least	relevant	players	with	
comparatively	dissimilar	VORPs,	without	foreknowledge	of	the	outcome	for	Williams.	It	also	
identified	a	fellow	Duke	alumnus	as	one	of	the	most	relevant	players.	The	main	takeaway	from	
Figure	4,	though,	is	the	extraordinary	level	of	transparency	relevance-based	prediction	affords,	
which	is	critical	for	facilitating	dialogue	between	analytics	professionals,	coaches,	and	scouts.		

Figure	4:	Most	and	Least	Relevant	Players	for	Mark	Williams	

	

	

Next,	we	show	how	well	relevance-based	prediction	performed.	To	do	so	we	compare	the	
correlations	of	predictions	with	outcomes	for	the	predictions	foreseen	to	be	most	reliable,	the	
predictions	foreseen	to	be	least	reliable,	and	predictions	based	on	linear	regression	analysis.	We	
define	most	reliable	as	those	predictions	with	the	top	50%	fits	and	the	least	reliable	as	those	
predictions	with	the	bottom	50%	fits.	One	could	choose	any	threshold	to	delineate	reliability.	We	
chose	50%	as	a	reasonable	threshold	for	the	purpose	of	illustration.	Keep	in	mind	that	the	fit	values	
we	use	to	discard	less	reliable	predictions	are	known	in	advance	of	the	predictions	and	are	
unknowable	with	other	prediction	systems.	In	addition	to	correlations	of	prediction	values	and	
outcome	values,	we	show	correlations	of	ranks	in	case	the	value	correlations	are	unduly	influenced	
by	unusual	values.	

T.J.
Leaf

Marvin
Bagley III

Brice
Johnson

Brandon 
Knight

Isaiah 
Whitehead

Gary
Harris

Grid Weight n/a 4.4% 4.0% 4.0% -0.7% -0.8% -0.8%
VORP 0.4 -0.1 0.4 0.0 -0.3 -1.3 -0.6

True Shooting % 74% 67% 65% 66% 56% 52% 57%
FT/min 0.06 0.07 0.12 0.13 0.10 0.14 0.10
2P/min 0.22 0.20 0.22 0.24 0.10 0.10 0.10
3P/min 0.00 0.03 0.02 0.00 0.07 0.07 0.07
ORB/min 0.11 0.07 0.12 0.10 0.02 0.02 0.03
DRB/min 0.21 0.20 0.21 0.27 0.10 0.09 0.09
AST/min 0.04 0.08 0.04 0.05 0.12 0.16 0.08
Avg Game Score 13.7 14.9 18.4 16.2 11.2 12.0 12.6

Height (inches) 84.0 80.8 82.0 81.0 73.5 75.3 74.5
Body Weight (pounds) 242 222 235 209 177 210 205

College Duke UCLA Duke N. Carolina Kentucky Seton Hall Michigan St.
Conference Win % 75% 80% 71% 83% 68% 71% 71%
Drafts (prior 10 yrs) 25 14 18 14 10 0 5

NBA Team CHO IND SAC LAC DET BRK DEN
Win % 52% 51% 33% 62% 37% 26% 44%
Avg Point Spread 0.44 -0.22 -6.99 4.29 -3.60 -7.39 -2.15

Mark
Williams

Top 3 Weights (out of 332 players) Bottom 3 Weights (out of 332 players)
2022 Draft 
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Figure	5	presents	the	correlations	of	VORP	predictions	and	outcomes	for	the	2018,	2021,	and	2022	
draft	cohorts	as	well	as	the	average	across	these	cohorts.	Figure	6	presents	the	same	comparisons	
based	on	ranks.	They	reveal	that	the	relevance-based	predictions	foreseen	to	be	reliable	are	
substantially	superior	to	the	predictions	that	come	from	linear	regression	analysis	and	superior	by	
an	even	greater	margin,	on	average,	than	the	predictions	foreseen	to	be	unreliable,	as	judged	by	fit.			

	

Figure	5:	Correlations	of	VORP	Predictions	with	VORP	Outcomes	based	on	Value	

	

	

Figure	6:	Correlations	of	VORP	Predictions	with	VORP	Outcomes	based	on	Rank	
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Figures	7	and	8	present	the	value	and	rank	correlations,	respectively,	of	minutes	played	predictions	
and	minutes	played	outcomes	for	the	same	draft	cohorts.	They	reveal	that	relevance-based	
prediction	is	similarly	superior	to	linear	regression	analysis	in	predicting	minutes	played	and	
similarly,	if	not	more	effective,	in	rendering	advance	notice	of	a	prediction’s	reliability.	

	

Figure	7:	Correlations	of	Minutes	Played	Predictions	with	Minutes	Played	Outcomes	based	on	Value	

	

	

	

Figure	8:	Correlations	of	Minutes	Played	Predictions	with	Minutes	Played	Outcomes	based	on	Rank	
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We	acknowledge	that	a	skilled	sports	analytics	professional	might	be	able	to	produce	more	reliable	
predictions	simply	by	using	more	effective	predictive	variables	and	more	informative	data	in	a	
conventional	way.	However,	our	results	offer	persuasive	evidence	that	relevance-based	prediction	
should	produce	superior	results,	given	the	same	quality	of	variables	and	data,	which	we	attribute	to	
several	key	advantages.		

§ It	considers	complex	asymmetries	that	are	beyond	the	capacity	of	linear	regression	analysis.	

§ It	dynamically	customizes	the	use	of	previously	drafted	players	and	predictive	variables	for	
each	new	prediction	task.	

§ It	reveals	precisely	how	each	previously	drafted	player	informs	the	prediction	for	the	draft	
prospect.	

§ It	reveals	how	much	confidence	one	should	assign	to	each	specific	prediction	task	in	
advance	of	the	prediction,	thereby	enabling	one	to	discard	predictions	that	are	foreseen	to	
be	less	reliable.				

§ It	is	theoretically	grounded.	

Moreover,	it	is	generally	applicable.	It	can	be	applied	to	any	set	of	data	for	the	purpose	of	
predicting	any	outcome,	even	beyond	sports.	

	

6. Summary	
	
We	described	a	new	approach	for	predicting	outcomes	for	NBA	draft	prospects	called	relevance-
based	prediction.	This	approach	forms	predictions	as	weighted	averages	of	past	outcomes	in	which	
the	weights	are	based	on	the	relevance	of	previously	drafted	NBA	players,	measured	in	a	
mathematically	precise	and	theoretically	justified	way.			

Then	we	described	a	measure	of	prediction-specific	fit,	which	indicates	the	specific	reliability	of	
each	individual	prediction	task.	R-squared,	by	comparison,	measures	only	the	average	reliability	of	
a	prediction	model.	We	showed	that	fit	converges	to	R-squared	in	the	case	of	linear	regression	
analysis	when	aggregated	properly	across	all	prediction	tasks.	And	of	critical	importance,	we	
showed	that	fit	enables	us	to	discard,	or	consider	more	cautiously,	predictions	that	are	foreseen	to	
be	less	reliable.		

Next,	we	introduced	the	concept	of	codependence,	which	holds	that	the	efficacy	of	previously	
drafted	players	depends	on	the	chosen	predictive	variables,	and	the	efficacy	of	predictive	variables	
depends	on	the	chosen	previously	drafted	players.	We	also	showed	how	to	blend	the	information	
gained	from	each	unique	combination	of	previously	drafted	players	and	predictive	variables	based	
on	its	relative	reliability	according	to	adjusted	fit.		

We	then	illustrated	our	new	relevance-based	system	by	predicting	VORP	(value	over	replacement	
player)	and	total	minutes	played	during	the	season	for	the	rookie	seasons	for	players	who	were	
drafted	in	2018,	2021,	and	2022.	Our	analysis	revealed	that	relevance-based	prediction	consistently	
produced	results	that	were	significantly	superior	to	those	generated	by	linear	regression	analysis,	
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given	the	same	sample	of	players,	and	set	of	predictive	variables,	and	that	it	was	able	to	distinguish	
in	stark	relief	predictions	foreseen	to	be	reliable	from	those	foreseen	to	be	unreliable.			

To	conclude,	we	acknowledge	that	scouting	information	provides	insights	that	would	be	
unobtainable	from	any	analytical	system.	However,	we	wish	to	emphasize	that	relevance-based	
prediction	produces	valuable	information	that	is	otherwise	unknowable.	We	therefore	recommend	
our	relevance-based	system	as	a	complement	to	scouting	and	not	as	an	alternative.		
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Appendix:	Convergence	of	Relevance	to	Other	Prediction	
Methods	
	
Convergence	to	Linear	Regression	Analysis	
	
The	prediction	equation	corresponding	to	full	sample	linear	regression	equals:	
	

	𝑦̀𝑡 = 𝑦a+ 1
𝑁−1

∑ 𝑟𝑖𝑡-𝑦𝑖 − 𝑦a2
𝑁
𝑖=1    	 (A1)	

Expanding	the	expression	for	relevance	gives:			
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𝑦*) = 𝑦+ + (𝑥) − 𝑥̅-
"

*!"
∑ Ω!"(𝑥+ − 𝑥̅-′(𝑦+ − 𝑦+)
*
+,"  	 (A2)	

To	streamline	the	arithmetic,	we	recast	this	expression	using	matrix	notation:	
	

𝑋- = (𝑋 − 1*𝑥̅)   	 (A3)	

𝑦*) = 𝑦+ − 𝑥̅𝛽 + 𝑥)𝛽 − (𝑥) − 𝑥̅)(𝑋-.𝑋-)!"𝑋-. 1*𝑦+ 
  	 (A4)	

Where:	
	

𝛽 = (𝑋D&𝑋D)%#𝑋D&𝑌   	 (A5)	

Noting	that	𝑋D& 10	equals	a	vector	of	zeros,	because	𝑋D 	represents	attribute	deviations	from	their	
own	respective	averages,	we	get	the	familiar	linear	regression	prediction	formula:			
	

𝑦H" = (𝑦e − 𝑥̅𝛽) + 𝑥"𝛽   	 (A6)	

𝛼 = (𝑦+ − 𝑥̅𝛽)   	 (A7)	

𝑦H" = 𝛼 + 𝑥"𝛽   	 (A8)	

	
Relationship	to	Large	Language	Models	
	
The	key	innovation	that	led	to	the	success	of	large	language	models	(LLMs)	is	the	transformer,	
which	is	an	information	processing	architecture	based	on	attention	mechanisms.	Relevance	is	
conceptually	similar	to	attention	and	offers	a	novel	interpretation	of	these	models.		
	
In	the	context	of	language	processing,	consider	a	sequence	of	words	(or	tokens)	which	is	encoded	
as	a	vector,	𝑥! .	The	goal	is	to	transform	each	word	into	an	enriched	vector,	𝑧! ,	with	new	dimensions,	
which	represents	a	refined	contextual	meaning	of	the	word	within	the	passage.		
	
As	noted	in	Vaswani	et	al.	(2017),	attention	in	a	transformer	model	is	determined	by	a	set	of	three	
transformation	matrices:	𝑊I ,	𝑊J ,	and	𝑊K ,	which	compute	what	are	commonly	referred	to	as	
query,	key,	and	value	vectors	from	each	word	𝑥! .	To	highlight	the	link	with	relevance-based	
prediction,	we	characterize	this	as	follows:	
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𝑞" = 𝑥"𝑊I  	 (A9)	

𝑘! = 𝑥!𝑊J   	 (A10)	

𝑣! = 𝑥!𝑊K   	 (A11)	

𝑧! = ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 T L-M#
%

	√-C/CO.
U 𝑣!!    	 (A12)	

We	may	intuitively	think	of	𝑣! 	as	representing	the	learned	unconditional	meaning	of	each	word	in	
the	passage.	These	values	represent	the	dependent	variable,	and	we	want	to	predict	the	contextual	
meaning	as	a	weighted	average	of	𝑣! 	for	all	words	in	the	passage	based	on	their	relevance	to	𝑥! .	We	
may	express:	

𝑞"𝑘!& = 𝑥"𝑊I𝑊J𝑥!&   	 (A13)	

Equation	A13	matches	the	definition	of	relevance	in	Equation	1	from	earlier,	if	we	assume	𝑥̅ = 0	
and	we	have	𝑊I𝑊J 	rather	than	the	inverse	covariance	matrix	to	relate	circumstances	to	each	
other.	In	other	words,	the	learned	matrices	𝑊I𝑊J 	amount	to	a	square	matrix	that	is	used	to	
evaluate	relevance.	The	letters	used	to	characterize	words	are	mostly	arbitrary	(compared	to	
meaning),	so	learned	mappings	are	necessary	for	language	interpretation,	whereas	for	
meaningfully	oriented	data	the	inverse	covariance	matrix	is	well-motivated.		
	
The	softmax	function	serves	as	a	censoring	function	that	normalizes	weights	to	sum	to	one,	while	
also	requiring	them	to	be	strictly	positive.	Thus,	the	use	of	softmax	effectively	censors	observations	
to	focus	on	the	most	relevant	subset,	similar	to	partial	sample	regression.	There	are	many	other	
complexities	to	transformers.	We	do	not	aim	to	provide	a	thorough	accounting	of	how	these	models	
work.	We	merely	wish	to	point	out	the	striking	similarity	between	the	essence	of	the	attention	
mechanism	used	in	these	models	and	the	principles	of	relevance-based	prediction	described	in	this	
article.		
	


