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1. Introduction	
	
Handicap	systems	are	commonly	used	in	sports	to	create	a	competitive	balance	between	players	
with	different	skill	levels.	They	operate	by	providing	some	advantage	to	the	weaker	competitor	to	
improve	their	chances	of	winning	against	the	stronger	player.	Handicaps	are	widely	used	in	many	
sports,	most	popularly	in	golf.		Beyond	creating	competitive	balance,	handicaps	can	provide	insights	
into	other	applications	including	player	rankings	and	sports	betting.		

We	focus	on	the	popular	sport	of	darts,	where	players	throw	darts	at	a	circular	board	with	
numbered	regions	to	score	points.	Each	player	starts	with	a	score	of	501	with	the	goal	of	reaching	
zero	in	as	few	throws	as	possible.	Within	darts,	games	are	typically	handicapped	by	providing	the	
weaker	player	with	an	initial	head	start	[1].	However,	the	head-start	values	are	calculated	using	
heuristics	that	are	not	proven	to	truly	balance	competition.	

We	seek	to	improve	upon	these	heuristic	methods	as	well	as	develop	a	novel	alternative	handicap	
system.	For	example,	consider	the	possibility	of	a	“credit”	dart	that	the	weaker	player	may	use	to	
“hit”	a	desired	region	of	the	board	with	a	probability	of	one.	Players	may	use	these	credits	
dynamically	throughout	the	game,	allowing	them	to	address	imbalances	which	may	arise	at	any	
stage.	An	appropriate	handicap	system	could	afford	the	weaker	player	the	exact	number	of	credits	
that	would	create	a	competitive	balance.		

In	this	paper,	we	develop	a	framework	to	model	the	game	of	darts	as	a	Markov	Decision	Process	
(MDP)	with	a	dynamic	credit	handicap	system.	This	framework	is	capable	of	modeling	existing	
head-start	handicaps	as	well	as	dynamic	credits.	We	define	the	states	of	the	MDP	as	the	current	
score	and	number	of	available	credits	and	solve	for	the	optimal	aiming	location	(i.e.,	target)	for	each	
state.	A	player	can	choose	from	hundreds	of	minute	targets	on	the	board.	Players	also	possess	
inherent	execution	error	which	models	the	probability	of	where	the	dart	will	actually	land	given	an	
intended	target.	We	model	execution	error	using	bivariate	Gaussian	distributions	derived	from	
professional	player	data.	We	use	this	framework	to	study	players	of	different	skill	levels	by	
systematically	perturbing	the	covariance	matrices	Σ	of	the	Gaussian	distributions,	where	larger	Σ	
values	represent	less	skilled	players.	

In	summary,	this	paper	makes	the	following	contributions.	

1. We	develop	and	solve	an	MDP	model	for	the	game	of	darts	with	a	dynamic	credit-based	
handicap	system,	tuned	for	players	with	differing	skill	levels.		

2. We	rigorously	show	that	the	current	heuristic	head-start	handicap	does	not	balance	
competition.	In	response,	we	develop	two	optimization-based	handicaps:	an	optimized	
head-start	and	a	novel	dynamic	credit	handicap.	
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3. Finally,	we	use	simulation	to	demonstrate	that	dynamic	credit	handicaps	create	true	
fairness,	which	is	very	difficult	(and	sometimes	impossible)	to	achieve	with	a	head-start.		

We	believe	that	the	creation	of	these	fair	handicap	systems	can	benefit	the	growing	darts	
community.	Indeed,	the	popularity	of	darts	in	Europe	has	recently	seen	a	substantial	increase	[2].	
Moreover,	it	is	estimated	that	around	17	million	people	play	darts	in	the	United	States	[3].	
Standardized,	fair	handicaps	can	be	used	to	balance	competition	and	increase	enjoyment	for	
players	of	all	levels	from	professionals	and	amateurs	playing	in	tournaments	to	novices	playing	for	
fun	at	the	pub.		

2. Related	Literature	
	
This	paper	builds	on	three	areas	of	prior	research:	(1)	modeling	the	optimal	strategy	in	darts	(2)	
modeling	skill	level	and	execution	error	in	sports	and	(3)	developing	rigorous	handicapping	
frameworks	in	sports.		

Attempts	to	model	the	optimal	strategy	for	darts	began	in	the	1980s	when	Kohler	(1982)	used	
dynamic	programming	to	model	the	game,	albeit	with	several	simplifying	assumptions	[4].	More	
recently,	Haugh	and	Wang	(2022)	developed	a	sophisticated	approach	to	solve	for	a	player’s	
optimal	darts	strategy	while	also	considering	their	opponent;	they	used	a	zero-sum	game	approach	
in	combination	with	an	underlying	MDP	formulation	[2].	They	demonstrated	that,	for	professionals,	
considering	one’s	opponent	led	to	a	marginal	increase	in	win	probability	of	just	0.2-0.6%.		

There	has	also	been	a	growing	interest	in	modeling	execution	error	and	skill	level,	both	in	darts	and	
in	sports	more	broadly.	Within	darts,	Tibshirani	et	al.	(2011)	developed	a	methodology	to	model	a	
player’s	execution	error	as	a	bivariate	Gaussian	distribution	based	on	throw	data	using	the	
Expectation	Maximization	(EM)	algorithm	[5].	Haugh	and	Wang	(2022)	built	on	this	work	by	using	
a	novel	data	set	of	dart-throws	by	16	professional	darts	players	to	fit	player-specific	distributions	
for	various	targets	on	the	board	[2].	Finally,	Chan	et	al.	(2022)	explored	how	the	optimal	strategy	in	
tennis	relates	to	a	player’s	“level”	of	execution	error	[6].	They	denote	this	level	as	ϵ,	a	positive	
multiplicative	factor	that	scales	the	covariance	matrix	of	the	underlying	execution	error	
distributions,	with	higher	ϵ	values	corresponding	to	a	higher	execution	error.		

Finally,	to	date,	limited	formal	literature	has	explored	rigorous	handicap	systems	for	sports.	
Bingham	and	Swartz	(2000)	evaluated	traditional	handicaps	for	golf,	highlighting	the	existence	of	
unfairness	and	proposing	a	statistically	fairer	alternative	[7].	More	recently,	Chan	and	Singal	(2016)	
developed	an	MDP-based	handicap	system	for	tennis	using	a	dynamic	credit	system	[8].	However,	
no	literature	currently	discusses	handicaps	in	darts.		

This	paper	bridges	prior	work	from	the	above	three	areas	to	develop	a	handicapping	framework	for	
the	game	of	darts.	Specifically,	we	develop	a	novel	MDP	formulation	that	can	incorporate	various	
levels	of	skill	(i.e.,	execution	error)	and	subsequently	evaluate	various	handicap	systems.		
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3.	Background	on	the	Game	of	Darts	
3.1 The	Rules	of	Darts	

This	paper	will	focus	on	501	darts	which	is	the	most	common	darts	variant.	The	game	is	played	
between	two	players,	each	with	a	starting	score	of	501.	Players	take	turns	throwing	three	darts	at	a	
time.	Each	throw	is	worth	a	certain	number	of	points	depending	on	where	the	dart	lands	on	the	
board.	The	cumulative	points	gained	across	all	three	throws	at	the	end	of	the	turn	are	then	
subtracted	from	the	player’s	score	at	the	beginning	of	the	turn	to	give	their	new	score.		

	

Figure	1:	Layout	of	a	Standard	Dartboard	

For	each	throw,	points	are	allocated	based	on	where	the	dart	lands	on	the	board	(visualized	in	
Figure	1).	First,	hitting	the	outer	ring	is	called	a	“double”	(“D”)	and	will	provide	double	the	points	
specified	for	that	slice	of	the	board	(i.e.,	the	number	beside	a	given	slice).	Second,	hitting	the	inner	
ring	is	called	a	“triple”	(“T”)	and	will	provide	triple	the	score	specified	for	that	slice	of	the	board.	
Third,	hitting	a	non-ring	area	of	the	board	is	called	a	“single”	(“S”)	and	will	provide	the	exact	score	
specified	for	that	slice	of	the	board.	For	example,	Figure	1	highlights	hitting	the	S20,	D20	and	T20	
regions	on	the	board,	which	result	in	receiving	20,	40,	and	60	points,	respectively.	Moreover,	hitting	
the	outside	of	the	center	circle	is	called	a	“single-bullseye”	(“SB”)	and	will	provide	25	points.	Finally,	
hitting	the	inside	of	the	center	circle	is	called	a	“double-bullseye”	(“DB”)	and	will	provide	50	points.	

To	win	(or	“check	out”),	a	player	must	hit	a	double	that	brings	their	score	to	exactly	zero.	Otherwise	
–	if	a	player’s	throw	brings	them	to	a	negative	score,	a	score	of	one,	or	reaches	zero	but	is	not	a	
double	–	they	“go	bust”.	This	means	that	their	turn	is	invalidated	and	their	score	reverts	to	its	value	
at	the	start	of	the	turn.	

3.2 Existing	Handicaps	in	Darts		

Several	unofficial	handicap	systems	are	used	in	darts,	with	the	most	common	involving	a	head-start	
for	the	weaker	player.	The	determination	of	this	head-start	value	relies	on	the	main	statistic	
measuring	player	skill	in	501	darts:	points	per	dart	(PPD)	[1].	PPD	is	calculated	as	follows:	
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𝑃𝑃𝐷 =

𝑇otal	Points	Scored
Total	Number	of	Darts	Thrown

	 (1)	

This	can	be	based	on	an	individual	game,	a	series	of	games,	or	a	player’s	lifetime.	To	determine	the	
head	start,	it	is	common	to	use	a	simple	heuristic:	the	ratio	between	the	two	players’	PPD	values.		

Our	framework	allows	us	to	understand	and	then	improve	this	current	handicap	in	three	ways.	
First,	we	mathematically	demonstrate	the	imbalance	that	persists	with	the	current	head-start	
handicap	based	on	PPD.	Second,	our	framework	provides	a	more	precise	representation	of	player	
skill,	distinguishing	between	execution	error	and	policy.	In	contrast,	PPD-based	handicaps	may	not	
differentiate	between	the	two;	a	player	may	have	a	lower	PPD	because	they	take	a	more	
conservative	policy	regardless	of	their	throw	accuracy.	Lastly,	we	introduce	a	dynamic	credit	
handicap	which	offers	flexibility	for	implementation	at	any	game	stage,	unlike	existing	handicaps	
assigned	solely	at	the	start.	This	flexibility	allows	us	to	identify	crucial	(or	“clutch”)	throws	for	
players	of	varying	skill	levels.	

4.	Markov	Decision	Process	Model	
In	this	section,	we	describe	the	various	components	of	our	MDP	formulation	for	the	game	of	darts	
with	dynamic	credits.		

4.1 	States	

We	define	each	state	as	𝑠 = (𝜃, 𝛽, 𝑖, 𝑢),	where	𝜃 ∈ {0,… ,501}	is	the	current	score,	𝛽 ∈ {0, . . ,9}	is	the	
number	of	remaining	credits,	𝑖 ∈ 1,2,3		is	the	number	of	throws	remaining	in	the	current	turn	and	
𝑢 ∈ {0, . . ,120}	is	the	number	of	points	gained	so	far	in	the	current	turn.	We	only	solve	for	up	to	nine	
credits	because	the	shortest	path	from	a	starting	score	of	501	to	0	is	nine	throws,	which	will	always	
be	achieved	when	playing	optimally	with	nine	or	more	perfect-accuracy	credits.	An	absorbing	state	
is	reached	when	a	player	wins	the	game,	denoted	𝑠!"# = (0, 𝛽, 𝑖, 𝑢)	for	all	values	of	𝛽, 𝑖, 𝑢 ≥ 0.	This	
results	in	over	1.8	million	distinct	states.	We	highlight	that	setting	𝛽 = 0	allows	us	to	easily	model	
the	original	game	of	darts	with	no	credits.	

4.2 	Actions	

The	action	set	𝐴 = {𝐴$%&'( ∪ 	𝐴)&!#*$}	is	the	union	of	two	subsets.	First,	the	actions	in	the	set	𝐴$%&'( 	
correspond	to	729	targets	on	the	board	that	a	player	may	choose	to	aim	for	if	they	are	not	using	a	
credit	(see	Figure	2).		

Second,	the	actions	in	set		𝐴)&!#*$	correspond	to	the	62	regions	that	a	player	may	choose	to	“hit”	
with	perfect	execution	if	they	use	a	credit.	These	62	regions	include	twenty	singles,	twenty	doubles,	
twenty	triples,	the	single	bullseye	and	the	double	bullseye.	

We	define	a	policy	as	a	function	𝜋: 𝑆 → 𝐴	which	maps	all	states	to	an	action	that	should	be	chosen	in	
that	state.	By	soving	the	MDP,	we	will	determine	the	optimal	policy,	that	is,	the	optimal	strategy	a	
player	should	use	in	darts.		

	



	 5	

	

Figure	2:	Set	of	targets	that	a	player	may	aim	for	if	using	a	throw	action.	

4.3 Costs	

There	is	a	cost	𝑐(𝑠′) = 1,	for	every	case	where	𝑖+ = 3,	indicating	that	a	turn	has	been	completed.	
Consequently,	the	value	function	of	our	MDP	will	correspond	to	the	expected	number	of	turns	
needed	to	complete	the	game	from	a	given	state.	

4.4 	Transition	Probabilities		

The	transition	probabilities	refer	to	the	probability	of	starting	in	state	𝑠,	choosing	action	𝑎	and	
transitioning	to	state	𝑠+,	denoted	as	𝑃(𝑠′|𝑠, 𝑎).	Within	our	formulation,	the	stochasticity	comes	from	
the	distribution	𝑃(𝑧|𝑎),	where	𝑧	is	the	resulting	dart	score	(e.g.,	D1	or	S12)	given	the	chosen	action	
a.	We	describe	the	transition	dynamics	in	more	details	in	the	following	subsections.	

4.4.1 Transition	Distributions	

The	transition	probabilities	can	be	broken	down	into	two	distinct	distributions	depending	on	the	
type	of	action.	First,	if	𝑎 ∈ 𝐴)&!#*$	(i.e.,	a	player	uses	a	handicap	credit),	their	transition	probability	
is	deterministic:	they	will	receive	the	desired	number	of	points	for	their	chosen	move	with	a	
probability	of	one.	Specifically,	𝑃(𝑧|𝑎) = 1	where	z	corresponds	to	the	dart	score	of	the	chosen	
credit	region	and	𝑃(𝑧|𝑎) = 0	otherwise.		

Second,	if	𝑎 ∈ 𝐴$%&'( 	(i.e.,	a	player	decides	to	throw),	their	transition	probability	is	stochastic:	the	
number	of	points	they	receive	will	depend	on	the	dart’s	realized	landing	location	(i.e.,	result)	given	
a	particular	target.	Consequently,	we	utilize	fitted	skill	models	for	darts	players,	which	has	been	the	
focus	of	many	past	studies	[5,	9,	2].	Since	this	is	not	the	main	focus	of	our	paper,	we	opt	to	use	the	
fitted	skill	models	from	the	most	recent	study,	which	fits	bi-variate	Gaussian	distributions	to	throw	
data	from	professional	darts	players.	These	distributions	are	of	the	form	𝒩(𝜇, Σ).	Next,	we	divide	
the	board	into	discrete	2mm-by-2mm	pixels	and	integrate	the	probability	mass	of	𝒩(𝜇, Σ)	over	
each	result	to	compute	the	distribution	𝑃(𝑧|𝑎).	
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4.4.2 Transition	Dynamics	

After	determining	the	probabilities	𝑃(𝑧|𝑎),	we	must	define	the	transition	dynamics	of	501	darts	and	
the	credit	handicap	system	to	determine	the	future	state	𝑠+ = (𝜃, 𝛽, 𝑖, 𝑢)	given	the	action	result	z.	
This	is	denoted	by	the	state	transition	function	which	we	call	f	(defined	in	Equation	2)	where	𝑠+ =
𝑓(𝑠, 𝑧).	In	this	function,	we	introduce	ℎ(𝑧)	which	represents	the	number	of	points	gained	from	the	
dart	landing	region	z.	For	example,	𝑧 =	T20	will	have	ℎ(𝑧) = 60.		

The	state	transition	function	consists	of	eight	cases.	The	first	four	cases	correspond	to	the	
stochastic	transitions	when	a	player	uses	a	throw	action.	The	first	case	corresponds	to	the	player	
winning	the	game.	This	occurs	when	the	final	throw	value	brings	the	score	to	zero	and	was	a	
double.	The	second	case	describes	a	player	going	bust,	which	results	in	the	final	throw	becoming	
invalidated	and	their	score	returning	to	what	it	was	at	the	start	of	their	turn.	The	third	case	
corresponds	to	a	regular	throw	within	their	current	turn.	The	added	value	is	stored	in	the	variable	
u	and	their	remaining	throws	in	the	turn	𝑖	increments	down	by	one.		The	fourth	case	corresponds	to	
the	player	making	a	regular	throw	to	end	their	turn.	The	value	stored	in	u	across	the	turn	finally	
increments	their	actual	score	𝜃,	u	resets	to	a	value	of	zero	and	they	are	given	three	throws	for	their	
next	turn.		

The	second	four	cases	correspond	to	the	deterministic	transitions	when	a	player	uses	a	handicap	
credit,	and	mirror	the	cases	described	above.	However,	these	transitions	are	only	possible	when	the	
current	state	has	at	least	one	handicap	credit	available	(β	>	1)	and	always	transition	to	a	state	with	
one	fewer	handicap	credits	(β′	=	β	−	1).			

	

(2)	

4.4.3 Transitions	for	Different	Skill	Levels	

In	order	to	model	varying	skill	levels,	we	can	systematically	perturb	𝑃(𝑧|𝑎).	For	this	process,	we	
were	inspired	by	the	tennis	execution	error	framework	introduced	by	Chan	et	al.	(2022)	[6].	We	use	
their	execution	error	level	parameter	𝜖,	which	acts	as	a	scalar	error	multiple	on	the	covariance	
matrices	of	our	chosen	average	bi-variate	Gaussian	distributions,	that	is,	𝒩(𝜇, ϵΣ).	For	ease	of	
exposition,	all	of	our	analysis	was	based	off	of	the	underlying	distributions	for	the	professional	
player	Michael	Smith,	who	was	chosen	to	represent	the	average	professional.		
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The	bi-variate	Gaussian	distribution	when	aiming	at	the	double-bullseye	for	this	“average	player”	
with	varying	execution	error	levels	ϵ	can	be	seen	in	Figure	3.	Based	on	our	formulation,	ϵ	=	1	
corresponds	to	professional-level	accuracy	with	execution	error	increasing	with	larger	ϵ	values.	As	
can	be	seen,	players	with	near-professional	accuracy	are	able	to	pinpoint	the	double	bullseye	
whereas	players	with	higher	execution	error	will	regularly	miss	and	hit	the	single	region.	

	

Figure	3:	Bi-variate	Gaussian	distributions	for	players	with	different	execution	error	levels	𝜖	when	aiming	at	the	double	
bullseye.	

It	should	be	noted	that	while	our	chosen	player	has	a	radially	symmetric	distribution	around	the	
double-bullseye,	this	will	not	be	the	case	for	all	players.	Our	modelling	framework	can	be	easily	
extended	to	analyze	players	having	distributions	of	different	shapes.	For	example,	the	distribution	
shapes	for	three	different	professional	players	(Cullen,	Chisnall	and	Price)	are	shown	in	Figure	4.	
Not	only	can	the	distributions	be	asymmetric,	but	they	can	have	different	angular	orientations	with	
respect	to	the	axes.		

	

Figure	4:	Bi-variate	Gaussian	distribution	shapes	for	three	different	professional	players	with	𝜖 = 10	to	allow	for	easier	
visualization.		
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Our	analysis	will	hold	shape	constant	and	instead	focus	on	how	the	optimal	policy	changes	with	ϵ	
by	re-integrating	𝑃(𝑧|𝑎)	for	𝑎 ∈ 𝐴$%&'( 	and	re-solving	for	the	optimal	policy	given	𝑃,(𝑠	′	|𝑠, 𝑎).	

4.5 	Bellman	Equation	

We	can	combine	the	states,	actions,	costs	and	transition	probabilities	outlined	above	to	construct	an	
appropriate	MDP	Bellman	equation	to	compute	the	value	of	using	a	given	policy	π.	By	construction,	
we	can	interpret	𝑉,-(𝑠)	as	the	expected	number	of	turns	required	for	a	player	with	execution	error	
𝜖	to	check	out	from	state	𝑠	when	using	policy	𝜋.	

𝑉,-(𝑠) =N𝑐(𝑓(𝑠, 𝑧)) 	+ 	𝑃,P𝑧Q𝜋(𝑠)R	𝑉,-(𝑓(𝑠, 𝑧))
.∈0

	 (3)	

We	can	use	the	following	minimization	operators	to	compute	the	optimal	value	and	optimal	policy	
that	minimizes	the	expected	number	of	turns	to	check	out	from	any	state.	We	solve	this	model	using	
a	standard	policy	iteration	algorithm.	

𝑉,∗(𝑠) = min
2∈3

VN𝑐(𝑓(𝑠, 𝑧)) 	+ 𝑃,(𝑧|𝑎)	𝑉,∗(𝑓(𝑠, 𝑧))
4∈5

W , ∀𝑠 ∈ 𝑆	 (4)	

𝜋,∗(𝑠) = argmin
2∈3

VN𝑐(𝑓(𝑠, 𝑧)) 	+ 𝑃,(𝑧|𝑎)	𝑉,∗(𝑓(𝑠, 𝑧))
4∈5

W , ∀𝑠 ∈ 𝑆	 (5)	

Given	the	large	sample	state	space,	we	are	able	to	exploit	the	monotonic	structure	of	darts	to	solve	
this	more	quickly	as	a	dynamic	program	in	practice.		

5.	Properties	of	Value	Function	and	Optimal	Policy	
In	this	section,	we	analyze	the	optimal	value	and	optimal	policy	of	the	MDP	with	varying	levels	of	
execution	error	and	number	of	handicap	credits.	

5.1	Optimal	Policy	and	Execution	Error		

Figure	5	illustrates	how	the	distribution	of	optimal	actions	(i.e.,	targets)	changes	as	a	function	of	𝜖,	
when	no	handicap	credits	are	available.	When	𝜖	is	low	(e.g.,	𝜖 = 1),	the	optimal	policy	is	
concentrated	at	the	T20,	indicating	that	players	should	repeatedly	target	this	region	to	reliably	
receive	60	points	per	throw	(the	most	a	single	dart	can	achieve).	This	is	continued	until	the	end	of	
the	game	when	they	are	trying	to	check	out.	At	this	stage,	if	they	have	an	even	score,	they	will	target	
the	required	double.	If	they	have	an	odd	score	then	they	will	target	an	odd	single	that	will	move	
them	to	an	even	score	where	they	can	finish	with	a	double;	for	near-professional	players,	even-
valued	singles	are	rarely	targeted.	As	𝜖	increases	(e.g.,	𝜖 = 9),	this	policy	shifts	towards	the	T19	
instead	of	the	T20.	This	is	likely	because	when	a	player	misses	a	T19	(neighbored	by	7	and	3),	they	
receive	more	points	than	if	they	miss	a	T20	(neighbored	by	5	and	1).		
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Figure	5:	Distribution	of	optimal	policy	across	all	score	states	for	different	levels	of	execution	error	𝜖.		

As	epsilon	increases	further	(see	Figure	6),	the	policy	begins	to	constrict	and	targets	a	more	
compact	region	that	is	located	towards	the	centre	of	the	board.	In	an	extreme	case	with	ϵ	=	100,	the	
optimal	policy	suggests	to	primarily	target	the	centre	of	the	board	to	avoid	missing	the	board	
completely.	

	

Figure	6:	Bi-variate	Gaussian	distributions	for	double-bullseye	target	(top)	and	corresponding	distribution	of	optimal	policy	
(bottom)	across	all	score	states	for	larger	levels	of	execution	error	𝜖.	
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5.2	Optimal	Value	and	Execution	Error		

Figure	7	shows	the	optimal	value	(i.e.,	expected	number	of	turns	to	finish	the	game)	of	each	current	
score,	at	the	start	of	a	turn,	with	different	levels	of	ϵ	and	no	handicap	credits.	As	expected,	larger	ϵ	
values	increase	the	expected	number	of	turns	needed.	However,	the	rate	of	increase	declines	as	ϵ	
grows.	For	example,	the	difference	in	value	between	ϵ	=	1	and	ϵ	=	2	is	larger	than	the	difference	
between	ϵ	=	8	and	ϵ	=	9.	

	

Figure	7:	Expected	number	of	turns	to	finish	the	game	𝑉!∗	as	the	execution	error	𝜖	changes.		

For	scores	greater	than	40,	the	expected	number	of	turns	to	finish	the	game	decreases	linearly	as	
the	score	decreases.	However,	as	we	approach	the	end	of	the	game,	this	number	begins	to	oscillate.	
As	was	mentioned	in	Section	5.1,	this	is	driven	by	the	need	to	end	on	a	double.	That	is,	any	odd-
numbered	score	below	40	must	first	target	an	odd-numbered	region	before	it	can	subsequently	
target	a	double	to	check	out.	This	is	contrasted	with	even-numbered	scores	that	can	target	a	double	
immediately.	We	also	note	the	sharp	increase	in	expected	number	of	turns	near	the	end	of	the	
game.	This	is	driven	by	the	difficulty	of	hitting	a	specific	double;	there	is	a	high	probability	of	going	
bust	or	missing	the	board	in	this	range.	Both	of	these	outcomes	keep	a	player’s	score	the	same,	
leading	to	a	cycle	where	a	player	is	stuck	in	the	same	state	until	they	finally	check	out.	Moreover,	as	
their	score	approaches	zero,	there	are	fewer	segments	of	the	board	that	a	player	can	hit	without	
going	bust;	in	the	extreme	case,	with	a	score	of	2,	any	throw	result	other	than	a	D1	will	keep	their	
score	the	same.	In	contrast,	with	a	score	of	40,	even	if	a	player	misses	the	desired	D20,	there	is	a	
large	area	of	the	board	that	they	can	hit	without	going	bust.		

5.3	Optimal	Policy	and	Value	with	Handicap	Credits		

Figure	9	shows	the	optimal	value	at	the	start	of	the	game	(i.e.,	𝜃 = 501, 𝑖 = 3, 𝑢 = 0)	with	different	
levels	of	ϵ	and	number	of	dynamnic	credits	𝛽.	By	comparing	the	expected	number	of	turns	needed	
at	the	start	of	the	game,	we	arrive	at	a	single	catch-all	metric	to	compare	different	handicap	
frameworks.	As	expected,	as	available	credits	increase,	the	expected	turns	decrease.	Note,	the	
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expected	number	of	turns	approach	a	limit	of	3,	which	corresponds	to	a	perfect	“9-dart	finish”	
within	those	three	turns;	it	is	not	possible	to	get	from	an	initial	score	of	501	to	a	score	of	zero	in	less	
than	9	throws.	We	also	observe	that	the	first	credit	brings	the	most	value,	indicated	by	the	steeper	
slope	between	𝛽 = 0	and	𝛽 = 1.	This	is	because	the	optimal	policy	instructs	players	to	always	save	
their	credits	for	the	end	of	the	game,	which	removes	the	cycle	of	missing	the	board	or	going	bust.	As	
𝛽	increases	past	1,	there	is	a	steady	linear	decline	in	the	number	of	expected	turns	to	finish.		

	

Figure	9:	Expected	number	of	turns	to	finish	the	game	𝑉!∗(𝜃 = 501, 𝛽, 𝑖, 𝑢)	as	the	execution	error	𝜖	and	credits	𝛽	change.		

Going	deeper,	we	are	able	to	observe	"break-even"	points	where	two	players	with	different	𝜖	values	
can	be	given	credits	to	equalize	their	number	of	expected	turns.	For	example,	a	player	with	ϵ	=	1	
requires	just	under	6	turns	to	finish.	This	is	equivalent	to	an	ϵ	=	2	player	receiving	approximately	3	
credits,	which	can	be	easily	obtained	by	drawing	a	horizontal	line	on	Figure	9.	This	type	of	analysis	
can	be	used	to	understand	how	dynamic	credits	can	create	competitive	balance	between	players	
with	mismatched	skill	(see	section	6.3).	

5.4	Optimal	Value	and	Heuristic	Head-Start	Handicaps	

We	now	use	this	framework	to	examine	the	effectiveness	of	the	heuristic	headstart	handicap	
system	at	equalizing	competitive	balance	between	mismatched	players.	We	first	make	the	
assumption	that	all	players	will	be	using	an	optimal	policy.	We	then	divide	501	by	the	starting	state	
𝑉,∗(𝜃 = 501, 𝛽 = 0, 𝑖 = 3, 𝑢 = 0)	to	compute	their	optimal	expected	PPD	(i.e.,	number	of	points	
divided	by	number	of	throws).	Using	PPD	estimates	for	players	with	different	ϵ	values,	we	are	then	
able	to	calculate	the	weaker	player’s	head	start	using	the	heuristic	employed	in	practice	[10].	

Weaker	Player	Starting	Score = 501\
𝑃𝑃𝐷(!26!&
𝑃𝑃𝐷7$&'"8!&

]	 (6)	
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Figure	10	uses	dots	to	indicate	the	weaker	player’s	head	start	when	competing	against	a	player	
with	ϵ	=	1.	It	is	clear	to	see	that	these	head	starts	still	result	in	the	weaker	player	requiring	more	
turns	to	finish	the	game	compared	to	the	stronger	player.		For	example,	even	with	this	heuristically	
computed	head	start,	a	player	with	𝜖 = 9	would	still	require	roughly	two	more	turns	to	check	out	
when	faced	against	an	𝜖 = 1	player.	We	seek	to	address	this	imbalance	with	optimization	based	
handicaps	in	the	next	section.	

	

Figure	10:	The	expected	number	of	turns	to	finish	the	game	as	execution	error	changes.	The	markers	represent	the	state	at	
which	a	player	would	start	the	game	using	the	heuristic	head-start	handicap	against	a	professional	with	𝜖 = 1.		

6.	Optimization-Based	Handicaps		
In	this	section,	we	use	our	MDP	to	propose	two	optimization-based	handicaps:	(i)	an	optimized	
head	start	handicap	and	(ii)	a	credit-based	handicap.	Both	handicap	systems	seek	to	equalize	the	
expected	turns	to	check	out	from	the	start	of	the	game.	We	note	that	these	methods	require	
estimating	one’s	own	value	of	𝜖,	which	we	describe	in	Appendix	A.		

6.1	Optimized	Head-Start	Handicap	

As	previously	noted,	the	heuristic	handicap	still	leaves	the	weaker	player	at	a	disadvantage.	We	can	
use	our	MDP	to	determine	the	appropriate	level	of	head	start	that	balances	competition.	
Specifically,	we	take	the	𝑉∗(𝜃 = 501, 𝛽 = 0, 𝑖 = 3, 𝑢 = 0)	of	the	stronger	player	and	determine	the	
starting	score	where	the	weaker	player	has	the	same	number	of	expected	turns	to	finish.	Figure	11	
(a)	provides	an	illustration	of	this	methodology	and	Figure	11(b)	provides	a	lookup	table	handicap	
value.		
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(a)	Markers	represent	the	optimized	head-start	handicap	
needed	against	player	with	𝜖 = 1.	

(b)	Lookup	table	for	the	optimal	head	start	needed	for	any	
two	players.		

Figure	11:	Optimized	head-start	handicap	methodology	(a)	and	lookup	table	(b).	

Head-start	handicaps	have	the	advantage	of	being	highly	intuitive	and	aligned	with	current	
heuristic	methods.	However,	there	is	a	notable	shortcoming:	as	the	difference	in	ϵ	gets	very	large,	
there	could	be	an	irreconcilable	discrepancy	caused	by	the	difficulty	at	the	end	of	the	game.	That	is,	
if	it	takes	a	player	with	high	ϵ	more	throws	to	hit	a	double	than	it	does	for	a	player	with	low	ϵ	to	
complete	the	entire	game	from	the	initial	score	of	501,	then	no	head	start	will	ever	be	able	to	
achieve	competitive	balance.	This	limitation	can	be	addressed	by	using	dynamic	credits.		

6.2	Novel	Dynamic	Credit	Handicap			

This	handicap	system	involves	giving	𝛽	credits	to	the	weaker	player	at	the	start	of	the	game	to	
equalize	the	expected	number	of	turns	needed	to	finish.	Specifically,	we	take	the	𝑉∗(𝜃 = 501, 𝛽 =
0, 𝑖 = 3, 𝑢 = 0)	of	the	stronger	player	and	determine	the	necessary	number	of	credits	where	the	
weaker	player	has	the	same	number	of	expected	turns	to	finish.		Figure	12(a)	provides	an	
illustration	of	this	methodology	and	Figure	12(b)	provides	the	lookup	table	containing	number	of	
credits	the	weaker	player	should	be	allotted.	Fractional	values	can	be	interpreted	as	how	many	
credits	the	weaker	player	should	be	afforded	on	average	over	multiple	games.	Indeed,	in	practice,	
most	darts	competitions	include	multiple	games,	making	fractional	credits	possible	to	equalize	
expected	number	of	turns.		
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(a)	Number	of	credits	needed	against	a	player	with	𝜖 = 1.	 (b)	Lookup	table	for	the	number	of	credits	needed	for	any	
two	players.		

Figure	12:	Dynamic	credit	handicap	methodology	(a)	and	lookup	table	(b).	

	

7.	Evaluating	Handicap	Fairness	in	Practice		
Thus	far,	we	have	developed	handicaps	that	equalize	the	expected	turns	required	for	each	player	to	
check	out.	We	now	evaluate	their	ability	to	equalize	win	probability	between	players	(i.e.,	true	
fairness).		This	was	accomplished	by	simulating	10,000	games	between	each	set	of	players,	
alternating	the	starter	(to	control	for	the	starters	advantage).	We	assumed	that	both	players	use	
their	respective	optimal	policies	and	sample	from	their	throw	outcome	distribution.	The	first	player	
to	check	out	was	recorded	as	the	winner.	We	then	estimated	the	true	win	probabilities	as	the	
proportion	of	games	that	each	player	won.		

Figure	13	shows	the	win	probabilities	for	the	two	optimization-based	handicap	methods.	We	find	
that	the	optimized	head-start	handicap	does	not	equalize	win	probabilities	and	actually	creates	a	
disadvantage	for	the	stronger	player.	Meanwhile,	the	novel	dynamic	credit	handicap	is	much	more	
successful	at	equalizing	win	probabilities	(i.e.,	values	closer	to	50%).	We	also	confirmed	that	the	
heuristic	head	start	methods	currently	used	in	practice	do	not	create	fair	outcomes,	affording	an	
advantage	to	the	stronger	player	(see	Appendix	B).	
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(a)	Optimized	head-start	handicap.	

	

(b)	Novel	dynamic	credit	handicap.	

	

Figure	13:	Probability	that	stronger	player	wins	after	10,000	simulated	matches.	

Figure	14	shows	a	histogram	of	the	number	of	turns	to	check	out	for	two	mismatched	players	with	
(ϵ = 1	and	ϵ = 8)	using	different	handicap	approaches.		

	

Figure	14:	Number	of	turns	to	check	out	for	two	mismatched	players	for	10,000	simulated	games.	

We	see	that	the	weaker	player’s	turns-to-check-out	distribution	has	a	higher	mean,	variance,	and	
skew.	Moreover,	head-start	handicaps	merely	shift	the	mean	of	the	turns-to-check	out	distribution	
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to	be	earlier	in	the	game,	with	the	shape	remaining	the	same.	Therefore,	equalizing	the	expected	
turns	to	check	out	will	also	equalize	win	probability	only	if	the	variance	and	skew	are	also	equal	for	
both	players.	Remarkably,	this	is	exactly	what	the	dynamic	credit	handicap	achieves.	By	removing	
the	difficulty	at	the	end	of	the	game,	the	turns-to-check	out	distribution	for	the	weaker	player	is	
reshaped	to	mimic	that	of	the	stronger	player,	producing	a	close	approximation	of	true	fairness.	

8.	Conclusion		
In	this	paper,	we	used	a	Markov	Decision	Process	to	develop	a	framework	to	handicap	darts.	We	
explored	how	this	handicap	system	can	be	applied	to	equalize	win	probabilities	for	players	
possessing	different	levels	of	execution	error.	Our	analysis	shows	that	the	main	existing	handicap	
system	is	imbalanced	and	that	the	most	challenging	component	of	the	game	is	hitting	a	double	to	
check	out	at	the	end.	We	then	developed	two	optimization-based	alternatives	that	equalize	the	
expected	turns	for	both	players	to	win	the	game.	Finally,	we	use	simulation	to	evaluate	the	true	
fairness	of	each	handicap	and	illustrate	that	our	novel	dynamic	credit	handicap	produces	the	best	
approximation	to	true	fairness.			

There	are	several	opportunities	to	extend	this	work	including	evaluation	of	new	handicaps,	deeper	
exploration	of	the	dynamic	credit	handicap,	and	practical	applications.	First,	this	framework	can	be	
modified	to	study	a	range	of	handicap	designs	(e.g.,	credits	could	allow	“do-over”	throws	instead	of	
providing	players	with	a	guaranteed	result).	Second,	more	work	can	be	done	to	investigate	the	
effectiveness	of	dynamic	credits	at	equalizing	win	probabilities	by	incorporating	the	opponent’s	
score	into	the	state	space,	bringing	the	number	of	states	to	over	one	billion.	Solving	this	scale	of	
model	is	impractical	but	perhaps	possible	with	enough	compute	power	and	programming	that	
exploits	the	monotonic	structure	of	darts.	Solving	a	few	one-off	cases	to	test	whether	our	simplified	
modeling	approach	can	approximate	this	complicated	MDP	would	provide	a	valuable	benchmark.	
Finally,	from	a	practical	lens,	we	hope	to	partner	with	a	local	darts	league	to	trial	dynamic	credit	
handicaps	and	see	how	they	perform.	In	addition,	our	framework	could	be	built	into	dart	machines	
or	embedded	into	an	app	to	compute	handicaps	both	for	tournaments	and	casual	matches.	Beyond	
these	darts-specific	ideas,	dynamic	credits	could	also	be	applied	and	studied	within	other	sports.	
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Appendix	A.		Estimating	Execution	Error	Level	
	
We	describe	how	to	estimate	the	skill	level	of	each	player.	We	acknowledge	that	more	sophisticated	
methods	to	determine	a	player’s	skill	level	exist,	but	we	focus	on	developing	a	method	that	is	easy	
to	interpret	and	implement.	That	is,	we	first	ask	players	to	throw	30	darts	aimed	at	the	double-
bullseye	and	then	use	Table	1	to	find	their	assigned	execution	error	level	ϵ.	
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Table	1:	Lookup	table	to	determine	a	player’s	𝜖	value	based	on	a	sample	of	30	throws.	Columns	indicate	number	of	expected	
throws	ending	up	in	each	region.	

𝜖	 DB	 SB	 Other	
1	 10	 16	 4	
2	 5	 14	 11	
3	 4	 11	 15	
4	 3	 9	 18	
5	 2	 8	 20	
6	 2	 7	 21	
7	 2	 6	 22	
8	 1	 6	 23	
9	 1	 5	 24	

Table	1	is	derived	by	integrating	the	Gaussian	distributions	for	varying	𝜖	when	they	aim	for	the	
centre	of	the	board.	We	then	discretize	the	proportion	of	mass	that	falls	in	the	DB,	SB,	and	
elsewhere.	Multiplying	these	proportions	by	30	provides	the	expected	number	of	darts	that	should	
land	in	each	region.	We	can	accordingly	assign	a	player	their	ϵ	in	an	interpretable	manner.		

Appendix	B.		Heuristic	Head	Start	Simulation	Results	
	
Figure	15	shows	the	win	probability	of	the	stronger	player	with	the	currently-used	heuristic	
handicap.	We	see	that	this	methodology	does	not	create	fair	match	outcomes	and	provides	an	
advantage	to	the	stronger	player.	For	example,	when	a	player	with	epsilon	1	plays	against	a	
handicapped	epsilon	9	player,	the	stronger	player	still	has	a	70%	chance	of	winning.		
	

	
Figure	15:	Probability	that	stronger	player	wins	after	10,000	simulated	matches	using	the	heuristic	head	start	handicap	

employed	in	practice.		


