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Estimating	NBA	Team	Shot	Selection	Efficiency	from	
Aggregations	of	True,	Continuous	Shot	Charts:	A	

Generalized	Additive	Model	Approach	
	

Basketball	
193942	

	
GAM	dashboard:	https://sportdataviz.syr.edu/TrueShotChart/	
	
Open-Source	Code	Repository:	https://github.com/Syracuse-University-Sport-
Analytics/continous_shot_selection	

	
1.	Introduction	
	
We	develop	a	novel	type	of	basketball	shot	chart	that	uses	a	generalized	additive	model	to	estimate	
total	shot	proficiency	continuously	in	the	half-court.	This	shot	chart	incorporates	missed	shots	that	
draw	a	shooting	foul,	and	shot-pursuant	free	throw	scoring,	to	determine	total	or	true	scoring	yield	
following	a	shot	decision.	A	traditional	discrete,	or	binned,	shot	chart	is	a	size-	and	color-coded	
spatial	plot	that	tracks	both	location-dependent	volume	and	points	yielded	from	the	floor,	
respectively,	on	field	goal	attempts	(FGAs).	Shot	charts	provide	distilled	summaries	of	shot-
distributional	efficiency	and	are	therefore	a	leading	analytic	tool	for	team	game-planning	(see,	e.g.,	
Papalexakis	and	Pelechrinis	2018;	Jiao,	Hu,	and	Yan	2021;	Jieying,	Guanyu,	and	Jun	2021;	Franks,	
Miller,	Bornn,	and	Goldsberry	2015;	Fichman	and	O’Brien	2019;	Skinner	and	Goldman	2015;	
Goldman	and	Rao	2011;	Narayan	2019;	Winston,	Nestler,	and	Pelechrinis	2022).	While	descriptive,	
traditional	shot	charts	do	not	account	for	free	throw	scoring	pursuant	to	shots	from	the	field,	nor	
the	locations	of	those	shots	from	the	field	that	lead	to	the	free	throw	scoring	opportunities.	By	
considering	missed	shots	that	result	in	a	shooting	foul,	which	are	not	considered	FGAs,	and	made	
shots	that	result	in	an	“and-one”	free	throw	opportunity,	we	correct	for	location-conditional	scoring	
yield	estimate	distortions	in	traditional	shot	charts.				
		
Despite	their	limitations,	traditional	shot	charts	have	been	integral	to	improving	shooting	efficiency	
in	the	NBA.	In	a	2020	NPR	interview,	Kirk	Goldsberry,	a	basketball	shot	chart	pioneer,	discussed	the	
ability	to	infer	disequilibria	from	shot	chart	aggregations:	“It's	that	wild	margin	of	inefficiency	that’s	
driven	sort	of	these	cartoonish	trends	and	the	rapid	increase	in	3-point	shooting	across	the	NBA.”	
Shot	charts,	and	their	aggregations,	have	served	as	a	key	input	in	the	NBA’s	three-point	revolution.	
Figures	1a-b	show	the	increased	reliance	on	three-point	shooting	in	the	NBA	during	the	past	
decade,	which	has	allowed	teams	to	further	leverage	efficiency	gains	from	the	three-point	premium.	
The	righthand	side	plot	of	Figure	1	shows	the	time	trend	in	average	number	of	three-point	attempts	
(3PAs)	per	NBA	team-game.	We	observe	a	marked	increase	in	the	locally	upward	slope	of	the	trend	
beginning	in	2013-14,	coinciding	with	the	ubiquitous	adoption	of	SportVU	player	tracking	
technology	in	all	NBA	arenas.	The	only	precedent	for	such	a	steep	rise	in	3PA	volume	occurred	from	
1994	through	1997,	when	the	three-point	line	was	moved	inward	“above	the	break”	from	23.75	feet	
to	22	feet	before	being	restored	to	its	previous	location.	These	negating	leaguewide	three-point	line	
position	changes	account	for	the	locally	steep	rise-and-fall	pattern	of	the	mid-1990s.	The	lefthand	
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side	plot	of	Figure	1	features	team-game	level	three-point	attempt	distributions	for	the	1980,	1985,	
1990,…,	and	2020	seasons	(i.e.,	at	five-year	staggers).		This	plot	also	demonstrates	marked	
rightward	shifts	in	the	team-game	level	3PA	density	plots	of	2015	and	2020	relative	to	earlier	such	
plots.	
	
Figure	1a	and	1b:	NBA	3-Point	Shots	Taken	Per	Team-Game,	Time	Trend	and	Density	Plots		

	 	
	
2.	Shot	Charts	with	Spatial	Continuity	and	True	Estimates	of	
Point	Yield	
	
Shot	charts	help	us	understand	trends	in	shot	selection	and	the	efficiency	therefrom.		To	obtain	a	
full	picture	of	shot	efficiency,	however,	we	must	consider	all	scoring	pursuant	to	a	given	shot.	
Herein,	we	overcome	limitations	of	previous	shot	chart	types	by	developing	a	generalized	additive	
model	(GAM)	continuous	shot	chart	that	accounts	for	all	shot-pursuant	free	throw	scoring.	A	GAM	is	
a	type	of	generalized	linear	model,	where	the	outcome	variable	depends	linearly	upon	smooth	
functions	of	the	explanatory	variables.		In	fitting	a	generalized	additive	model,	these	smooth	
functions	are	estimated.	A	GAM	shot	chart	allows	for	the	estimation	of	player	or	team	shot	
efficiency	as	a	continuous,	three-dimensional	surface,	where	the	third	dimension	is	represented	not	
by	the	physical	height	of	a	surface	at	a	particular	(x,y)	coordinate	but	via	continuous	color-coding.	
Hastie	and	Tibshirani	(1987)	first	developed	GAMs	to	serve	as	a	flexible	and	interpretable	family	of	
non-linear	models.		
We	call	the	GAM	shot	charts	developed	herein	Continuous	True	Shot	Charts	and	make	them	
available	on	a	custom,	searchable	project	dashboard	at	https://sportdataviz.syr.edu/TrueShotChart.	
The	project	Github	repository	is	available	at:	https://github.com/Syracuse-University-Sport-
Analytics/continous_shot_selection.	Figure	2	shows	a	Continuous	True	Shot	Chart	for	the	2021-22	
Milwaukee	Bucks.	In	a	Continuous	True	Shot	Chart,	expected	true	point	yield,	from	the	field	and	line,	
for	each	possible	shot	location	of	the	half-court,	is	estimated,	and	the	estimate	is	color-coded	into	
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the	chart.	Yellow	ridge	curves	represent	iso-yield	curves	or	spatial	level	sets	on	yield	such	that	
shots	along	a	given	set	generate	equal	expected	true	points.		
	
Figure	2:	Continuous	True	Shot	Chart,	2021-22	Milwaukee	Bucks	

	
	
The	present	work	represents	the	first	example	of	a	continuous	(GAM-based)	true	shot	chart,	to	the	
authors’	best	knowledge.	When	examining	the	2021-22	Milwaukee	Bucks’	Continuous	True	Shot	
Chart	of	Figure	2,	we	observe	some	surprises	and	some	expected	results.	When	including	shot-
pursuant	free	throw	scoring,	we	find	the	expected	result	that	the	Bucks	scored	proficiently	at	or	
near	the	rim,	as	well	as	from	the	wing	three-point	region	extended	and	the	left	corner	three-point	
area.	However,	we	also	find	the	surprising	result	that,	for	the	Bucks	of	that	season,	long	2PAs	were	
not	nearly	as	low	yielding	as	the	conventional	wisdom	would	suggest.	The	black	far-midrange	
regions	suggest	that	long	2PAs	along	the	baseline	extended	were	higher	yielding	than	either	close	
midrange	shots	in	the	paint	or	midrange	shots	off	the	elbows.	Even	more	surprisingly,	long	2PAs	
just	inside	the	left	three-point	line	break	provided	the	Bucks	with	substantial	yield	(greater	than	1.2	
points	per	shot!).	The	2021-22	Bucks	obtained	elite	yield	from	a	long	2PA	region	of	the	floor	but	
middling	yield	for	much	of	the	near-midrange	paint	region.	Further,	the	Bucks	obtained	elite	
scoring	yield	on	3PAs	in	some	regions	out	to	perhaps	26	feet,	indicating	that	deep-threat	3PAs	can	
have	substantial	scoring	benefits	in	addition	to	the	spacing	benefits	they	afford	an	offense.	
However,	any	efficient	scoring	benefits	of	deep	3PAs	fell	off	sharply	beyond	~26	feet.		
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At	its	limit,	a	modern	shot	chart	reduces	a	team’s	shooting	regions	down	to	3PAs	and	2PAs	at	or	
near	the	rim.	When	considering	shot-pursuant	free-throw	scoring,	we	observe	that	these	distilled	
areas	are	important	but	that	there	are	potentially	glaring	exceptions	to	such	reductionism.	In	Figure	
3,	we	consider	James	Harden’s	2019-20	shot	chart.	We	chose	this	player-season	for	several	reasons.	
This	was	Harden’s	last	year	in	Houston,	where	he	was	the	on-court	leader	of	a	revolution	in	shot	
chart	reductionism,	Daryl	Morey	having	been	the	accompanying	front	office	leader	of	said	
revolution.	Further,	Harden	won	his	third	consecutive	scoring	title	that	season.	Lastly,	Harden	has	
an	exceptionally	high	free	throw	rate	such	that	we	expect	a	great	deal	of	additional	information	in	
his	true	shot	chart.	In	that	season,	Harden’s	FT	rate	(FTA/FGA)	was	0.557	or	about	2.14	times	the	
league	average	of	0.26.	We	then	consider	the	2022-23	shot	chart	of	Jimmy	Butler	in	Figure	4.	We	
select	Butler’s	shot	chart	because	he	also	has	an	all-time	FT	rate,	especially	among	fellow	Small	
Forwards.	In	fact,	the	present	authors	cannot	find	a	Small	Forward	with	a	higher	seasonal	FT	rate	
than	Butler.	His	FT	rate	has	been	as	high	as	0.709	for	a	season	and	was	0.625	in	2022-23.	As	such,	
we	also	expect	Butler’s	true	shot	charts	to	look	substantially	different	than	his	traditional	chart.		
	
Figure	3:	2019-20	Continuous	True	Shot	Chart	of	James	Harden	
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Figure	4:	2022-23	Continuous	True	Shot	Chart	of	Jimmy	Butler	

	
	
Figures	3-4	have	rich	commonalities	and	differences.	Buoyed	by	prolific	free	throw	activity,	both	
charts	feature	the	expected	hot	spots	in	parts	of	the	three-point	region,	as	well	as	at	or	near	the	rim.	
However,	some	aspects	of	these	shot	charts	reinforce	surprises	from	the	previous	chart	of	Figure	2.	
We	observe	areas	of	premium	yield	along	the	baseline	extended	long	2PA	regions	for	Harden;	these	
same	areas	are	of	moderate	yield	for	Butler,	rather	than	low.	As	in	the	case	of	Figure	2,	we	observe	
that	premium	long	2PA	regions	exist	in	the	modern	NBA	shot	chart	when	accounting	for	shot-
pursuant	FT	scoring.			
								For	the	2021-22	Bucks	again,	Figure	5	presents	a	differential	shot	chart	that	visualizes	the	
difference,	from	each	point	in	the	half	court,	between	the	color	coding,	or	yield,	of	the	Continuous	
True	Shot	Chart	and	that	of	a	conventional	shot	chart	that	does	not	include	shot-pursuant	FT	
scoring.		
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Figure	5:	Differential	Shot	Chart,	Continuous	True	Shot	Chart	Yield	minus	Continuous	
Conventional	Shot	Chart	Yield,	2021-22	Milwaukee	Bucks	

	
	
We	observe	from	Figure	5	that	failing	to	include	shot-pursuant	FT	scoring	places	a	substantial,	and	
typically	downward,	bias	on	the	estimated	yield	of	shots	near	the	basket.	In	general,	the	differential	
is	variable	across	the	floor,	suggesting	a	variable	underlying	shot	position	conditional	FT	rate.	Thus,	
traditional	shot	charts	can	substantially	distort	spatial	characterizations	of	scoring	yield.	These	
same	results	bear	out	for	many	other	team	seasons,	as	can	be	observed	on	our	custom	shot	chart	
dashboard	at	https://sportdataviz.syr.edu/TrueShotChart/.	Figure	5	also	explains	the	unexpected	
result	that,	in	a	true	shot	chart,	shots	from	the	left	baseline	extended	long	2PA	region	generated	a	
high	yield	for	the	2021-22	Bucks.	Shots	from	this	region	generated	a	high	made	FT	rate.	It	can	be	
observed	on	the	dashboard	that	James	Harden’s	2019-20	yield	premium	from	this	region	also	
partly	depended	on	a	relatively	high	made	FT	rate	for	shots	in	that	region.		
	
Though	largely	reviled	in	the	modern	era	of	basketball	analytics,	long	2PAs	in	some	cases	generate	
a	high	true	scoring	yield.	In	fact,	we	observe	from	Figure	2	that	long	2PAs	from	this	region	for	the	
2021-22	Bucks	returned	a	similar	point	yield,	on	average,	than	if	the	player	had	stepped	back	to	the	
adjacent	three-point	range!	In	this	case,	a	comparison	of	Figures	2	and	5	suggests	that	the	step-back	
3PA	garnered	more	points	from	the	field	but	fewer	points	from	the	line.	In	consideration	of	the	
latter	effect,	step-backs	may	discourage	defenders	from	fouling	because	a	foul	on	a	missed	3PA	
allows	the	offense	50%	more	points,	in	expectation,	than	fouling	on	a	missed	2PA.	Assuming	league	
average	FT	proficiency,	a	missed	3PA	that	draws	a	shooting	foul	would	garner	an	expected	

	points,	whereas	a	missed	2PA	that	draws	a	shooting	foul	would	garner	an	expected	
	points.	This	premium	is	certainly	not	commensurate	with	any	three-point	premium	

that	exists	in	the	absence	of	a	shooting	foul,	as	we	will	observe	later	in	the	paper.	Therefore,	fouling	
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on	a	3PA	disproportionately	punishes	the	defense.	This	calculus	likely	explains	at	least	part	of	the	
lower	FT	rate	on	3PAs	in	Figure	5,	as	well	as	the	lack	of	a	sharp	efficiency	distinction	between	
certain	3PAs	and	their	neighboring	long	2PAs.	In	the	subsequent	section,	we	aggregate	Continuous	
True	Shot	Charts	to	determine	whether	results	such	as	this	suggest	an	erosion	of	the	three-point	
premium	in	recent	NBA	seasons.					
	

3.	Assessing	Shot	Selection	Efficiency	from	Continuous	True	
Shot	Charts	
	
Another	issue	surrounding	conventional	shot	chart	analysis	is	the	lack	of	a	comprehensive	measure	
by	which	to	summarize	a	shot	chart	in	terms	of	shot	selection	efficiency.	The	present	work	
therefore	further	develops	a	shot	selection	measure	called	Shot	Selection	Efficiency	that	takes	as	
input	a	player’s	or	team’s	expected	true	points	and	expected	proportional	volume	from	a	simulated	
grid	of	shots	attempted	somewhere	on	the	half	court	and	computes	the	player’s	or	team’s	spatial	
Pearson	correlation	between	expected	proportional	volume	and	expected	true	points,	from	the	field	
and	free	throw	line,	across	the	half	court.		
	
This	represents	a	measure	of	a	player’s	or	team’s	shot	selection	efficiency.	The	measure	does	not	
depend	on	overall	shooting	ability	but,	rather,	on	how	proficient	a	player	or	team	is	in	shooting	
from	hot	spots	and	avoiding	cold	spots	on	the	floor,	while	taking	into	account	shot	location	
conditional	free	throw	scoring	rate.	A	separate	measure	of	exogenous	shooting	ability	is	developed	
to	estimate	distinctly	the	average	expected	true	points	for	a	player	(team)	if	they	took	a	shot	from	
every	possible	location	on	the	shot	chart	with	equal	likelihood.	As	such,	this	latter	variable	
estimates	shooting	ability	but	is	exogenous	of	shot	selection	in	that	it	weights	each	shot	location	
equally.	With	this	control	measure,	we	are	subsequently	able	to	validate	the	statistical	contribution	
or	marginal	effect	of	Shot	Selection	Efficiency	to	a	basketball	offense	while	controlling	out	the	effect	
of	exogenous	shooting	ability.	We	validate	the	Shot	Selection	Efficiency	measure	by	specifying	an	
XGBoost	model,	as	well	as	linear,	fixed	effects	regression	models,	at	the	team-season	level	that	
estimate	Pythagorean	expected	win	percentage	conditional	on	a	set	of	variables	that	survived	a	
Variance	Inflation	Factor	variable-paring	model	specification	approach	to	limit	multicollinearity.	
These	include	exogenous	shooting	ability,	defensive	rating	(DRtg),	own	turnover	rate	(TOV%),	
offensive	rebounding	rate	(ORB%),	team	fixed	effects,	Normalized	Payroll,	and	Shot	Selection	
Efficiency.	It	stands	to	reason	that	these	specific	control	variables	survived	VIF-paring.	They	
encompass	the	non-shooting	offensive	four	factors	(i.e.,	the	offensive	four	factors	not	related	to	shot	
selection	efficiency	or	shooting	ability)	and	the	team’s	overall	defensive	effectiveness	in	that	
season.		Table	1	summarizes	the	dependent	and	independent	variables	of	the	study.					
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Table	1:	Feature	Summary	Statistics	(n=210)	
Characteristic	 				Median	(SD)	Range	

Pyth.W.proportion	 0.50	(0.14)	0.18	-	0.82	

W.proportion	 0.50	(0.14)	0.18	-	0.82	

Net.Rating	 0.40	(4.6)	-10.5	-	11.6	

Shot.selection.efficiency	 0.27	(0.06)	0.01	-	0.44	

Exogenous.shooting.ability	 0.88	(0.05)	0.76	-	1.03	

TOV%	 12.60	(0.90)	9.90	-	14.90	

ORB%	 22.80	(2.21)	17.90	-	30.20	

DRtg	 111.2	(3.3)	102.9	-	120.0	

Payroll	(millions	$)	 123.57	(22.32)	79.18	-	192.91	

Normalized.Payroll	 -0.02	(0.99)	-2.93	-	2.59		

	
Payroll	normalized	represents	a	team’s	payroll	in	z-score	terms,	with	respect	to	the	distribution	of	
NBA	team	payrolls	in	that	season.	Net	Rating	is	a	team’s	average	scoring	margin	per	100	
possessions,	which	approximates	the	average	possessions	per	game	in	the	2022-23	NBA	season.	In	
2022-23,	the	average	points	per	NBA	game	was	114.7,	and	the	average	points	per	100	NBA	
possessions	was	114.8.	Therefore,	average	possessions	per	game	in	that	season	was	(114.7/114.8)	
or	about	99.9.		This	value	has	been	converging	upward	throughout	the	course	of	the	NBA	player-
tracking	movement,	which	has	largely	emphasized	quick	sets	involving	ball-movement,	quickly-
developing	isolation	plays,	and	pull-up	3PAs	over	slow	sets	involving	foot-movement,	slowly-
developing	isolation	plays,	and	fewer	pull-up	3PAs.	Interestingly,	rate	stats	for	the	NBA	have	been	
measured	in	per	100	possession	terms	for	decades,	and	the	NBA’s	analytic	movement,	which	has	
greatly	propelled	the	prominence	of	these	rate	stats,	has	helped	to	converge	these	per	100	
possession	stats	to	the	magnitude	of	per	game	stats	on	league	average.	At	least	for	the	time	being,	
this	creates	the	advantage	of	less	currency	exchange	in	dealing	with	these	two	levels	of	statistics.	In	
analyzing	league-wide	data	for	2022-23,	the	choice	of	per	game	or	per	100	possession	stats	is	
almost	immaterial	(material	only	at	a	margin	of	error	less	than	0.1%).				
	
The	median	value	for	Exogenous	Shooting	Ability	is	0.88,	which	matches	the	sample	mean	for	this	
variable.	This	is	interpreted	as	median	true	points	per	shot	for	a	team	that	randomly	selects	shot	
locations,	with	equal	likelihood,	from	across	its	shot	chart.	One	might	think	of	this	team	as	one	that	
plays	“hot	potato”	on	offense	or	one	programmed	to	get	the	ball	to	any	point	in	the	half	court	with	
equal	likelihood	and	then	shoot.	As	mean	and	median	are	equal	for	this	variable,	such	a	team	is	
expected	to	score	0.88	true	points	per	shot	compared	to	the	observed	sample	average	true	points	
per	shot	of	1.13.	We	can	meaningfully	difference	these	two	values	to	estimate	that	the	net	value	of	
shot	selection,	on	league	average,	in	our	sample	is	approximately	a	quarter	of	a	point	per	shot	
taken.	
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All	teams	in	the	sample	exhibit	a	positive	Shot	Selection	Efficiency	value.	Recall	that	this	variable	
represents	the	Pearson	correlation	between	shot	volume	and	true	scoring	from	a	grid	of	shot	
locations	across	the	floor.	The	median	value	is	0.27,	suggesting	that	the	typical	NBA	team	is	mildly-
to-moderately	effective	in	identifying	hot	spots	and	avoiding	cold	spots	in	shot	selection.		The	
minimum	observed	value	is	0.01,	suggesting	there	was	a	team	in	a	season	(the	2017-18	Portland	
Trail	Blazers)	that	had	essentially	no	correlation	between	shot	volume	and	true	scoring	in	its	shot	
selection	across	the	floor!	Luckily	for	that	team,	it	had	a	high	exogenous	shooting	ability	such	that	
their	overall	offense	was	effective.	The	maximum	Shot	Selection	Efficiency	was	0.44	and	was	set	by	
the	2021-22	Boston	Celtics,	a	team	well-known	for	analytically-driven	sets	and	shot	selection.	
Another	descriptive	data	summary	question	is	whether	the	Shot	Selection	Efficiency	has	improved	
as	we	progress	deeper	into	the	analytic	era	of	basketball.	Figure	6	addresses	this	question	with	a	
time	trend	and	embedded	box	plots	for	the	variable	by	season.		
	
Figure	6:	Improvement	of	Shot	Selection	Efficiency	over	Time	

	
	
In	Figure	6,	we	observe	a	positive	trend	in	expected	team	Shot	Selection	Efficiency	over	time.	In	
2016-17,	the	trend	value	was	0.23.	By	2022-23,	the	trend	value	had	risen	to	0.32.	With	progressive	
advances	in	analytics,	NBA	offenses	have	improved	in	Shot	Selection	Efficiency	over	time.	This	trend	
result	matches	previous	findings	that	offensive	efficiency,	and	not	defensive	efficiency,	is	a	leading	
indicator	of	analytic	advances	(see,	e.g.,	Ehrlich	and	Sanders	2021).	Having	summarized	the	key	
model	variables,	a	regression	analysis	will	now	estimate	the	respective	marginal	effects	of	Shot	
Selection	Efficiency,	Exogenous	Shooting	Ability,	and	other	variables	upon	team-season	win	
performance	and	net	rating.	Equations	1-3	provide	the	three	primary	model	specifications.					
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Equation	1-3	for	Win	Production	Models	

	
	
Model	1	estimates	Pythagorean	Expected	Win	Proportion	for	a	team	in	a	season	as	a	function	of	the	
team’s	shot	selection	efficiency,	exogenous	shooting	ability,	and	a	vector	of	control	variables	in	that	
season.	Our	Pythagorean	exponent	for	the	model	is	14,	updating	from	similar	earlier	estimates,	e.g.,	
by	Morey	(1993),	such	that	a	team’s	Pythagorean	Expected	Win	Proportion	in	a	season	is	given	as	

!"#$!"

!"#$!"%&"#$!"
.		Model	2	features	the	same	righthand	side	but	with	each	team’s	(actual)	Win	

Proportion	as	the	dependent	variable,	while	Model	3	substitutes	Net	Rating	as	the	dependent	
variable.	Results	for	the	models	are	given	In	Table	2	as	follows.			
Table	2:	Shot	Selection	Efficiency	Effect	on	Win	Performance	Models	
	 Pyth	W	Proportion	 W	Proportion	 NetRtg	

Predictors	 Estimates	 std.	
Error	 p	 Estimates	 std.	

Error	 P	 Estimates	 std.	
Error	 p	

(Intercept)	 2.218	 0.224	 <0.001	 2.097	 0.249	 <0.001	 55.099	 7.041	 <0.001	

DRtg	 -0.028	 0.002	 <0.001	 -0.027	 0.002	 <0.001	 -0.945	 0.049	 <0.001	

gam	shot	
selection	
efficiency	

0.400	 0.086	 <0.001	 0.334	 0.095	 0.001	 14.149	 2.691	 <0.001	

exogenous	
shooting	
ability	

1.307	 0.107	 <0.001	 1.393	 0.119	 <0.001	 49.073	 3.355	 <0.001	

off	TOV%	 -0.025	 0.006	 <0.001	 -0.021	 0.007	 0.001	 -0.791	 0.185	 <0.001	

off	ORB%	 0.018	 0.002	 <0.001	 0.016	 0.003	 <0.001	 0.535	 0.073	 <0.001	

Observations	 210	 210	 210	

R2	/	R2	
adjusted	

0.719	/	0.712	 0.672	/	0.664	 0.757	/	0.75	

	
The	regression	data	constitutes	every	NBA	team-season	from	2016-17	through	2022-23	(30	teams	
multiplied	by	7	years).		Shot	Selection	Efficiency	has	a	positive	and	highly-significant	conditional	
effect	on	Pythagorean	Expected	Win	Proportion,	Win	Proportion,	and	Net	Rating.	If	an	NBA	team	in	a	
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season	can	improve	its	weighted	correlation	between	shot-volume	and	expected	true	points	by	0.1	
units,	it	gains	an	expected	0.04	units	of	win	proportion	or	about	3.28	additional	wins	per	82-game	
regular	season,	according	to	the	Pythagorean	Expected	Win	Proportion	model.	In	other	words,	a	
team’s	expected	regular	season	win	count	increases	by	1	for	roughly	every	0.03	units	of	increase	in	
the	spatial	Pearson	correlation	between	shot-volume	and	expected	true	points.	To	rephrase	once	
more,	a	standard	deviation	increase	in	Shot	Selection	Efficiency	yields	the	expectation	of	a	0.17	
standard	deviation	increase	in	Pythagorean	Expected	Win	Proportion,	which	suggests	that	variation	
in	shot	selection	efficiency	is	a	primary	driver	of	winning	in	the	NBA.	From	Model	3,	we	find	that	if	
an	NBA	team	in	a	season	can	improve	Shot	Selection	Efficiency	by	0.1	units,	it	gains	an	expected	1.41	
points	in	terms	of	average	game-level	score	margin	(Net	Rating).		
	
Exogenous	Shooting	Ability	is	also	significant	and	substantial	in	explaining	team	performance,	as	are	
the	other	factor-type	control	variables.	These	results	are	both	highly	significant	and	substantial.	
Further,	shot	selection	gains	do	not	necessarily	require	a	costly	roster	overhaul.	In	principle	at	
least,	shot	selection	efficiency	is	something	that	can	be	taught	to	players.	We	next	examine	whether	
subsequent	regressions	will	determine	whether	shot	selection	efficiency	is	a	“moneyball,”	or	
inefficiently-priced	source	of	wins.	The	three	models	feature	strong	explanatory	power	(𝑅'							
between	0.672	and	0.757).			
	

4.	Is	Shot	Selection	Efficiency	Money(ball)?		
	
Another	model	was	estimated	to	consider	the	payroll-conditional	effect	of	Shot	Selection	Efficiency	
on	team	success	by	adding	the	features	Normalized	Payroll	and	Normalized	Payroll	Squared	to	
Model	1.		As	stated,	the	Normalized	Payroll	feature	is	the	raw	payroll	standardized	(center	and	
scale)	by	season,	which	is	calculated	by	subtracting	the	mean	of	payroll	and	then	dividing	by	the	
standard	deviation.	We	also	included	a	Normalized	Payroll	Squared	feature	to	allow	for	a	possible	
quadratic	payroll	effect	(due,	e.g.,	to	the	possibility	of	some	large-market	teams	being	managerially	
inefficient).	Table	3	models	represent	payroll-augmented	linear	and	quadratic	versions	of	Model	1.		
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Table	3:	Moneyball	Shot	Selection	Efficiency	Opportunity	

		 Pyth	W	Proportion	 Pyth	W	Proportion	

Predictors	 Estimates	std.	Error	 P	 Estimates	std.	Error	 P	

(Intercept)	 2.218	 0.224	 <0.001	 2.143	 0.221	 <0.001	

DRtg	 -0.028	 0.002	 <0.001	 -0.026	 0.002	 <0.001	

gam	shot	selection	
efficiency	

0.400	 0.086	 <0.001	 0.379	 0.084	 <0.001	

exogenous	shooting	
ability	

1.307	 0.107	 <0.001	 1.195	 0.111	 <0.001	

off	TOV%	 -0.025	 0.006	 <0.001	 -0.023	 0.006	 <0.001	

off	ORB%	 0.018	 0.002	 <0.001	 0.018	 0.002	 <0.001	

normalized	payroll	
	 	 	

0.018	 0.006	 0.002	

normalized	payroll	sq.	
	 	 	

-0.003	 0.003	 0.336	

Observations	 210	 210	

R2	/	R2	adjusted	 0.719	/	0.712	 0.733	/	0.724	
__________________	
	
Payroll	is	significantly	productive	of	expected	wins	in	both	models.		Further,	the	quadratic	term	on	
Normalized	Payroll	is	negative	but	insignificant	in	Model	2.	The	in-sample	relationship	between	
payroll	and	expected	wins	is	quadratic	(inverted-U),	but	the	coefficient	on	the	quadratic	payroll	
term	is	insignificant.	Even	conditional	on	payroll,	Shot	Selection	Efficiency	is	positive	and	significant,	
indicating	that	the	win	productivity	of	Shot	Selection	Efficiency	is	not	explained	by	variation	in	
team-season	payroll.	This	may	suggest	either	that	players	have	different	observed	levels	of	Shot	
Selection	Efficiency	but	that	the	player	labor	market	is	not	valuing	higher	levels	of	the	attribute	or	
that	team	coaching	and	analytic	staffs	(i.e.,	team	culture	and	values)	are	largely	responsible	for	
variation	in	team	Shot	Selection	Efficiency.	In	either	case,	Shot	Selection	Efficiency	is	a	“moneyball”	or	
supra-payroll	source	of	wins	in	the	NBA.	The	magnitude	of	the	coefficient	for	Shot	Selection	
Efficiency	remains	essentially	the	same	when	we	control	for	team-season	payroll.		This	suggests	
that	the	NBA	player	labor	market	is	essentially	not	pricing	in	any	variation	in	Shot	Selection	
Efficiency	observed	at	the	player	level.	Rather,	this	variation	is	driven	by	team	coaching/analytics.	

	
5.	Robustness	Check	of	Shot	Selection	Efficiency	using	XGBoost	
	
To	robustness	check	our	linear,	fixed	effect	model	results,	we	fit	an	XGBoost	model	(Liu	and	Lust,	
2020)	to	understand	how	Shot	Selection	Efficiency,	along	with	other	covariates,	relate	to	
Pythagorean	Expected	Win	Proportion.	The	covariates	of	interest	include	Normalized	Payroll,	DRtg,	
ORB%,	TOV%,	Exogenous	Shooting	Ability,	and	Season.	We	partitioned	90%	of	the	data	into	a	
training	set	and	10%	into	a	test	set.	The	out-of-sample	mean	absolute	error	was	0.052	and	the	out	
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of	sample	R-squared	was	0.625,	comparable	to	that	observed	in	the	linear,	fixed	effects	models.	For	
the	full	model,	the	mean	absolute	error	was	0.0004,	and	the	R-squared	was	0.999989.	Also,	Shapley	
Additive	exPlanations	(SHAP)	(Lundberg	and	Lee,	2017)	values	were	calculated.	Figure	7	shows	a	
beeswarm	summary	plot,	which	demonstrates	the	estimated	effect	of	each	parameter	on	expected	
wins.		
	
Figure	7:	Beeswarm	Summary	Plot	

	
	
Shot	Selection	Efficiency	has	a	positive	estimated	Shapley	Value	such	that	the	XGBoost	results	are	
consistent	with	those	of	the	linear,	fixed	effects	models.	Two	SHAP	dependency	plots	were	also	
rendered,	where	each	shows	estimated	marginal	effect	that	each	feature	has	on	Pythagorean	
Expected	Win	Proportion.	Figure	8	demonstrates	the	monotonically	positive	impact	that	Shot	
Selection	Efficiency	has	on	Pythagorean	Expected	Win	Proportion.	This	confirms	that	shot	selection	
efficiency	is	indeed	important	to	team	performance.	For	teams	with	a	Shot	Selection	Efficiency	
greater	than	0.23,	shot	selection	positively	contributed	toward	winning,	according	to	Figure	8.		
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Figure	8:	Shot	Selection	Efficiency	Effect	on	Pythagorean	Wins	

	
	
Figure	9:	Payroll	Effect	on	Pythagorean	Wins	

	
	
6.	Does	an	NBA	3PA	Premium	Remain	according	to	
Aggregations	of	True	Shot	Charts?	
	
By	accounting	for	FT	scoring,	Continuous	True	Shot	Charts	can	comprehensively	address	many	
fundamental	questions	in	basketball,	such	as:	Does	a	three-point	premium	still	exist	in	the	NBA	given	
the	escalation	in	three-point	attempt	volume?	See,	for	example,	Ehrlich	and	Sanders	(2021),	who	
develop	the	first	discrete,	true	shot	chart	to	find	evidence	that	the	three-point	premium	eroded	to	
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some	degree	during	the	2010s.	While	aggregations	of	conventional	shot	charts	suggest	the	three-
point	yield	premium	remains	intact	for	the	NBA,	what	happens	when	we	consider	shot-pursuant	FT	
scoring	for	recent	seasons?		
	
To	consider	this	question,	we	aggregate	both	Continuous	True	Shot	Charts	and	traditional	shot	
charts	for	all	NBA	shots	taken	in	each	season	from	2016-17	through	2021-22.	Doing	so	allows	us	to	
estimate	the	three-point	premium,	with	and	without	shot-pursuant	free	throw	scoring	in	each	
season.	Figure	10	reports	those	results,	where	the	red	trend	line	is	estimated	from	aggregations	of	
traditional	shot	charts	and	therefore	reports	the	estimated	difference	between	3PA	and	2PA	yield	
when	not	considering	shot-pursuant	FTAs.	The	blue	line	is	estimated	from	aggregations	of	
Continuous	True	Shot	Charts	and	therefore	reports	the	estimated	difference	between	3PA	and	2PA	
yield	when	considering	shot-pursuant	FTAs.	
Figures	10:	NBA	Three-Point	Premium,	2016-17	–	2021-22:	A	Tale	of	Two	Shot	Charts		

 	
Observing	the	red	trend	line,	we	find	a	significant	and	fairly	substantial	leaguewide	three-point	
premium	that	existed	from	2016-17	through	2020-21	when	considering	aggregations	of	traditional	
shot	charts.	That	is,	NBA	players	scored	significantly	more	proficiently	from	the	field	on	three-point	
attempts	than	on	two-point	attempts	from	2016-17	through	2020-21.		In	magnitude,	this	premium	
ranged	between	0.025	and	0.064	points	per	three-point	shot	over	these	years.		In	2021-22,	there	
was	no	significant	leaguewide	three-point	premium	or	dispremium	when	considering	aggregations	
of	traditional	shot	charts.		However,	when	considering	aggregations	of	true	shot	charts,	we	find	a	
significant	and	deepening	three-point	dispremium	at	the	league	level	since	the	2018-19	season!	In	
2021-22,	this	dispremium	swelled	to	-0.066	points	per	three-point	shot	or	roughly	a	point	less	for	
each	15	three-point	shots.		Despite	these	findings,	we	observe	that	leaguewide	three-point	shot	
volume	has	continued	to	rise	dramatically.		It	appears	as	though	the	typical	team	continued	to	
follow	perceived	three-point	premia	from	aggregations	of	traditional	shot	charts	rather	than	
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significant	dispremia	from	aggregations	of	true	shot	charts.	In	the	case	of	3PA	volume,	there	is	
evidence	that	NBA	teams	overshot	their	market,	assisted	by	a	mis-specified	analytic	tool	in	the	form	
of	traditional	shot	charts.		
	
7.	Conclusion	
	
In	this	work,	we	have	developed	a	set	of	novel	GAM-estimated,	Continuous	True	Shot	Charts	for	
NBA	teams	and	players	and	have	demonstrated	that	they	correct	distortions	in	scoring	yield	
estimates	found	in	traditional	shot	charts.	They	do	so	by	including	shot-pursuant	FT	scoring	into	
the	color	coding	(scoring	yield	estimate)	of	the	chart	at	all	locations.	We	further	construct	a	
measure	of	team	shot	selection	efficiency	as	a	means	to	summarize	team	and	player	shot	charts	in	
terms	of	efficiency.		This	measure	represents	the	Pearson	correlation	between	expected	
proportional	volume	and	expected	true	points,	from	the	field	and	free	throw	line,	across	the	half	
court.	Through	linear,	polynomial,	and	XGBoost	modeling,	we	find	that	shot	selection	efficiency	
contributes	to	team	expected	win	proportion	significantly	and	substantially.		Further,	shot	selection	
efficiency	is	found	to	be	a	“moneyball”	or	supra-payroll	source	of	wins	in	the	NBA.	Lastly,	we	use	
Continuous	True	Shot	Charts	to	find	that	there	has	been	a	widening	NBA	three-point	dispremium	
since	2018-19.		This	dispremium	result	is	not	available	if	one	aggregates	from	traditional	shot	
charts,	which	do	not	consider	shot-pursuant	FT	scoring.	Continuous	True	Shot	Charts	are	both	
novel	and	meaningful	in	basketball	league	settings.			
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