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1.	Introduction	

In	professional	football,	the	pass	rush	has	become	an	increasingly	important	aspect	of	the	game,	
with	pass	rushers	being	some	of	the	top	paid	defensive	players	in	the	league.	In	spite	of	the	
importance	of	the	pass	rush,	pass	rushing	statistics	only	include	the	final	outcomes	of	a	play,	e.g.,	
sack	and	pass-made.	They	do	not	capture	the	dynamics	of	the	pass	rush	or	fine-grained	insights	
throughout	a	play	on	how	much	pressure	a	rusher	generates	during	the	rush	[1-7].	This	lack	of	in-
play	insight	prevents	a	post-game	analysis	from	taking	into	account	an	individual	player’s	
contribution	on	defense	and	fails	to	quantify	pressures	generated	by	each	pass	rusher.	Even	if	a	
player	does	not	record	a	sack,	they	can	still	generate	pressure	and	impact	the	play.		
	
	There	are	a	few	challenges	that	need	to	be	tackled	to	enable	such	a	fine-grained	pressure	
estimation	throughout	a	play.	First,	blockers	and	rushers	who	create	a	pocket	must	be	identified	
from	among	all	the	players	on	the	field.	This	is	crucial	for	ensuring	that	players	are	only	evaluated	
when	they	are	in	a	rusher	or	blocker	role.	Second,	the	match-up	between	blockers	and	rushers	
needs	to	be	known	to	take	into	account	how	much	resistance	a	rusher	gets	when	they	rush	toward	
a	quarterback.	Finally,	the	pressure	scores	of	each	rusher	and	a	team	needs	to	be	estimated	
throughout	a	play.	
	
	In	this	paper,	we	propose	a	unified	framework	that	tackles	these	challenges	by	leveraging	machine	
learning	(ML)	models	and	the	National	Football	League	(NFL)	Next	Gen	Stats	(NGS)	data	with	
positional	and	kinematic	information	from	player	sensors	[1].	
	
	For	the	blocker/rusher	identification	and	matchup	estimation,	we	propose	two	approaches:	
sequential	AutoGluon	and	graph	neural	network	(GNN)	[8-11].	For	the	sequential	AutoGluon	
approach,	we	built	two	separate	Amazon	AutoGluon	models	that	construct	ensembles	of	multiple	
models	[8,	11].	For	the	GNN	approach,	a	novel	GNN	architecture	parameterized	by	players	as	nodes	
and	their	matchups	as	edges	is	used	to	solve	both	tasks	simultaneously	[9,	10].	The	pressure	
probability	is	modeled	as	the	likelihood	of	the	event	of	sack,	hit,	and	hurry	over	the	course	of	a	play.	
We	built	a	tree-based	model	to	predict	the	pressure	probability	for	individual	rushers	using	custom	
engineered	features	[12].	Our	proposed	framework	is	used	to	build	fine-grained	pass	rushing	
statistics	indicating,	how	fast	and	for	how	long	pressure	is	applied	and	how	well	rushers	perform	
against	certain	blockers.	It	can	also	be	used	to	better	understand	how	quarterbacks	perform	when	
faced	with	different	levels	of	pressure.	This	will	enable	teams	to	better	understand	player	
performance	and	allow	broadcasters	to	tell	a	more	compelling	data	driven	story.	We	will	present	
one	example	use	case	of	the	elaborated	football	analytic	measures	derived	from	our	framework	
later	in	the	paper.	
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	Both	qualitative	and	quantitative	results	of	our	framework	showed	the	robustness	and	feasibility	
for	downstream	real-world	use	cases.	Our	framework	achieved	0.99	overall	accuracy	for	the	
blocker-rusher	identification	task	and	0.97	average	precision,	0.9	precision	and	0.91	recall	for	the	
blocking	matchup	identification	task	on	a	test	set	of	about	8,800	plays	collected	from	2022	season.	
Our	model	shows	the	balanced	performance	and	feasibility	for	real-world	use	cases.	The	pressure	
probability	module	showed	0.96	accuracy	for	individual	players’	pressure	when	it	was	compared	to	
the	outcomes	of	all	passing	plays	in	the	2022	season.		
	
	There	are	three	main	contributions	of	our	paper	that	we	would	like	to	highlight:		

• We	propose	a	unified	framework	that	enables	the	estimation	of	individual	pressure	scores	
throughout	a	play.	

• Our	framework	showed	high	accuracy	and	performance	for	rusher	and	blocker	
identification,	rusher-blocker	match-up	and	pressure	score	estimation	that	is	feasible	to	be	
translated	to	real-world	downstream	use	cases		

• We	present	the	real-world	applications	of	our	framework	including	the	enriched	analytics	
and	an	entertainment	game.	

	The	rest	of	the	paper	is	organized	as	follows.	In	Section	2,	we	review	previous	works.	Section	3	
describes	our	framework	for	blocker	and	rusher	identification	and	their	match-ups	and	Section	4	
explains	the	pressure	score	estimation.	Finally,	Section	5	presents	real-world	applications	of	our	
methodology	followed	by	conclusion	in	Section	6.	
	

2.	Related	Work	

Machine	learning	(ML)	has	been	widely	used	for	analytics	for	a	variety	of	sports,	including	football,	
soccer,	hockey,	etc.	[13-27].	The	advance	of	ML-based	sports	analytics	was	accelerated	by	the	
growing	collection	of	sports	data	[1,	19,	20].	National	Football	League	(NFL)	launched	the	Big	Data	
Bowl	challenge	to	encourage	the	development	of	data-driven	sports	analytics.	Open-sourcing	player	
positional	and	kinematic	data	collected	using	sensors	attached	to	players	enabled	studies	such	as	
our	own	[1].	

2.	1.	Blocker-Rusher	Identification	and	Match-up	

Identifying	blockers/rushers	and	their	blocking	assignment	accurately	has	been	a	challenge	for	the	
league	and	broadcasters.	In	2018,	Pass	Block	Win	Rate	(PBWR)	and	Pass	Rush	Win	Rate	(PRWR)	
were	shown	on	ESPN,	where	raw	positions,	orientations	and	pairwise	distances	were	used	to	
calculate	a	score	that	determines	who	is	blocking	whom	[28].	Follow-up	works	were	also	done	to	
predict	the	likelihood	of	a	defensive	player	being	a	pass	rusher	pre-snap	[29,	30].	As	part	of	
submissions	to	NFL	Big	Data	Bowl	2023	[1],	these	works	focus	on	applications	such	as	live	coaching	
and	scouting,	and	only	leverage	features	available	before	the	snap	of	the	ball.	Backtracking	was	also	
used	to	recursively	identify	the	optimal	blocking	assignment	minimizing	the	number	of	unblocked	
defenders	and	distance	from	each	lineman	to	their	defense	[31].	
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2.	2.	Pressure	Probability		

Previous	studies	have	found	correlations	between	offensive	linemen	win	rates	and	successful	pass	
completion	rates	[23].	A	follow-up	study	went	further	by	actually	tracking	individual	players	and	
used	survival	analysis	to	model	completion	percentage	as	a	function	of	lineman	performance	and	
time-in-pocket	[22].	However,	these	works	did	not	have	the	scale	of	data	available	today	to	perform	
a	comprehensive	analysis.	More	recently,	the	2023	NFL	Big	Data	Bowl	[1]	also	produced	several	
submissions	aiming	to	quantify	the	pressure	generated	by	individual	pass	rushers	as	well	as	the	
entire	defensive	unit.	One	paper,	inspired	by	strain	rate	in	materials	sciences	introduced	the	
STRAIN	metric,	that	uses	the	distance	between	a	rusher	and	the	passer	along	with	the	rate	of	
change	for	those	signals	to	quantify	the	pressure	generated	throughout	the	play	[18].	Another	
approach	presented	in	[15]	introduces	a	new	metric	called	the	Instantaneous	Disruption	
Probability	Increase	(IDPI)	to	evaluate	the	performance	of	defensive	linemen	in	the	NFL.	The	IDPI	
metric	measures	how	much	an	individual	lineman	increases	their	team's	probability	of	disrupting	a	
pass	play	compared	to	the	average	player	in	a	similar	situation.	It	uses	an	LSTM	to	calculate	
disruption	probabilities	with	and	without	each	lineman	[32].	This	allows	the	metric	to	identify	
effective	pass	rushers	even	if	they	do	not	record	many	sacks	or	hurries	themselves.	Our	approach	
builds	off	these	methods	by	quantifying	the	pressure	generated	on	an	individual	level,	while	
introducing	novel	feature	engineering	approaches	to	explicitly	incorporate	the	positions	of	blockers	
when	predicting	pressure.	

3.	Data	Overview	

We	leverage	the	NFL	NextGenStats	(NGS)	data	for	blocker-rusher	identification,	blocking	matchup	
and	pressure	probability	estimation	[1].	Tracking	data	is	measured	for	each	of	the	22	players	on	the	
field	at	a	rate	of	10Hz.	The	NGS	data	provides	players	coordinates	(x,	y),	their	speed	and	
acceleration	(s,	a,	sX,	sY),	their	direction	(dir),	their	relative	position	to	the	quarterback	(relX,	relY,	
relDist),	and	the	quarterback’s	tracking	data	(qbX,	qbY,	qbSx,	qbSy).	The	data	is	normalized	so	that	
all	plays	are	moving	in	the	same	direction	(offense	on	left,	defense	on	right).	Additionally,	individual	
variables	are	normalized	to	reduce	unnecessary	variability	across	the	play.	The	x	coordinates	(x,	
qbX)	are	centered	on	the	line	of	scrimmage	with	negative	numbers	indicating	the	offensive	side	of	
the	line.	The	y	coordinates	(y,	qbY)	are	scaled	between	the	lateral	boundaries	of	the	field	with	0	
indicating	the	near	side	and	1	the	far	side.	Speed	and	acceleration	features	(s,	a,	sX,	sY,	qbSx,	qbSy)	
are	scaled	using	standard	scaling	based	on	a	sample	of	speed	metrics.	The	detailed	description	of	
the	features	is	summarized	in	Table	A.1	in	the	appendix.	

	In	addition	to	the	input	features,	we	have	several	target	features	that	are	provided	by	the	football	
analytics	organization	Pro	Football	Focus	(PFF).	PFF	uses	subject	matter	experts	to	manually	label	
each	play,	indicating	which	players	are	blocking	and	which	are	rushing,	who	performed	what	block	
type	on	which	player,	and	whether	the	rusher	generated	pressure.	For	each	play,	blockers	and	
rushers	are	identified	with	a	boolean	flag	while	matchups	are	denoted	by	a	mapping	between	
unique	player	IDs	on	the	offensive	and	defensive	teams.	The	target	variables	are	summarized	in	
Table	A.2	in	the	appendix.	

	For	the	pressure	probability	estimation,	we	will	use	the	PFF	pressure	indicators.	Pressure	is	
broken	down	into	three	types:	hurry,	hit,	and	sack.	Sack	indicates	that	the	rusher	reaches	and	
tackles	the	passer	behind	the	line.	Hit	indicates	the	rusher	was	able	to	hit	the	passer	after	the	ball	
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was	thrown.	Hurry	indicates	that	a	player	generated	enough	pressure	to	affect	the	passers	actions	
by	forcing	them	out	of	the	pocket	or	passing	quickly.	It’s	important	to	note	that	sack	and	to	a	lesser	
extent	hit,	are	fairly	easy	to	determine	when	watching	a	play.	Hurry	on	the	other	hand	is	a	more	
subjective	concept	and	different	labelers	may	not	assign	a	hurry	the	same	way	on	the	same	play.		

3. Blocker-Rusher Identification and Matching 

3. 1. Blocker-Rusher Identification 

The	blocker-rusher	identification	problem	entails	identifying	defensive	blockers	and	offensive	
rushers	within	the	first	few	seconds	of	play.	Since	certain	positions	are	generally	associated	with	
rushing	and	blocking,	we	start	by	constructing	a	rule-based	baseline	model	using	player	positions.	
For	each	position,	we	calculate	the	probability	of	assuming	the	roles	pass	rush,	pass	block,	pass	
route,	coverage,	or	other	using	approximately	8,800	plays	from	the	2018	season.	We	assign	each	
position	to	the	role	with	the	highest	probability	using	the	following	rules,	
	

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 	)
𝑝𝑎𝑠𝑠_𝑟𝑢𝑠ℎ, 𝑖𝑓 max(𝑝!) = 𝑝"#$$_&'$(
𝑝𝑎𝑠𝑠_𝑏𝑙𝑜𝑐𝑘, 𝑖𝑓 max(𝑝!) = 𝑝"#$$_)*+,-
𝑜𝑡ℎ𝑒𝑟,																			𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒																									

	

	
where	𝑝! 	is	the	probability	of	a	pass	rush,	pass	block,	pass	route,	coverage,	or	other.	Several	
example	positions,	probabilities,	and	assigned	roles	are	shown	in	the	table	below.	We	evaluate	the	
rule-based	model	on	test	data	from	2022	season.	As	shown	in	Fig.	1,	the	model	achieves	an	F1-score	
of	94%	and	accuracies	above	95%	for	12	of	the	19	identified	positions.	The	model	has	the	lowest	
accuracy	for	the	outside	linebacker	(OLB,	62%),	linebacker	(LB,	70%),	fullback	(FB,	75%),	and	
running	back	(RB,	85%).	
	
	

Model Name Static Features Dynamic Features F1-
Score 

Percent Change 
Relative to Baseline 

(%) 
AG_InitialPositions [x0_norm, y0_norm]  0.94 +1.0 

AG_Static [x0_norm, y0_norm, position, 
offenseTeamPlayer] 

 0.95 +2.0 

AG_Dynamic_1sec [position, offenseTeamPlayer] [x_norm, y_norm, 
sX, sY, aX, aY] 0.98 +4.6 

AG_Dynamic_2sec [position, offenseTeamPlayer] [x_norm, y_norm, 
sX, sY, aX, aY] 0.99 +5.5 

AG_Dynamic_3sec [position, offenseTeamPlayer] [x_norm, y_norm, 
sX, sY, aX, aY] 0.99 +5.6 

Table	1.	F1-scores	of	different	AutoGluon	models	for	blocker-rusher	identification	with	static	and	
dynamic	features.	Static	features	include	the	initial	x-	and	y-positions	of	the	player	relative	to	the	
ball	at	the	start	of	play	(x0_norm,	y0_norm),	the	player	position	(position),	and	offense/defense	
roles	(offenseTeamPlayer).	Dynamic	features	include	the	position	(x_norm,	y_norm),	velocity	(sX,	
sY)	and	acceleration	(aX,	aY)	components	during	the	first	few	seconds	of	play.	The	percent	change	
of	the	F1-score	relative	to	the	baseline	model	is	indicated.	
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Performance	of	AutoGluon	Models	for	Blocker/Rusher	Identification	
	
To	improve	the	results	of	the	baseline	model,	we	used	Amazon	AutoGluon	to	train	a	collection	of	
models	for	the	multiclass	rusher/blocker	classification	problem	[8,	11].	As	a	starting	point,	we	used	
static	features	like	the	positions	of	the	players	(e.g.,	OLB,	LB,	etc.),	whether	they	are	on	offense	or	
defense,	and	their	locations	relative	to	the	ball	at	the	start	of	play.	Then,	we	added	dynamic	features	
such	as	the	players’	locations,	velocities,	and	accelerations	during	the	first	one	to	three	seconds	
seconds	of	play.	The	performance	of	each	AutoGluon	model	relative	to	the	baseline	model	is	shown	
in	Table	1.	All	of	the	AutoGluon	models	have	higher	F1-scores	compared	to	the	baseline	model.	The	
AutoGluon	models	that	include	location,	velocity,	and	acceleration	trajectories	during	the	first	two	
to	three	seconds	of	play	show	the	highest	improvement,	with	F1-scores	about	5.5	percent	above	the	
baseline,	at	values	of	about	0.99.		
	
	We	then	examine	the	performance	of	the	AutoGluon	models	for	different	player	positions.	We	
compute	the	percent	change	in	accuracy	relative	to	the	baseline	model	for	each	position	as	
	

𝑝𝑒𝑟𝑐𝑒𝑛𝑡_𝑐ℎ𝑎𝑛𝑔𝑒! =	
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦! − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦!

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦!
		

	
where	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦! 	is	the	model	accuracy	and	𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦! 		is	the	baseline	model	accuracy	for	
position	𝑖.	Fig.	2	shows	the	percent	change	in	the	accuracy	scores	for	the	AutoGluon	models	for	each	
position.	We	observe	that	all	of	the	AutoGluon	models	improve	the	accuracy	for	the	OLB	and	LB	by	
over	20%.	The	AutoGluon	models	that	include	location,	velocity,	and	acceleration	trajectories	
lasting	two	and	three	seconds	provide	the	largest	lift	in	accuracy	over	most	positions.	These	models	
increase	the	accuracy	by	about	56%	for	the	OLB,	40%	for	the	LB,	20%	for	the	FB,	10%	for	the	ILB,	
TE,	and	MLB,	and	a	few	percentage	points	for	the	remaining	positions.			
	

	
Fig.	2.	Percent	change	in	accuracy	for	the	AutoGluon	models	relative	to	the	rule-based	baseline	
model	for	different	player	positions.	
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3.	2.	Blocking	Matchup		

Matchups	were	historically	determined	through	a	manual	process,	where	human	experts	review	
the	play	footage	and	assign	defensive	players	to	offensive	players.	Sometimes,	an	offensive	player	
can	have	multiple	defensive	players	assigned.	The	goal	of	the	“Blocking	Matchup”	model	is	to	
perform	the	assignment	automatically	after	a	play	ends.	There	is	rich	information	to	leverage	for	
building	a	model,	including	contextual	information	before	the	play	and	spatial-temporal	
information	during	the	play.		
	
	Similar	to	blocker-rusher	identification,	we	adopted	an	iterative	mechanism	for	feature	
engineering	and	model	selection,	starting	from	static	features	and	simpler	models	to	dynamic	
features	and	more	sophisticated	model	architecture.	During	each	iteration,	we	incorporated	
additional	domain	knowledge	and	improvements	addressing	shortcomings	of	previous	versions.		
	
	As	a	baseline,	we	calculated	the	distances	at	snap	of	the	play	for	all	possible	pairs	of	offensive	and	
defensive	players	(11	players	from	each	side	results	in	121	pairs).	We	also	one-hot	encoded	
positional	information,	such	as	defensive	tackles	and	defensive	ends.	Intuitively,	we	knew	that	
defensive	players	had	to	get	close	to	offensive	players	if	they	were	matchups,	so	calculating	the	
minimum	distances	during	the	play	would	likely	be	an	important	indicator.	Fig.	A.1	in	Appendix	
shows	that	the	distributions	for	these	distance	features	are	indeed	different	between	the	matching	
pairs	and	non-matching	pairs.		
	
We	build	logistic	regressors	and	random	forests	for	the	classification	task.	To	ensure	these	models	
can	generalize,	we	train	the	model	on	around	8,800	individual	plays	from	the	2018	season	and	test	
the	model	on	similar	number	of	plays	from	the	2022	season.	In	further	iterations,	additional	
features	are	incorporated.	For	example,	to	better	capture	the	relative	distances	between	players,	
we	calculate	the	percentage	of	times	a	given	player	pair	was	closest	to	each	other.	We	also	sample		
spatial	temporal	features	such	as	the	normalized	X	and	Y	coordinates	of	the	player,	and	their	speed	
differences	20	times	during	the	play.	These	features	capture	more	granular	information	and	help	
	

	 	
	
												(a)	Static	Features																													(b)		Static	Features	+																										(c)	Static	Features	+	
	 	 	 	 	 				Positional	Features																											Positional	Features	+	
																			 	 	 	 	 	 	 	 						Temporal	Features	
Fig.	3.	Confusion	matrices	of	models	on	 the	matchup	prediction	 task,	 as	we	 incorporate	different	
features.	Static	 features	 include	scaler	values	such	as	distance	at	snap,	positional	 features	 include	
positional	encodings,	and	temporal	features	include	samples	of	features	that	capture	the	dynamics	
of	the	play.	
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improve	cases	where	the	model	makes	mistakes.	We	further	boost	the	classification	performance	
by	leveraging	the	AutoGluon	package	[8,	11].	Fig.	3	shows	the	model	performance	progression	with	
increasing	number	of	features,	from	using	only	static	features	to	using	all	static,	positional,	and	
temporal	features.	

3.	3.	Unified	Approach	

While	developing	the	Blocker-Rusher	Identification	model	and	Blocking	Matchup	model,	we	saw	
the	opportunity	to	solve	both	tasks	with	a	single	model.	Given	the	shared	features	for	both	models	
and	the	spatial-temporal	nature	of	the	problem,	we	considered	tackling	these	tasks	using	graph	
neural	networks.	Players	represent	nodes	in	the	graph,	and	their	matchup	relationships	represent	
the	edges	connecting	the	nodes.	Given	all	of	the	players	on	the	field	for	a	given	play,	we	train	a	
unified	graph	neural	network	model	to	accomplish	two	tasks	simultaneously	in	a	single	forward	
pass:	(1)	classify	each	player	as	either	a	blocker/rusher	or	a	non-blocker/rusher,	and	(2)	classify	
each	possible	pairing	of	offensive	and	defensive	players	on	the	field	as	a	true	blocking	matchup	or	
not	[9].		
	
	Our	Graph	Neural	Network	employs	a	combined	loss	function	comprising	Binary	Cross-Entropy	
(BCE)	loss	for	node	with	a	weighting	factor	for	link	prediction	[33].	The	overall	loss	function	for	our	
GNN	model	is	a	weighted	sum	of	these	two	components:	
	

𝐵𝐶𝐸	𝐿𝑜𝑠𝑠 = 	−
1
𝑁
E𝑤![𝑦! ⋅ logK𝜎(𝑥!)N + (1 − 𝑦!) ⋅ logK1 − 𝜎(𝑥!)N]
.

!/0

	

	
𝑇𝑜𝑡𝑎𝑙	𝐿𝑜𝑠𝑠 = 𝐵𝐶𝐸	𝐿𝑜𝑠𝑠	𝑜𝑛	𝑁𝑜𝑑𝑒𝑠 + 𝜆 ⋅ (𝐵𝐶𝐸	𝐿𝑜𝑠𝑠	𝑜𝑛	𝐿𝑖𝑛𝑘𝑠)	

	
where	λ	is	a	weighting	factor.	We	put	a	heavier	weight	on	link	prediction	loss,	as	links	are	sparse	
among	all	possible	pairs.	We	use	PyTorch	Geometric	to	encode	each	play	in	our	dataset	as	a	graph,	
where	the	nodes	represent	the	22	players	on	the	field	and	edges	between	those	nodes	are	created	
when	pairs	of	players	meet	certain	conditions	(e.g.,	connect	each	pair	of	players	who	reach	a	
minimum	distance	during	the	play	of	less	than	three	yards)	[34].	We	leverage	the	GATv2	
convolutional	operation	from	PyTorch	Geometric	along	with	two	branches	of	neural	decoding	to	
train	the	model	to	estimate	the	probabilities	of	the	classes	mentioned	above	for	each	of	the	22	
players	and	each	of	the	121	possible	matchups	that	constitute	the	play	[10].	We	used	the	Adam	
optimizer	and	trained	the	models	for	10,000	epochs	[35].	
	
Fig.	4	shows	the	problem	set	up	with	GNN,	and	the	confusion	matrices	of	prediction	results	of	GNN	
for	rusher	and	blocker	identification	and	match	up	prediction.	The	quantitative	performance	of	
GNN	matched	that	from	AutoGluon	model.	While	GNN’s	performance	on	matchup	prediction	is	
slightly	worse	and	tended	to	over	predict	(0.954	Average	Precision	for	GNN	compared	to	0.969	for	
AutoGluon).	The	GNN	model	over	predicts	the	existence	of	links	between	nodes	due	to	the	sparsity	
of	actual	matchups	between	all	pairs	of	players.	Future	experimentations	are	needed	to	account	for	
the	imbalance	of	matchup	and	non-matchup	pairs,	such	as	further	tweaking	on	the	loss	functions	or	
modifying	model	architectures	that	validates	only	links	between	predicted	rusher	and	blocker	
nodes.	
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Fig.	4.	(left)	Problem	set	up	with	GNN.	Players	on	the	field	represent	nodes	and	matching	pairs	have	
“links”	between	them.	(middle)	Performance	of	GNN	on	classifying	the	players.	(right)	Performance	
of	GNN	on	predicting	the	matchups.	

4.	Pressure	Probability	

The	goal	of	the	pressure	probability	estimation	is	to	quantify	the	amount	of	pressure	generated	by	
an	individual	rusher,	or	all	pass	rushers,	at	any	point	in	time	during	the	play.	We	use	a	classification	
approach	where	we	predict	if	a	player	will	generate	pressure	during	the	play	[12].	It	is	important	
for	the	final	model	to	be	well	calibrated	so	that	the	model	prediction	can	be	directly	translated	into	
a	reliable	probability	indicating	the	likelihood	of	pressure	over	time	[36,	37].	In	this	way,	we	can	
move	from	the	paradigm	of	pressure	flags	for	each	player	on	each	play	to	a	continuous	pressure	
score	estimation.	When	combined	with	the	results	of	the	rusher-blocker	identification	and	the	
matchup	models,	this	can	be	used	to	produce	a	fine-grained	understanding	of	both	rusher	and	
blocker	contributions	during	the	pass	rush.		

4.	1	Data	and	Feature	Engineering	

Blocker	Interference	

There	are	several	ways	to	approach	modeling	this	problem	which	we	discuss	below,	but	an	
important	consideration	is	whether	the	defensive	players	are	analyzed	in	isolation	or	
simultaneously	with	the	positional	data	for	all	other	players.	Analyzing	the	entire	state	of	play	with	
all	22	players	is	considerably	more	complex	and	forces	the	model	to	learn	the	significance	of	the	
positions	of	offensive	and	defensive	players	relative	to	one	another.	If	focusing	only	on	a	single	
player’s	tracking	data,	such	as	their	speed,	position,	and	distance	to	the	quarterback,	the	model	
lacks	visibility	into	the	presence	of	potential	blockers.	This	is	an	important	factor,	because	there	is	a	
big	difference	between	a	player	being	two	yards	away	from	the	passer,	but	facing	a	double	team	
and	a	player	being	the	same	distance	with	no	blockers	in	his	way.	In	order	to	model	defensive	
players	in	isolation,	we	need	to	engineer	features	that	provide	insight	into	the	presence	of	offensive	
players.	
	
	To	accomplish	this,	we	developed	a	metric	that	calculates	the	presence	of	blockers	between	the	
rusher	and	the	quarterback,	which	we	call	blocker-interference.	For	each	rusher	we	calculate	the	
angle	between	the	rusher	and	the	passer,	we	then	calculate	the	angle	between	the	rusher	and	all	
remaining	offensive	players.	We	can	then	calculate	whether	a	blocker	is	between	the	passer	using	
cosine	similarities	and	orthogonal	distance.	If	we	calculate	the	cosine	similarity	between	the	
rusher-quarterback	vector	and	the	rusher-blocker	vector	we	can	remove	any	cases	where	the	value	
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is	less	than	0	and	therefore	the	offensive	player	is	behind	the	defender.	Similarly,	we	can	remove	
any	offensive	players	behind	the	passer.	Finally,	we	can	calculate	the	orthogonal	distance	and	add	a	
weighting	approach	to	indicate	how	close	the	defender	is	to	blocking	the	path	of	the	rusher	to	the	
quarterback.	If	a	player	is	within	1	yard	of	the	direct	path,	they	are	assigned	a	value	of	1	otherwise	
their	influence	decreases	exponentially.	This	is	visualized	in	Fig.	A.2	in	the	appendix.	

Action	Filtering	

The	average	play	length	in	the	NFL	data	set	was	roughly	ten	seconds.	However,	each	play	also	
included	three	seconds	prior	to	the	snap	(pre-snap)	and	sometimes	activity	after	the	pass	rush	
(pass	catch	and	run,	fumble,	etc.).	Since	the	pressure	labels	are	evaluated	by	PFF	based	on	the	
activity	that	occurred	prior	to	the	ball	being	thrown,	we	needed	to	filter	any	activity	that	happens	
after	that	action.	This	prevents	the	model	from	being	trained	on	non-pass	rush	relevant	data	and	
ensures	that	probabilities	are	assigned	only	during	the	active	pass	rush.	The	NGS	data	provides	
time-stamped	events	including	categorical	actions	such	as	ball	snap,	pass	forward,	run,	etc.	The	
beginning	of	the	play	is	easy	to	identify	as	there	is	always	one	ball	snap	event	and	can	remove	any	
data	before	it.	For	the	end	of	the	play,	the	logic	is	more	complicated.	If	there	is	a	pass	or	a	
quarterback	sack,	then	that	is	the	defined	end	of	the	play.	If	those	events	are	not	present,	we	use	
other	events	such	as	a	run	or	a	handoff.	In	this	way,	we	can	allow	for	trick	plays	where	the	
quarterback	may	hand	the	ball	off	to	a	receiver	prior	to	a	forward	pass.	If	the	quarterback	drops	
back	to	pass,	but	instead	decides	to	run	the	ball,	the	start	of	the	run	event	will	be	used	as	the	end	of	
the	play.	We	discuss	this	further	in	the	model	results	section.	

	Due	to	the	presence	of	trick	plays,	we	also	check	to	see	if	the	quarterback	and	the	primary	passer	
are	the	same	player.	NGS	provides	a	single	passer’s	ID	for	each	play.	If	this	is	different	than	the	
quarterback,	the	new	passer	ID	is	set	and	all	passer-specific	metrics	(qbX,	qbY,	qbSx,	qbSy,	relX,	
relY,	relDist)	are	recalculated	to	reflect	the	primary	passer	on	the	play.		

Target	Metric	

We	use	two	separate	definitions	of	the	target	variable	of	pressure.	First,	we	use	the	pressure	labels	
provided	by	PFF.	As	previously	mentioned,	these	include	Boolean	flags	for	hurry,	hit	and	sack.	Since	
the	PFF	labels	can	be	inconsistent,	especially	in	regards	to	hurries,	we	add	a	heuristically	defined	
target	as	well.	For	this	heuristic,	we	define	pressure	as	any	play	where	a	rusher	gets	within	1	yard	
of	the	passer	during	the	pass	rush	or	within	1.5	yards	of	the	passer	at	the	time	of	the	pass.	The	
heuristic	target	is	combined	with	the	PFF	labels	to	create	a	single	Boolean	flag	for	pressure.	Each	of	
these	pressure	labels	are	defined	for	each	defensive	player	over	the	entirety	of	the	play	rather	than	
at	a	specific	timestamp.		

After	this	preprocessing,	we	are	left	with	a	snapshot	of	the	rusher	location,	passer	location,	relative	
parameters,	and	blocker	interference.	Our	target	metric	is	Boolean	and	fixed	at	the	play	level	rather	
than	changing	temporally.	As	a	result,	players	are	assigned	a	pressure	flag	even	at	the	snap	of	the	
ball	which	allows	the	model	to	learn	a	rough	estimate	for	the	possibility	of	pressure	given	the	pre-
snap	location.		
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4.	2	Estimation	Framework		

As	mentioned	above,	there	are	two	primary	ways	to	approach	this	problem.	The	first	is	to	try	to	
model	the	rusher’s	pressure	in	isolation	and	the	second	is	to	model	pressure	while	including	the	
positional	feature	of	other	players.	The	second	approach	adds	significant	complexity	as	the	model	
must	learn	how	to	determine	the	importance	of	positional	data	of	22	players	simultaneously	
instead	of	just	the	players	of	interest.	Additionally,	the	order	in	which	player	features	are	provided	
to	the	model	can	impact	the	output.	As	a	result,	we	choose	to	model	the	relationship	between	the	
rusher	and	the	passer	and	explicitly	calculate	the	presence	of	relevant	players	through	the	
previously	mentioned	blocker-interference	metric.		
	
We	also	choose	to	model	each	timestamp	rather	than	using	temporally	aware	models	such	as	
transformers	or	LSTMs.	We	are	able	to	do	this	because	the	data	already	includes	speed,	
acceleration,	and	directional	features,	which	already	incorporate	temporal	information.	This	allows	
us	to	reduce	the	complexity	of	the	model	and	reduce	latency	at	inference.	Additionally,	this	
approach	yields	instantaneous	predictions	of	pressure	for	a	provided	snapshot	without	any	
influence	from	prior	information.	It	essentially	asks	the	question	“given	this	rusher’s	current	
configuration	(speed,	direction,	distance	to	passer,	nearby	blockers,	etc.),	how	likely	are	they	to	
apply	pressure	at	some	point	during	the	play?”		
	
To	train	the	model	we	use	a	randomly	sampled	subset	of	6,000	pass	plays	from	the	2018	season,	
holding	out	later	seasons	for	evaluation.	We	train	on	each	timestamp	of	the	pass	rush	for	each	
player	within	those	6,000	plays.		
	
We	explored	several	approaches	for	the	estimation	framework,	including	AutoGluon,	a	feed	
forward	neural	network	and	a	random	forest.	The	neural	network	tended	not	to	make	strong	
probability	estimates	and	instead	biased	towards	no	pressure	since	that	is	the	dominant	class.	The	
AutoGluon	models	rely	heavily	on	boosted	trees	which	gave	inconsistent	and	noisy	probability	
estimates.	Ultimately,	the	random	forest	model	handled	the	class	imbalance	well	and	provided	
cleanly	calibrated	and	consistent	probability	estimates.	The	final	random	forest	model	uses	400	
estimators.	Since	probability	estimates	in	a	random-forest	are	done	through	voting	of	individual	
estimators	we	needed	to	include	a	large	number	of	estimators	so	that	the	final	probability	estimates	
could	be	granular	(in	this	case	0.25%).	The	model	was	trained	with	a	20%	subset	of	the	2018	
season	data	which	was	enough	for	the	model	to	converge	on	a	consistent	output.	Seasons	2019-
2022	were	used	for	evaluation.	Final	probability	estimates	were	smoothed	using	a	3-step	centered	
moving	average	to	make	the	probabilities	more	consistent	over	time	and	limit	the	presence	of	
spikes.		

Inference	

During	inference,	data	preprocessing	and	feature	engineering	are	performed	at	runtime,	including	
the	blocker-interference	metric,	and	can	be	configured	with	simple	flags.	Once	feature	engineering	
is	complete,	the	dataset	generator	produces	a	single	Pandas	data	frame.	The	player	data	frame	
dimensions	are	11𝑡 × 𝑛,	where	𝑡	is	the	number	of	timesteps	and	𝑛	is	the	number	of	features.	
Inference	is	very	fast	with	the	random	forest	model.	A	full	season’s	worth	of	data	can	be	predicted	
in	less	than	a	minute.	Prediction	outputs	will	be	a	probability	on	a	scale	of	0	to	1.	The	model	is	
designed	to	provide	estimates	for	all	players	and	positions.	As	will	be	discussed	later,	
inconsistencies	between	the	NGS	events	and	the	labeler	interpretations	of	the	play	activity	were	the	
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primary	source	of	outlier	errors	for	the	model.	The	fidelity	of	this	model	is	reliant	on	the	accuracy	
of	upstream	NGS	event	calculations.	This	is	discussed	further	in	the	evaluation	section.	

4.	4.	Pressure	Probability	Results	

We	use	three	main	approaches	for	evaluating	the	pressure	probability	metric:	model	calibration,	
classification	performance,	and	outlier	analysis.	Calibration	evaluates	how	reliable	the	probability	
estimates	are	compared	to	the	actual	performance.	For	instance,	if	a	model	predicts	20%	
probability	of	pressure,	then	pressure	should	be	present	20%	of	the	time.	This	is	the	primary	
metric	of	evaluation,	as	the	reliability	of	the	predicted	probability	is	necessary	for	calculating	
downstream	metrics.	Classification	performance	is	evaluated	using	standard	classification	metrics	
with	a	focus	on	model	precision.	These	classification	results	are	used	to	validate	the	model’s	
performance,	but	are	secondary	to	the	calibration	results.	Finally,	we	use	corner	cases	to	identify	
potential	model	issues,	and	human	review	to	ensure	that	the	predictions	stand	up	to	expert	
scrutiny.			

	For	each	of	these	metrics,	we	choose	to	evaluate	based	on	the	maximum	probability	as	this	is	most	
similar	to	how	the	PFF	labels	were	determined.	A	human	labeler	will	assign	a	pressure/no-pressure	
label	based	on	the	point	in	the	play	where	the	maximum	pressure	on	the	passer	is	being	applied.	
Therefore,	we	choose	that	maximum	pressure	as	the	point	in	the	play	most	relevant	to	the	assigned	
target	value.		

	The	evaluation	detailed	in	this	section	is	for	a	full	season	of	pass	plays	from	the	2022	NFL	season.	
Similar	evaluation	was	performed	across	seasons	2019-2021	with	negligible	differences	between	
the	seasons.	A	subset	of	pass	plays	from	the	2018	season	was	used	for	training.	

Calibration	

We	assess	model	calibration	by	binning	the	predictions	at	different	probability	intervals	and	then	
evaluating	the	frequency	of	a	positive	label	within	that	bin.	For	example,	if	the	model	is	predicting	
40-45%	we	want	the	actual	frequency	of	the	label	for	those	predictions	to	be	within	that	range.	For	
this	model,	when	it	predicts	40%	in	reality	approximately	39%	of	the	time	the	label	is	actually	
pressure,	so	the	model	is	fairly	well	calibrated	at	this	point.	On	the	other	hand,	when	we	predict	
80%,	the	actual	results	are	closer	to	83%.	The	model	is	a	little	under-confident	as	we	get	to	higher	
probabilities.	The	expected	calibration	error	(ECE)	indicates	that	we	can	expect	the	predicted	
probability	to	be	within	0.6%	of	the	truth	and	the	maximum	calibration	error	(MCE)	says	that	the	
maximum	error	expected	is	about	7.6%	[36,	37].	The	lower	these	metrics	are	the	better	calibrated	
the	model.	A	plot	of	the	calibration	performance	can	be	seen	in	Fig.	5.	

Classification	

The	classification	results	are	based	on	the	maximum	pressure	achieved	over	the	course	of	the	play.	
In	this	way	we	can	evaluate	the	classification	at	the	play	level,	similarly	to	our	target	metric.	This	
helps	avoid	confusion	as	the	model	should	always	predict	low	pressure	probabilities	at	the	
beginning	of	the	play.	We	also	separate	evaluation	by	all-defenders	vs	only-rushers,	as	the	
probability	for	rushers	is	considerably	higher	than	for	players	who	are	in	coverage.	Simply	by	
choosing	a	dominant	class	strategy	(always	predicting	no-pressure)	this	would	result	in	95.2%		
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Fig.	5.	The	pressure	probability	model	calibration	shows	a	well	calibrated	mode	with	low	ECE	
(0.56%)	and	MCE	(7.56%).	The	model	does	show	some	under	confidence	at	higher	probabilities	
and	overconfidence	at	lower	probabilities,	but	the	model	outputs	are	reliable	enough	to	provide	a	
good	estimate	of	applied	pressure.	
	
	

	 	
							Fig.	6.	All-defender	confustion	matrix.														Fig.	7.	Rusher-only	confusion	matrix	

	

accuracy	for	all	defenders	and	87.8%	accuracy	for	rushers.	Our	model	achieves	98.3%	accuracy	
when	looking	at	all	defenders	and	95.8%	accuracy	when	looking	only	at	rushers,	cutting	the	
remaining	uncertainty	by	more	than	half.	The	confusion	matrices	in	Figs.	6	and	7	show	the	
precision	for	each	class	with	99%	precision	for	no-pressure	and	84%	precision	for	pressure.	This	
consistent	with	our	observation	that	PFF	labels	were	subjective	and	in	particular	Hurry	was	
sometimes	arbitrarily	assigned.	
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Examples	and	Outlier	Analysis	

Figs.	8-10	shows	three	examples	of	different	type	of	plays	predicted	by	the	model.	The	first,	shown	
in	Fig.	8,	is	a	random	play	where	three	players	get	pressure	on	the	quarterback	throughout	the	play.	
The	video	of	the	tracking	data	is	on	the	left	and	the	estimated	probabilities	are	on	the	right.	The	
video	shows	that	three	different	players	create	pressure	at	different	times	throughout	the	play,	the	
dynamics	are	reflected	in	the	chart	on	the	right	with	two	players	getting	pressure	early	and	a	third	
getting	pressure	late.	The	video	is	clipped	for	just	the	duration	of	the	pass	rush.	

Fig.	8.	Randomly	sampled	play	where	pressure	is	generated	by	3	separate	players.	Top	images	show	
snapshots	of	the	play,	while	the	bottom	plots	the	predicted	pressure	over	time	(ball	snap	at	3s).	At	
snap	(top	left)	all	players	have	low	predicted	pressure.	(Top	center)	2.7s	after	snap,	two	players	
converge	on	the	passer	generating	high	pressure.	4.7s	after	snap,	the	passer	evaded	previous	
pressure	and	then	pressure	is	generated	by	a	third	player.	
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	Fig.	9	shows	a	specific	type	of	extreme	model	error	due	to	inconsistencies	between	the	PFF	labels	
and	the	events	data.	The	NGS	events	shows	that	the	quarterback	decided	to	run	at	time	step	59	(2.9	
seconds	into	the	play),	which	ends	the	pass	rush	event	according	to	the	logic	provided	by	the	NFL.	
As	he	runs,	he	is	tackled	for	a	loss	and	the	PFF	label	gives	the	tackler	a	sack.	Due	to	the	pass	rush	
filtering	the	run	and	tackle	are	removed	and	we	only	get	predicted	probabilities	for	the	first	2.9s	of	
the	play.	This	behavior	is	expected	and	acceptable	as	the	NGS	event	definitions	will	be	treated	as	
the	truth.	
	

	

	
Fig.	9.	Illustration	of	a	play	with	label	consistencies.	Top	images	show	snapshots	of	the	play,	while	
the	bottom	plots	the	predicted	pressure	over	time	(ball	snap	at	3s).	At	snap	(top	left)	all	players	
have	low	predicted	pressure.	(Top	center)	3s	after	snap,	pocket	collapses	and	quarterback	begins	to	
scramble	toward	the	sideline.	This	is	where	NGS	classifies	the	pass	rush	as	having	ended	due	to	the	
scramble.	6s	after	snap,	the	quarterback	is	under	pressure	and	tackled.	PFF	labels	this	as	a	sack. 
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	The	final	play	example,	shown	in	Fig.	10,	is	a	circumstance	where	one	player	applies	pressure	and	
rushes	the	quarterback	but	is	not	assigned	a	flag	by	PFF.	This	could	arguably	be	called	a	hurry	since	
the	quarterback’s	play	is	impacted,	but	the	labelers	do	not	assign	the	label.	They	do	give	credit	to	
the	player	who	arrives	later,	but	also	generates	high	pressure	according	to	the	model.	Many	of	the	
instances	of	high	predicted	pressure	with	no	positive	label	were	in	instances	that	would	be	
classified	as	hurries	instead	of	sacks	or	hits.	This	makes	sense,	as	the	judgement	for	what	is	or	is	not	
a	hurry	is	more	subjective	than	hits	and	sacks.	

	
Fig.	10.	Illustration	of	a	play	with	unlabeled	pressure.	Top	images	show	snapshots	of	the	play,	while	the	
bottom	plots	the	predicted	pressure	over	time	(ball	snap	at	3s).	At	snap	(top	left)	all	players	have	low	
predicted	pressure.	(Top	center)	3s	after	snap,	no	player	has	significant	pressure	and	quarterback	
begins	to	roll	out	to	the	left.	4.9s	after	snap,	Cameron	Heyward	is	generating	pressure	due	to	his	
proximity	to	the	passer	and	lack	of	blockers,	but	is	not	given	credit	by	the	PFF	labeling	team.	
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	After	human	review	of	these	outliers	were	determined	to	be	primarily	due	to	inconsistencies	in	
labeling	or	in	the	definition	of	what	constitutes	the	end	of	a	pass	rush	event.	These	outliers	were	
not	deemed	significant,	but	will	be	monitored	over	time	to	determine	if	future	adjustments	to	the	
model	need	to	be	made.	
	

5.	Practical	Applications	to	Pass	Rush	Analysis	

Pressure	Metrics	

Our	models	enable	a	fine-grained	understanding	of	what	takes	place	throughout	the	pass	rush,	
including	who	was	involved,	who	engaged	who,	and	how	pressure	developed	throughout	the	play.	
The	continuous	nature	of	the	pressure	probability	predictions	allows	subject	matter	experts	at	the	
NFL	to	break	down	the	model	output	13	distinct	metrics	including	the	time	of	the	pressure,	the	
peak	pressure,	quick	pressures,	pressure	rate	over	expectation,	etc.	These	metrics	can	easily	be	
analyzed	for	a	single	play	or	aggregated	over	an	entire	season	for	comparison	between	players	[38].	
These	are	visualized	in	Fig.	11	and	further	broken	out	in	Table	A.3	in	the	appendix.	
	
	

	
Fig.	11.	The	football	analytic	metrics	derived	from	the	pressure	probability	estimated	by	the	
proposed	framework	[38]	
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Real-World	Applications		

To	see	how	this	type	of	analysis	can	be	applied	within	the	game,	we	included	the	example	of	a	
specific	play	in	Fig.	12	[38].	Consider	Micah	Parsons'	sack	in	the	Week	2	matchup	between	the	Jets	
and	Cowboys.	Late	in	the	game,	with	the	Cowboys	leading	30-10,	Parsons	sacked	Zach	Wilson	for	a	
5-yard	loss.		
	
	For	this	play,	Micah	Parsons	is	able	to	quickly	get	off	the	line	at	the	snap.	Given	his	advantageous	
alignment	from	a	wide-nine	technique	off	the	right	edge	against	Duane	Brown,	the	model	predicts	
pressure	at	snap	of	35.4	percent.	Parsons	beat	his	block	to	set	up	an	unimpeded	path	to	Wilson	
within	two	seconds	of	the	snap	qualifying	this	a	quick	pressure.	Parsons	maintains	an	average	
pressure	probability	of	74.8	percent	over	the	4.8-second	dropback	(39.4	percentage	points	over	
expectation).	Parsons'	peak	pressure	probability	converged	to	100	percent	within	three	seconds,	
with	a	full	2.9	seconds	spent	pressuring	Wilson	over	the	course	of	the	play.	
	
We	can	also	use	these	metrics	in	aggregate	to	compare	player	performances.	Through	the	first	two	
games	of	the	2023	season,	Parsons	is	tied	with	the	Titans'	Arden	Key	for	most	pressures	league-
wide	(15	each),	and	ranks	first	in	quick	pressures	(8),	pressure	time	(17.2	seconds),	positive	rushes	
(42),	net	positive	rushes	(+29)	and	average	pressure	probability	(28.3%,	among	292	pass	rushers	
with	at	least	10	pass-rush	snaps).	
	

	

Fig.	12.	The	real-world	example	of	the	application	of	the	analytic	metrics	derived	from	the	pressure	
probability.	The	example	play	happened	in	the	Week	2	matchup	between	the	Jets	and	Cowboys	in	
2023	[38]	
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Offensive	Line	Analysis	

With	the	ability	to	identify	passers	and	rushers	and	quantifying	the	pressure	in	a	temporal	manner,	
we	can	use	the	matchup	model	to	analyze	the	prevention	of	pressure.	By	combining	these	models	
we	can	identify	matchups,	attribute	sacks	to	individual	blockers,	discern	double	teams	and	much	
more.	Key	metrics	are	listed	in	Table	A.4	in	the	appendix.	This	shows	the	added	benefit	of	our	
model	as	we	are	not	only	able	to	provide	more	descriptive	statistics	for	pass	rushers,	but	we	can	
also	begin	to	quantify	offensive	line	performance,	which	until	now	has	had	very	limited	visibility	
from	a	statistical	perspective. 

6.	Conclusion	

In	this	paper,	we	presented	a	unified	framework	leveraging	machine	learning	models	and	NFL’s	
NextGenStats	data	that	enabled	the	pressure	score	estimation	throughout	a	play	by	addressing	
three	major	challenges,	1)	blocker	and	rusher	identification,	2)	block-rusher	match-up	estimation,	
and	3)	in-play	pressure	probability	estimation	at	individual	player	and	team	levels.		

	Pressure	probability	estimation	can	be	expanded	upon	by	attempting	to	model	an	average	player’s	
performance	in	a	specific	scenario.	Explicitly	modeling	an	average	players	expectation	could	allow	
for	a	standardization	of	pass	rushing	metrics.	It	will	be	interesting	future	work	to	investigate	
further	to	estimate	average	player	performance	reliably.		

	Future	research	may	focus	on	increasing	the	granularity	of	insights	on	specific	blocking	and	
rushing	techniques.	This	could	require	a	multi-modal	approach,	combining	player	tracking	data	
with	video	to	classify	linemen	techniques	to	better	understand	how	players	matchup	against	one	
another	and	how	a	pass	rushers	strategies	develop	over	the	course	of	a	game	or	season.		

	We	believe	that	our	framework	can	be	leveraged	in	the	other	sports,	e.g.,	hockey,	soccer,	etc.,	to	
provide	more	detailed	insight	that	goes	beyond	the	mere	outcome	of	a	play	to	give	proper	credits	to	
players	and	a	team	on	how	effective	their	defense	is	against	offense	throughout	a	course	of	a	play.	
Our	work	can	be	a	stepping	stone	for	the	variety	of	interesting	applications	and	analytics	in	sports.	
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Appendix		

Additional	Tables	and	Figures	

Feature	Category	Feature	Name	Description	

Passer	

qbX	 x-position	
qbY	 y-position	
qbSx	 x-velocity	
qbSy	 y-velocity	

Player	

x	 x-position	
y	 y-position	
s	 velocity	
a	 acceleration	
relX	 x-position	relative	to	passer	
relY	 y-position	relative	to	passer	
relDist	 distance	to	passer	
x_dir	 x-directional	parameter	(unit	circle)	
y_dir	 y-directional	parameter	(unit	circle)	

Context	

time	 Time	starting	at	3s	prior	to	snap	until	end	of	the	pass	rush	event	
position	 Official	NFL	position	of	a	target	player	
positionGroup	 NFL	position	group	of	a	target	player	
ngsPosition	 NGS	derived	position	of	a	target	player	
nflId	 Unique	ID	assigned	to	each	player	
playId	 Unique	ID	assigned	to	each	play	
gameId	 Unique	ID	assigned	to	each	game	

Table	A.1.	Primary	features	from	NFL’s	NextGenStats	player	tracking	data.		

	

Target	
Feature	 Description	

blocker	 Flag	to	indicate	that	the	player	is	a	blocker	
rusher	 Flag	to	indicate	that	the	player	is	a	rusher	
matchupID	 List	of	player	ids	for	matched	up	players	
hurry	 Boolean	indicating	a	hurry	
hit	 Boolean	indicating	a	hit	
sack	 Boolean	indicating	a	sack	

ngs_pressure	 Boolean	for	if	a	player	gets	within	1	yard	of	the	passer	during	the	rush	or	1.5	yards	
at	the	time	of	the	pass	

pressure	 Combineati	
Table	A.2.	Description	of	the	target	features	that	were	used	in	the	framework	from	NFL’s	
NextGenStats	player	tracking	data	
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Distribution	of	distances	for	Matching	and	Non-Matching	player	pairs	
	

	
Fig.	A.1.	Distribution	of	distances	at	snap	and	minimum	distances	during	play	for	Matching	pairs	
and	Non-Matching	pairs.	It	shows	that	pairs	that	are	matched	up	during	the	play	have	a	much	
smaller	average	distances	compared	to	pairs	that	aren’t	matched	up.		

Pressure	Probability	

	

Fig.	A.2.	Illustration	of	how	the	blocker	interference	metric	is	calculated.	Defenders	X1	and	X3	are	
eligible	since	they	are	between	the	quarterback	and	the	rusher.	The	blocker	at	X3	is	given	a	
stronger	weight	due	to	his	closer	proximity	to	the	rusher’s	direct	path	to	the	quarterback.	Blocker	
interference	is	the	sum	of	these	weighted	orthogonal	distances	d1	and	d3.		
	

Fig.	A.2.	shows	a	plot	of	two	of	the	most	important	features	relative	distance	and	blocker-
interference.	As	can	be	seen,	the	probability	estimates	are	highest	when	the	player	is	close	to	the	
quarterback	(within	1	yard)	and	when	the	blocker-interference	is	very	low.	This	is	very	intuitive	
given	how	pressure	is	typically	based	on	a	player’s	proximity	and	the	threat	the	player	poses	to	the	
passer.	
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Fig.	A.3.	Predicted	Probability	based	on	relative	distance	and	blocker-interference	

	

Metric	 Description	

Pressure	 A	player	affects	the	quarterback	as	determined	by	the	pressure	
probability	exceeding	75%.	

Pressure	rate	 Total	number	of	pressures	over	the	total	number	of	pass	rush	snaps	
Time	to	pressure	 Time	from	snap	until	the	rusher's	pressure	first	exceeds	75%	
Quick	pressures	 A	pressure	that	occurs	with	the	first	2.5	seconds	after	the	snap	

Pressure	time	 The	total	duration	of	time	the	player	spends	above	the	75%	pressure	
threshold		

Pressure	probability	at	
snap	 The	pressure	probability	at	the	time	of	the	snap	

Average	pressure	
probability	 The	average	pressure	probability	during	the	pass	rush	

Pressure	rate	over	
expected	

The	difference	between	the	average	pressure	and	the	pressure	at	the	
snap	

Peak	pressure	
probability	 The	maximum	pressure	generated	by	a	rusher	during	the	pass	rush	

Positive	rushes	 Number	of	plays	where	the	average	probability	exceeds	the	probability	at	
snap	

Negative	rushes	 Number	of	plays	where	the	probability	at	snap	exceeds	the	average	
probability	

Positive	rush	rate	 Positive	rushes	over	total	rush	attempts	

Net	positive	rushes	 The	difference	between	the	number	of	positive	pass	rushes	and	negative	
pass	rushes	

Table	A.3.	A	list	of	the	pass	rusher	metrics	developed	by	the	NFL	based	on	the	output	of	our	models	
[38]	
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Metric	 Description	
Matchup	frequency	 Total	number	of	plays	where	two	players	are	matched	
Pressures	allowed	 The	number	of	pressures	allowed	by	a	lineman	
Sacks	allowed	 The	number	of	sacks	allowed	by	a	lineman	
Pressure	rate	allowed	The	number	of	pressures	divided	by	the	number	of	pass	blocking	snaps	
Double	teams	 A	count	of	times	that	two	or	more	blockers	engage	with	a	pass	rusher	
Table	A.4.	A	list	of	the	offensive	line	metrics	developed	by	the	NFL	based	on	the	output	of	our	
models	[38]	
	


