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1. Introduction	
	
In	baseball,	it	is	the	responsibility	of	a	team's	defense	to	prevent	runs	by	getting	opposing	hitters	
out.	One	prominent	strategic	decision	a	defense	must	make	is	how	to	position	their	seven	fielders	
behind	the	pitcher	and	catcher.	In	this	paper,	we	present	a	novel	approach	to	optimally	position	
fielders	individualized	for	each	opposing	hitter.	We	find	evidence	that	our	approach	effectively	
increases	outs	and	decreases	runs	allowed	compared	to	MLB	average	defenses.	
	
A	fundamental	requirement	of	our	approach	is	having	batter-specific	distributions	over	the	
trajectories	of	batted	balls.	Section	2	describes	how	these	distributions	are	estimated	from	data	
using	a	Bayesian	hierarchical	model	of	the	joint	probability	distribution	over	three	parameters	
describing	the	trajectory	of	a	batted	ball:	horizontal	spray	angle,	vertical	launch	angle,	and	exit	
speed.	Section	3	describes	our	novel	approach	to	optimizing	fielder	positioning,	given	the	batter-
specific	batted	ball	distributions.	Let	𝑝!	be	a	positioning	strategy	in	the	set	of	admissible	positioning	
strategies	𝑃! ⊂ ℝ"#.	We	consider	two	choices	of	objective	functions.	First,	we	can	maximize	the	
expected	outs	over	a	batter's	batted	ball	distribution	by	identifying	a	𝑝!∗	that	satisfies	

	 𝑝!∗ ∈ argmax
%!∈'!

𝔼(∼* [𝑓(𝑏, 𝑝!)]	 (1)	

where	f	is	a	model	that	gives	the	probability	of	an	out	given	the	trajectory	b	of	a	batted	ball	and	a	
positioning	strategy	𝑝!,	and	where	b	is	drawn	from	d,	one	of	the	batter-specific	batted	ball	
distributions	described	in	section	2.	

Alternatively,	we	can	choose	to	minimize	the	expected	runs	allowed	over	a	batter's	batted	ball	
distribution	by	identifying	a	𝑝!∗	that	satisfies		

	 𝑝!∗ ∈ argmin
%!∈'!

𝔼(∼* 561 − 𝑓(𝑏, 𝑝!)9 ⋅ 𝑓woba(𝑏);	 (2)	

where	𝑓woba	is	a	model	giving	the	expected	weighted	on	base	average	(wOBA)	of	a	batted	ball	under	
the	assumption	that	the	ball	is	not	fielded	for	an	out.	wOBA	is	related	to	runs	by	an	affine	
relationship,	so	minimizing	wOBA	is	equivalent	to	minimizing	runs	[29].	The	f	and	𝑓woba	models	are	
described	in	detail	in	section	3.	

Our	approach	differs	from	existing	positioning	strategies	that	optimize	over	a	discrete	positioning	
space	[15,	17,	27]	because	our	admissible	set	𝑃!	is	continuous.	Our	approach	also	differs	from	
methods	that	choose	to	optimize	spatially	[16,	17,	26,	27]	because	we	optimize	to	either	maximize	
outs	or	minimize	runs.	
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A	common	assumption	with	existing	positioning	optimization	methods	(including	(1)	and	(2))	is	
that	a	defense	can	change	its	positioning	and	expect	the	batter	to	continue	to	hit	according	to	their	
historical	tendencies.	Critics	of	extreme	defensive	shifts	have	raised	the	concern	that	hitters	can	
observe	the	positions	of	their	opponents,	and	adaptable	hitters	may	change	their	approach	at	the	
plate	in	response	[13].	To	address	these	concerns,	in	section	4	we	model	the	positioning	problem	as	
a	zero-sum	sequential	game	between	the	defense	and	the	batter.	The	defense	first	chooses	its	
positioning	strategy.	The	batter	observes	the	selected	positioning	strategy	and	chooses	a	batted	ball	
distribution,	d,	from	a	set	of	possible	batted	ball	distributions,	𝒟.	The	defense	and	batter	have	
opposing	goals:	to	either	maximize/minimize	expected	outs	or	minimize/maximize	expected	runs,	
depending	on	the	choice	of	objective.	

For	the	expected	outs	objective,	an	equilibrium	pair	of	strategies	(𝑝!∗, 𝑑∗)	must	satisfy	

	 𝑝!∗ ∈ argmax
%!∈'!

min
*∈𝒟

𝔼(∼* [𝑓(𝑏, 𝑝!)]	 (3a)	

	 𝑑∗ ∈ argmin
*∈𝒟

max
%!∈'!

𝔼(∼* [𝑓(𝑏, 𝑝!)]	 (3b)	

where,	as	before,	b	is	the	trajectory	of	a	batted	ball	drawn	from	the	batted	ball	distribution	d.	

When	the	objective	is	expected	runs,	an	equilibrium	pair	of	strategies	(𝑝!∗, 𝑑∗)	must	satisfy		

	 𝑝!∗ ∈ argmin
%!∈'!

max
*∈𝒟

𝔼(∼* 561 − 𝑓(𝑏, 𝑝!)9 ⋅ 𝑓woba(𝑏);	 (4a)	

	 𝑑∗ ∈ argmax
*∈𝒟

min
%!∈'!

𝔼(∼*561 − 𝑓(𝑏, 𝑝!)9 ⋅ 𝑓woba(𝑏);	 (4b)	

Note	the	difference	between	(3)	and	(4).	In	(3)	the	defense	is	the	maximizing	player	and	the	batter	
is	the	minimizing	player	because	the	defense	wants	to	maximize	outs	and	the	batter	wants	to	
minimize	outs.	In	(4),	these	roles	reverse.	The	batter	becomes	the	maximizing	player	and	the	
defense	the	minimizing	player	because	the	batter	wants	to	maximize	runs	and	the	defense	wants	to	
minimize	runs.	

Examples	of	possible	batter	action	sets	𝒟	are	provided	in	section	4.	A	trivial	example	is	when	the	
set	𝒟	consists	only	of	the	batter-specific	batted	ball	distribution	estimated	using	the	method	
described	in	section	2.	When	that	is	the	case,	(3)	is	equivalent	to	(1)	and	(4)	is	equivalent	to	(2).	
These	equilibrium	positioning	strategies	provide	principled	solutions	to	the	challenge	of	facing	an	
adaptable	batter.	

2. Learning	Batter-Specific	Batted	Ball	Trajectory	Distributions	
The	out	model	f	is	a	key	component	of	both	objective	functions	(1)	and	(2).	The	likelihood	of	an	out	
on	any	batted	ball	depends	on	its	trajectory	relative	to	the	position	of	the	fielders.	The	trajectory	of	
a	batted	ball	can	be	approximated	from	its	spray	angle,	launch	angle,	and	exit	speed.	In	this	section	
we	learn	batter-specific	joint	probability	distributions	of	batted	ball	spray	angles,	launch	angles,	
and	exit	speeds	from	historical	data.	Note	that	some	research	has	already	been	done	to	model	the	
spray	angle	distribution	[23,	25]	as	well	as	the	joint	distribution	of	launch	angle	and	exit	speed	[28].	
As	our	approach	requires	the	joint	distribution	of	all	three	variables,	we	create	our	own	model.	
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Denote	ℎ,	𝑣,	and	𝑠	as	the	horizontal	spray	angle,	vertical	launch	angle,	and	exit	speed	of	a	batted	
ball,	respectively.	Our	goal	is	to	estimate	the	joint	distribution	𝑝(ℎ, 𝑣, 𝑠).		This	will	be	done	using	
MLB	ball	tracking	data	from	2018-2022	from	Statcast,	which	was	accessed	using	the	pybaseball	
package	[8,	10,	22].	This	data	provides	the	exit	speed,	launch	angle,	and	the	hit	coordinates	of	
batted	balls.	Horizontal	spray	angle	ℎ	is	defined	using	the	hit	coordinates	with	the	formula	
described	in	[12]:	balls	hit	down	the	third	baseline	have	a	spray	angle	of	−45∘	and	balls	hit	down	
the	first	baseline	have	a	spray	angle	of	45∘.	A	pulled	batted	ball	is	defined	as	one	with	a	negative	
spray	angle	for	right-handed	batters	and	positive	spray	angle	for	left-handed	batters.	Any	other	
batted	ball	is	called	an	opposite	field	(oppo)	ball.	
	
To	most	efficiently	estimate	the	desired	joint	distribution,	we	first	need	to	determine	if	there	are	
any	independencies	between	the	variables	that	can	be	leveraged.	This	is	done	by	examining	the	
distributions	over	one	of	the	variables,	given	different	assignments	to	another	variable.	First,	figure	
1	shows	two	histograms	of	batted	ball	launch	angles	partitioned	by	pulled	or	oppo	spray	angle.	
Based	on	this	figure,	we	make	the	assumption	that	launch	angle	is	dependent	on	spray	angle.	
	

	
Figure	1:	Distributions	of	batted	ball	launch	angles	partitioned	by	pulled	or	oppo	spray	angle,	giving	
evidence	that	launch	angle	and	spray	angle	are	not	independent.	
	
Next,	the	relationship	between	exit	speed	and	the	two	other	variables	is	explored.	We	define	four	
different	batted	ball	launch	angle	types:	ground	balls	(𝑣 ≤ 10),	line	drives	(10 < 𝑣 ≤ 25),	fly	balls	
(25 < 𝑣 ≤ 50),	and	pop-ups	(50	 < 	𝑣).	Figure	2	shows	the	distribution	of	exit	speeds	in	these	
launch	angle	partitions.	Figure	3	shows	the	distribution	of	exit	speeds	in	the	launch	angle	and	spray	
angle	partitions.	
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Figure	2:	Distribution	of	exit	speeds	partitioned	by	launch	angle	type.	We	conclude	that	exit	speed	
is	dependent	on	launch	angle.	
	
Based	on	these	figures,	we	make	the	assumption	that	exit	speed	is	dependent	on	launch	angle	and	is	
conditionally	independent	of	spray	angle	given	launch	angle.	Thus,	the	joint	probability	distribution	
of	ℎ,	𝑣,	and	𝑠	can	be	written	as:		
	
	 𝑝(ℎ, 𝑣, 𝑠) = 𝑝(ℎ)𝑝(𝑣|ℎ)𝑝(𝑠|𝑣, ℎ)	 	

	 														= 𝑝(ℎ)𝑝(𝑣|ℎ)𝑝(𝑠|𝑣)	 (5)	

	
where	the	first	equality	follows	from	the	chain	rule	and	the	second	equality	follows	from	the	
assumption	that	𝑠	is	conditionally	independent	of	ℎ	given	𝑣.	The	following	subsections	present	
models	for	the	distributions	𝑝(ℎ),	𝑝(𝑣|ℎ),	and	𝑝(𝑠|𝑣).	In	each	case	a	Bayesian	hierarchical	model	is	
used.	This	provides	individual	hitter	distributions	while	also	facilitating	the	sharing	of	information	
about	hitter	tendencies	throughout	the	population.	Thus,	hitters	with	little	ball-in-play	data,	like	
rookies,	have	estimated	distributions	that	borrow	heavily	from	the	shared	information	rather	than	
relying	too	much	on	their	sparse	data.		
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Figure	3:	Distribution	of	exit	speeds	partitioned	by	launch	angle	type	and	by	pulled	and	oppo	spray	
angles.	This	suggests	that	exit	speed	is	conditionally	independent	of	spray	angle	given	launch	angle.	
	
2.1.	Estimating	Horizontal	Spray	Angle	Distributions	𝒑(𝒉)			
The	data	is	pre-processed	by	flipping	the	sign	of	the	spray	angle	for	all	left-handed	batters,	
transforming	them	into	right-handed	batters.	This	gives	all	pulled	balls	negative	spray	angles	and	
all	oppo	balls	positive	spray	angles.	Information	can	now	be	shared	among	all	hitters	without	
effects	from	handedness.	Spray	angles	outside	of	the	interval	[-55,55]	are	removed	from	the	data.		
Although	-45	and	45	are	the	angles	of	the	foul	lines,	a	significant	number	of	non-foul	balls	in	the	
data	had	spray	angles	outside	of	[-45,45]	but	within	[-55,55],	so	bounds	of	[-55,55]	were	chosen.	
Lastly,	the	spray	angles	are	scaled	and	shifted	so	that	they	are	between	0	and	1.	This	allows	for	the	
use	of	the	beta	distribution,	which	has	support	[0,1].	
	
Figure	4	shows	the	histogram	of	the	shifted	and	scaled	spray	angles	along	with	an	estimate	of	a	
density	function	to	fit	these	spray	angles.	This	density	function	is	a	mixture	of	two	beta	
distributions	with	mixing	weights	𝜋L = [0.4,0.6],	𝛼	parameters	𝛼L = [3,3],	and	𝛽	parameters	𝛽Q =
[9,2].	In	other	words,	the	density	function	was	defined	as	0.4 ⋅ Beta(3,9) + 0.6 ⋅ Beta(3,2).	
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Figure	4:	Histogram	of	shifted	and	scaled	spray	angles	plotted	under	the	estimated	density	function.	
	
Given	this	density	estimate,	we'd	like	to	sample	values	of	the	mixing	weights	from	a	distribution	
with	mean	𝜋L ,	values	of	𝛼	from	a	distribution	with	mean	𝛼L,	and	values	of	𝛽	from	a	distribution	with	
mean	𝛽Q .	
	
Our	hierarchical	model	is	defined	below.	Note	we	use	𝜇	and	𝜎	to	signify	a	distribution's	mean	and	
standard	deviation.	We	also	abuse	notation	in	the	gamma	and	half-normal	distributions.	These	are	
distributions	of	single	variables	that	we	have	parameterized	with	vectors	of	length	two.	This	is	
meant	to	signify	that	we	are	fitting	two	of	the	same	kind	of	distribution	with	different	shapes.	We	
have	
	

	 𝑎1 ∼ Gamma(𝜇 = [4,6], 𝜎 = [10,10])	 (6a)	

	 𝜇2 ∼ Gamma(𝜇 = [3,3], 𝜎 = [10,10])	 (6b)	

	 𝜇3 ∼ Gamma(𝜇 = [9,2], 𝜎 = [10,10])	 (6c)	

	 𝜎2 ∼ Half-Normal(𝜎 = [1,1])	 (6d)	

	 𝜎3 ∼ Half-Normal(𝜎 = [1,1])	 (6e)	

	 𝜋4 ∼ Dirichlet(𝑎1)	 (6f)	

	 𝛼4 ∼ Gamma(𝜇 = 𝜇2 , 𝜎 = 𝜎2)	 (6g)	

	 𝛽4 ∼ Gamma6𝜇 = 𝜇3 , 𝜎 = 𝜎39	 (6h)	

	 ℎ4 ∼ 𝜋4" ⋅ Beta(𝛼4", 𝛽4") + 𝜋45 ⋅ Beta(𝛼45, 𝛽45)	 (6i)	
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where	𝜋46 	is	the	𝑗78	value	in		𝜋4 ,	𝛼46 	is	the	𝑗78	value	in	𝛼4 , 	𝛽46 	is	the	𝑗78	value	in	𝛽4 ,	𝑗 ∈ {1,2},	and	𝑖 =
1,… ,𝑁(	where	𝑁(	is	the	number	of	batters.	Note,	switch	hitters	are	fitted	with	two	different	
distributions,	one	when	they	bat	left-handed	and	one	when	they	bat	right-handed.	This	model	
draws	𝜋4 	from	a	prior	distribution	with	mean	𝜋L ,	𝛼4 	from	a	prior	distribution	with	mean	𝛼L,	and	𝛽4 	
from	a	prior	distribution	with	mean		𝛽Q ,	as	desired.	
	
We	estimate	posterior	distributions	for	𝑎1 ,	𝜇2 ,	𝜇3 ,	𝜎2 ,	𝜎3 ,	𝜋4 ,	𝛼4 ,	and	𝛽4 	using	automatic	
differentiation	variational	inference	(ADVI)[1,	20].	We	define	the	batter-specific	spray	angle	
distribution,	𝑝4(ℎ),	using	the	mean	values	of	the	posterior	estimates	of		𝜋4 ,	𝛼4 ,	and	𝛽4 .	If	𝝅4 ,	𝜶4 ,	and	
𝜷4 	are	those	means,	we	have		
	
	 𝑝4(ℎ) ∼ 𝝅4" ⋅ Beta(𝜶4", 𝜷4") + 𝝅45 ⋅ Beta(𝜶45, 𝜷45)	 	

	
2.2.	Estimating	Vertical	Launch	Angle	Conditional	Distributions	𝒑(𝒗|𝒉)			
Since	launch	angle	is	dependent	on	spray	angle,	we	fit	two	launch	angle	distributions	for	each	
batter,	one	conditioned	on	the	batter	pulling	the	ball	and	the	other	conditioned	on	the	batter	going	
oppo.	We	estimated	priors	for	the	mean	and	standard	deviation	of	launch	angle	normal	
distributions	empirically.	Figure	5	shows	our	estimates.	
	

	
Figure	5:	Estimates	of	the	prior	distributions	of	launch	angle	means	and	standard	deviations	
partitioned	by	pulled	and	oppo	spray	angles.	
	
The	plot	on	the	left	shows	our	estimates	of	the	prior	distributions	of	mean	launch	angles.	The	blue	
histogram	shows	the	means	of	pulled	launch	angles	for	all	batters	with	at	least	50	pulled	balls,	and	
the	orange	histogram	shows	the	same	thing	but	for	oppo	launch	angles.	We	fit	normal	distributions	
to	these	histograms	using	maximum	likelihood	estimation.	These	normal	distributions	had	means	
5.1	and	21.0	and	standard	deviations	5.2	and	5.7	respectively.	
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The	plot	on	the	right	shows	our	estimates	of	the	prior	distributions	of	standard	deviations.	Like	
before,	the	blue	histogram	is	the	standard	deviations	of	pulled	launch	angles	for	all	batters	with	50	
pulled	balls,	and	the	orange	is	the	same	but	for	oppo	launch	angles.	We	fit	gamma	distributions	to	
these	histograms	using	maximum	likelihood	estimation.	These	gamma	distributions	had	shape	(𝛼)	
parameters	of	137.9	and	76.8	and	rate	(𝛽)	parameters	of	5.4	and	2.9	respectively.	
	
We	then	defined	our	hierarchical	model	such	that	each	batter's	mean	launch	angles	we're	drawn	
from	a	prior	of	𝒩([5.1,21], [5.2,5.7]),	and	each	batter's	launch	angle	standard	deviations	were	
drawn	from	a	prior	of	Gamma(𝛼 = [137.9,76.8], 𝛽 = [5.4,2.9]).	Therefore,	our	launch	angle	model	
is	
	
	 𝜇4 ∼ 𝒩([5.1,21], [5.2,5.7])	 (7a)	
	 𝜎4 ∼ Gamma(𝛼 = [137.9,76.8], 𝛽 = [5.4,2.9])	 (7b)	
	 𝑣4|ℎ4 	~ r

𝒩(𝜇4", 𝜎4")						ℎ4 < 0
𝒩(𝜇45, 𝜎45)						ℎ4 ≥ 0	

	
(7c)	

	
where	𝜇46 	is	the		𝑗78	value	in	𝜇4 ,	𝜎46 	is	the	𝑗78	value	in	𝜎4 ,	𝑗	 ∈ {1,2},	and	𝑖 = 1,… ,𝑁(	where	𝑁(	is	the	
number	of	batters.	We	once	again	abuse	notation	in	the	gamma	and	normal	distributions.	The	
vectors	of	length	two	that	we	used	to	parameterize	them	are	meant	to	signify	that	we	are	fitting	two	
separate	distributions	of	one	variable	rather	than	a	single	distribution	of	two	variables.	As	is	
apparent	in	(7c),	the	first	batter-specific	normal	distribution	applies	when	the	batter	pulls	the	ball	
(ℎ < 0)	and	the	second	applies	when	the	batter	goes	oppo	(ℎ	 ≥ 0).	
	
We	sampled	from	the	posteriors	of	𝜇4 	and	𝜎4 	for	all	𝑖	using	the	NUTS	algorithm	[2,	18].	We	then	
defined	the	batter-specific	launch	angle	distributions	using	the	mean	of	the	samples	of	𝜇4 	and	𝜎4 .	
	
2.3.	Estimating	Exit	Speed	Conditional	Distributions	𝒑(𝒔|𝒗)			
It	is	clear	in	figures	2	and	3	that	exit	speeds	are	left	skewed.	We	therefore	started	by	transforming	
exit	speeds	from	a	left	skewed	distribution	into	a	right	skewed	one	by	setting	𝑧 = 𝑠max − 𝑠.	This	
would	allow	us	to	fit	a	gamma	distribution	to	the	transformed	variable	since	gamma	distributions	
have	support	(0,∞)	and	can	fit	right	skewed	data.	
	
Since	exit	speed	is	conditioned	on	launch	angle,	we	fit	four	exit	speed	distributions	for	each	batter,	
one	for	each	launch	angle	type.	We	estimated	priors	for	the	shape	(𝛼)	and	rate	(𝛽)	of	these	batter-
specific	gamma	distributions	empirically.	For	each	of	the	launch	angle	types,	and	for	each	batter	
with	at	least	20	of	that	type	of	batted	ball,	we	used	maximum	likelihood	estimation	to	fit	a	gamma	
distribution	to	the	batter's	transformed	exit	speeds	for	that	hit	type.	This	gave	us	a	histogram	of	
shapes	and	scales	("

3
)	for	each	hit	type.	Figure	6	shows	those	histograms.	

	
Since	all	shapes	and	scales	have	to	be	positive,	and	since	some	of	these	histograms	appear	right	
skewed,	we	defined	gamma	distributions	for	each	of	these	histograms	using	their	sample	means	
and	standard	deviations.	Thus	in	the	exit	speed	hierarchical	model	defined	below,	we	have	the	prior	
gamma	distributions	of	𝛼	and	"

3
	parameterized	using	the	mean	𝜇	and	standard	deviation	𝜎.	Then	the	

transformed	exit	speed	gamma	distributions	are	parameterized	using	the	batter-specific	𝛼4 	and	
"
3"
	

drawn	from	the	prior	distributions.	The	hierarchical	model	follows		
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Figure	6:	Histograms	of	gamma	distribution	shapes	and	scales	found	by	doing	maximum	likelihood	
estimation	on	each	batter's	exit	speed	data.	
	
	
	 						𝛼4 ∼ Gamma(𝜇 = [6.0,6.9,9.1,16.7], 𝜎 = [1.5,2.4,3.2,6.1])	 (8a)	

	 1/𝛽4 	∼ Gamma(𝜇 = [6.4,4.6,4.0,2.6], 𝜎 = [1.6,1.4,1.3,0.8])	 (8b)	

	

𝑧4|𝑣4 	~

⎩
⎪
⎨

⎪
⎧Gamma(𝛼4", 𝛽4")				𝑣4 	≤ 10												
Gamma(𝛼45, 𝛽45)				10 < 	𝑣4 	≤ 25
Gamma(𝛼4;, 𝛽4;)				25 < 	𝑣4 	≤ 50
Gamma(𝛼4#, 𝛽4#)				50 < 	𝑣4 												

			

										

	
	

(8c)	

	
where	𝛼46 	is	the	𝑗78	value	in	𝛼4 ,	𝛽46 	is	the	𝑗78		value	in	𝛽4 ,	𝑗	 ∈ {1,2,3,4},	and	𝑖 = 1,… ,𝑁(	where	𝑁(	is	
the	number	of	batters.	We	once	again	abuse	notation	in	the	gamma	distributions.	The	vectors	of	
length	four	that	we	used	to	parameterize	them	signify	that	we	are	fitting	four	separate	gamma	
distributions.	As	is	apparent	in	(8c),	the	first	batter-specific	gamma	distribution	applies	when	the	
batter	hits	a	ground	ball,	the	second	when	he	hits	a	line	drive,	the	third	when	he	hits	a	fly	ball,	and	
the	fourth	when	he	hits	a	pop-up.	
	
Just	as	we	did	in	the	previous	subsection,	we	sample	from	the	posteriors	of	𝛼4 	and	𝛽4 	for	all	𝑖	using	
the	NUTS	algorithm.	We	then	define	the	batter-specific	transformed	exit	speed	distributions	using	
the	mean	of	the	samples	of	𝛼4 	and	𝛽4 .	To	conclude	this	section,	we	show	an	example	of	our	posterior	
estimates	of	𝑝(ℎ), 𝑝(𝑣|ℎ),	and	𝑝(𝑠|𝑣)	for	a	specific	hitter,	Nathaniel	Lowe.	
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Figure	7:	Posterior	estimates	of	𝑝(ℎ), 𝑝(𝑣|ℎ),	and	𝑝(𝑠|𝑣)	for	Nathaniel	Lowe.	Note	the	spray	angles	
are	reversed	since	Lowe	is	a	left-handed	batter.	
	
3. Finding	Optimal	Positions		
	
In	this	section,	we	describe	how	we	use	equations	(1)	and	(2)	to	optimize	fielder	positioning.	We	
start	by	learning	the	out	model	f	and	the	expected	wOBA	model	𝑓woba.	Then	we	describe	how	we	use	
mini-batch	stochastic	gradient	descent/ascent	to	optimize	our	objective	functions.	We	conclude	this	
section	by	testing	our	optimal	solutions	on	2023	batted	balls.		
	
Since	ground	ball	outs	require	a	throw	to	first	base,	whereas	non-ground	ball	outs	just	require	
catching	the	ball	in	the	air,	we	build	separate	out	models	for	ground	balls	and	non-ground	balls	
before	combining	them	to	create	f.	In	the	next	two	subsections	we	describe	the	ground	ball	and	
non-ground	ball	out	models.	
	
3.1	Ground	Ball	Outs		
To	predict	the	probability	of	an	out	on	any	batted	ball,	we	need	the	starting	position	of	the	relevant	
fielders,	which	is	not	publicly	available	data.	However,	Baseball	Savant	has	a	tool	that	estimates	the	
average	starting	position	of	fielders	in	certain	situations	[3].	Thus,	for	each	play	in	the	2023	ball	
tracking	data	we	assumed	that	the	fielders	were	standing	in	these	average	positions.	Limiting	our	
work	to	only	the	2023	data	ensures	that	there	are	no	infield	shifts	(due	to	the	recent	MLB	shift	ban	
rule	[4])	and	reduces	variance	in	the	average	positions.	Batted	balls	with	runners	on	base	were	
removed,	since	baserunners	may	move	fielders	out	of	their	typical	positions	(for	instance,	when	a	
first	baseman	has	to	hold	a	runner	on	first).	Finally,	we	used	different	average	starting	positions	for	
left-handed	batters	and	right-handed	batters	and	when	the	infield	was	in	a	“standard"	alignment	or	
in	a	“shaded"	alignment.		
	
A	model	of	ground	ball	out	probabilities	is	learned	using	logistic	regression.	Denote	𝑎* 	as	the	
minimum	absolute	difference	between	the	spray	angle	of	the	batted	ball	and	the	spray	angle	of	the	
infielders'	starting	positions.	Let	𝑏7	be	the	“ball	time	to	fielder"	which	is	simply	the	depth	from	
home	plate	of	the	closest	infielder	divided	by	the	exit	speed	of	the	ground	ball.	We	can	think	of	𝑏7	as	
the	time	it	would	take	the	ball	to	reach	the	fielder's	depth	assuming	no	deceleration.	Then	the	
ground	ball	out	probability	model	is	given	by	
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	 𝑓gb(𝑏, 𝑝!) = 𝑝(𝑜|𝑏 = gb) = 𝜎(−2.78 − 0.15𝑎* + 5.87𝑏7 − 1.32𝑏75)	 (9)	

	
where	b	is	the	batted	ball,	𝑝!	is	the	positioning	strategy,	o	is	the	event	that	an	out	occurs,	gb	is	the	
event	of	a	ground	ball,	and	𝜎	is	the	sigmoid	function,	𝜎(𝑥) = "

"=>#$
.	Note,	we	intentionally	use	the	

notation	𝑓gb(𝑏, 𝑝!)	to	match	the	notation	for	our	out	function	𝑓(𝑏, 𝑝!)	in	equations	(1)	and	(2)	for	
consistency.	This	choice	is	justified	because	𝑎* 	and	𝑏7	depend	on	both	the	fielder	positions	and	the	
batted	ball	characteristics,	so	𝑓gb(𝑏, 𝑝!)	is	a	function	of	b	and	𝑝!.	
	
Figure	8	shows	a	calibration	plot	[9]	for	our	ground	ball	out	model	on	a	holdout	validation	data	set.	
It	shows	that	𝑓gb	makes	well-calibrated	probability	predictions,	suggesting	that	maximizing	the	
outputs	of	𝑓gb	will	maximize	the	true	probability	of	ground	ball	outs.	
	

	
Figure	8:	Ground	ball	out	model	calibration	on	a	holdout	data	set.	This	suggests	that	𝑓gb	makes	well-
calibrated	out	probability	predictions.	
	
Figure	9	shows	the	effects	that	minimum	absolute	angle	difference	and	ball	time	to	fielder	have	on	
the	log	odds	of	an	out.	Note,	the	log	odds	of	an	out	are	given	by	the	input	to	𝜎	in	equation	(9).	Since	
𝜎	is	a	monotone	increasing	function,	then	we	know	that	increasing	log	odds	will	increase	the	
probability	of	an	out.	The	ball	time	to	fielder	plot	shows	that	for	low	times,	which	are	caused	by	
infielders	playing	too	shallow	or	by	hard	hit	ground	balls,	we	can	improve	log	odds	and	therefore	
probabilities	by	increasing	the	ball	time	to	fielder,	which	can	be	done	by	having	the	fielder	play	
deeper.	For	large	times,	caused	by	infielders	playing	too	deep	or	weakly	hit	ground	balls,	we	can	
improve	log	odds	by	decreasing	the	ball	time	to	fielder,	which	can	be	done	by	having	the	fielder	
play	shallower.	The	minimum	absolute	angle	difference	plot	shows	that	decreasing	the	angle	
difference	will	increase	the	log	odds/probability	of	an	out.	
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Figure	9:	The	effects	of	minimum	absolute	angle	difference	and	ball	time	to	fielder	on	the	log	odds	
of	an	out	in	𝑓gb.	
	
Data	that	shows	the	exact	starting	position	of	infielders	(such	data	is	available	to	MLB	teams)	would	
facilitate	more	accurate	ground	ball	out	models	than	what	we	show	in	this	work.	However,	one	can	
use	publicly	available	data	to	make	well-calibrated	predictions	on	a	holdout	data	set,	as	shown	in	
figure	8.	Additionally,	the	effects	plots	in	figure	9	suggest	that	𝑓gb	incentivizes	moving	infielders	
closer	to	home	plate	when	they	need	to	field	a	weakly	hit	ball	with	large	time	to	fielder	and	moving	
them	further	from	home	plate	when	they	need	to	field	a	hard-hit	ball	with	low	time	to	fielder.	The	
function	𝑓gb	also	incentivizes	decreasing	the	angle	between	the	ground	ball	and	the	fielder.	These	
incentives	are	appropriate	for	optimizing	positioning	to	field	ground	balls.	
	
3.2.	Non-Ground	Ball	Outs		
As	in	the	previous	section,	we	define	the	starting	positions	for	fielders	in	the	ball	tracking	data	by	
assuming	the	fielders	were	positioned	in	the	average	starting	position.	We	again	only	use	2023	data	
to	avoid	any	extreme	shifts	and	remove	all	plays	with	baserunners.	We	also	use	different	averages	
depending	on	batter	handedness	and	whether	the	infield	was	shaded.	In	this	section,	however,	the	
data	is	further	filtered	in	one	additional	way:	that	the	outfield	fielding	alignment	is	defined	as	
“standard."	This	ensures	any	extreme	outfield	alignments	(like	the	two-man	outfield	that	the	Royals	
deployed	several	times	in	2023,	see	figure	10)	are	removed.	
	
Since	the	likelihood	of	an	out	on	a	non-ground	ball	depends	on	its	hang	time	and	landing	spot,	one	
needs	to	estimate	hang	times	and	landing	coordinates	given	spray	angle,	launch	angle,	and	exit	
speed.	We	use	the	baseball	trajectory	calculator	created	by	physicist	Alan	Nathan	[19]	to	estimate	
the	hang	time	and	landing	coordinates	of	all	batted	balls	hit	in	Tropicana	Field	in	2019.	Tropicana	
Field	was	chosen	because	it	is	a	dome;	its	atmospheric	conditions	are	consistent.	We	then	fit	
XGBoost	models	[5]	to	predict	the	hang	time	and	distance	of	a	batted	ball	given	the	batted	ball's	
spray	angle,	launch	angle,	and	exit	speed	as	well	as	the	batter's	handedness.	The	models'	
predictions	on	a	holdout	validation	set	shown	in	figure	11	suggest	these	are	accurate	enough	
models	to	use	in	our	analysis.	
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Figure	10:	“the	2-OF	configuration	that	the	Royals	are	using"	[31]	

	

	
Figure	11:	XGBoost	hang	time	and	landing	distance	model	predictions	on	a	validation	set.	

	
	
While	it	may	be	the	case	that	these	models	are	less	predictive	in	a	more	extreme	atmosphere	like	
Coors	Field	in	Denver,	the	process	used	to	fit	the	models	could	easily	be	applied	to	any	other	
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ballpark	or	atmospheric	conditions.	For	the	remainder	of	this	paper	we	assume	the	batters	and	
defenses	are	playing	in	Tropicana	Field.	
	
The	model	of	non-ground	ball	outs	is	learned	using	logistic	regression.	Denote	𝛿7	to	be	the	
difference	between	a	batted	ball's	hang	time	and	the	time	that	it	takes	the	closest	fielder	to	reach	
the	landing	spot	of	the	batted	ball	if	we	assume	they	are	moving	at	27	ft/s	(MLB	average	sprint	
speed).	In	other	words,	𝛿7 = hang	time − ?@ABCDEF	BH	ICJJ

27
,	where	hang	time	is	measured	in	seconds	

and	distance	in	feet.	Intuitively,	a	positive	value	of	𝛿7	suggests	that	the	fielder	will	reach	the	landing	
spot	before	the	ball	hits	the	ground,	so	it	will	likely	be	caught	for	an	out.	A	negative	value	of	𝛿7	
means	the	ball	will	hit	the	ground	before	the	fielder	can	reach	it,	so	it	will	likely	be	a	hit.	Thus,	our	
non-ground	ball	out	model	is	given	by	
	
	 𝑓¬gb(𝑏, 𝑝!) = 𝑝(𝑜|𝑏 = ¬gb) = 𝜎(−2.17 + 1.5𝛿7)	 (10)	

where	once	again	𝜎	is	the	sigmoid	function,	b	is	the	batted	ball,	𝑝!	is	the	positioning	strategy,	o	is	
the	event	that	an	out	occurs,	and	gb	is	the	event	of	a	groundball,	so	¬gb	is	the	event	of	a	non-ground	
ball.		
	
Figure	12	shows	a	calibration	plot	for	the	non-ground	ball	out	model	on	a	holdout	validation	data	
set.	It	shows	that	𝑓¬gb	makes	well-calibrated	probability	predictions,	suggesting	that	maximizing	
the	outputs	of	this	model	will	maximize	non-ground	ball	outs.	
	

	
Figure	12:	Non-ground	ball	out	model	calibration	on	a	holdout	data	set.	This	suggests	that	𝑓¬gb	
makes	well-calibrated	out	probability	predictions.	
	
As	with	the	ground	ball	out	model,	precise	starting	position	data	would	likely	be	able	to	make	a	
more	accurate	non-ground	ball	out	model.	However,	our	model	on	publicly	available	data	again	
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makes	well-calibrated	predictions.	Additionally,	𝑓¬gb	incentivizes	fielders	to	increase	the	difference	
between	a	batted	ball's	hang	time	and	the	time	it	takes	them	to	get	to	the	ball's	landing	spot.	The	
only	way	to	do	this	is	by	decreasing	the	time	to	the	landing	spot	by	moving	closer	to	it.	Thus,	this	
model	will	place	fielders	into	positions	that	will	help	them	catch	more	batted	balls	in	the	air.	
	
3.3.	Final	Preparations	for	Optimization		
We	can	now	define	the	overall	out	model	f	used	in	our	optimization	objective	functions	(1)	and	(2).	
Applying	the	law	of	total	probability,	we	have	
	
	 𝑓(𝑏, 𝑝!) = 𝑝(𝑜|𝑏, 𝑝!) = 𝑓gb(𝑏, 𝑝!)𝑝(𝑏 = gb) + 𝑓¬gb(𝑏, 𝑝!)𝑝(𝑏 = ¬gb)	 	

	 																																			= 𝑓gb(𝑏, 𝑝!)𝟙gb(𝑏) + 𝑓¬gb(𝑏, 𝑝!) �1 − 𝟙gb(𝑏)�	 (11)	

	
where	𝟙gb(𝑏)	is	the	indicator	function,	

𝟙gb(𝑏) 	= 	 r
1					𝑖𝑓	𝑏	 = 	gb			
0					𝑖𝑓	𝑏	 = 	¬gb	

The	last	equality	in	(11)	results	because	we	know	whether	b	is	a	ground	ball	or	not,	so	𝑝(𝑏 = gb) 	∈
{1,0}	and	𝑝(𝑏 = ¬gb) 	= 	1	 − 	𝑝(𝑏 = gb).	
	
The	last	piece	of	formulating	(2)	is	to	define	𝑓woba.	Using	just	the	plays	in	the	batted	ball	tracking	
data	that	resulted	in	hits,	we	created	a	machine	learning	hit	type	classification	model	that	takes	as	
input	the	spray	angle,	launch	angle,	exit	speed,	and	batter	handedness	and	outputs	the	probability	
of	a	single	(1B),	double	(2B),	triple	(3B),	and	home	run	(HR)	conditioned	on	the	batted	ball	not	
being	an	out.	If	the	wOBA	weights	of	a	single,	double,	triple,	and	home	run	are	𝑤", 𝑤5, 𝑤;,	and	𝑤#	
respectively,	then	we	calculate	the	expected	wOBA	of	a	batted	ball	given	that	it	is	not	an	out	as	
	
	 𝑓woba(𝑏) = 𝑤"𝑝(1B|𝑏) + 𝑤5𝑝(2B|𝑏) + 𝑤;𝑝(3B|𝑏) + 𝑤#𝑝(HR|𝑏)	 (12)	

where		𝑝(1B|𝑏),	𝑝(2B|𝑏),	𝑝(3B|𝑏),	and	𝑝(𝐻𝑅|𝑏)	are	defined	using	the	hit	type	classification	model.	
We	used	the	wOBA	weights	from	2023:	𝑤" = 0.883,𝑤5 = 1.244,𝑤; = 1.569, and	𝑤# = 2.004	[6].	
	
Note	that	the	wOBA	weight	of	an	out	is	always	0,	so	we	could	calculate	the	expected	wOBA	of	a	
batted	ball	without	the	condition	that	it	is	not	an	out	as	
	

𝑝(𝑜|𝑏) ⋅ 0 + 61 − 𝑝(𝑜|𝑏)9 ⋅ 𝑓woba(𝑏) = 61 − 𝑝(𝑜|𝑏)9 ⋅ 𝑓woba(𝑏),	
	
where	𝑝(𝑜|𝑏)	is	the	probability	of	an	out	on	batted	ball	b.	Substituting	𝑓(𝑏, 𝑝!)	in	for	𝑝(𝑜|𝑏)	reveals	
how	we	derived	the	minimize	expected	wOBA	objective	function	(2).		
	
3.4.	Optimization	with	Gradient	Descent		
In	practice,	we	approximate	the	optimal	solutions	to	(1)	and	(2).	Let	𝐛 = [𝑏", 𝑏5, … , 𝑏N]	be	a	sample	
of	batted	balls	from	the	𝑖th	batter's	batted	ball	distribution,	𝑝4(ℎ, 𝑣, 𝑠)	(5).	Then	our	approximately	
optimal	solution	to	(1)	for	batter	𝑖	is	given	by	maximizing	the	average	out	probability	over	this	
large	sample	of	batted	balls,	
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𝑝!∗ ∈ argmax

%!∈'!
𝔼𝐛 [𝑓(𝐛, 𝑝!)] = argmax

%!∈'!

1
𝑁
�𝑓6𝑏6 , 𝑝!9
N

6R"

.	
	

(13)	

Likewise,	our	approximately	optimal	solution	to	(2)	for	batter	𝑖	is	given	by	minimizing	the	average	
expected	wOBA	over	the	large	sample	of	batted	balls,		
	
	

𝑝!∗ ∈ argmin
%!∈'!

𝔼𝐛 561 − 𝑓(𝐛, 𝑝!)9 ⋅ 𝑓woba(𝐛); = argmin
%!∈'!

1
𝑁
��1 − 𝑓6𝑏6 , 𝑝!9�
N

6R"

⋅ 𝑓woba6𝑏69.	
	

(14)	

We	use	mini-batch	stochastic	gradient	descent	with	momentum	to	find	these	approximately	
optimal	solutions	[7].	
	
When	we	draw	batted	ball	samples,	we	use	Tropicana	Field's	outfield	dimensions,	acquired	from	
[14],	to	identify	batted	balls	that	would	land	foul	or	over	the	Trop's	outfield	fence.	Those	balls	get	
removed	from	the	sample.	Figure	13	shows	an	example	of	the	landing	coordinates	and	hang	times	
of	batted	ball	samples	that	stayed	in	fair	territory	in	the	Trop.	
	

	
Figure	13:	A	set	of	batted	ball	samples	that	stayed	in	fair	territory	at	Tropicana	Field.	

	
Recall	that	𝑃!	is	the	set	of	admissible	positioning	strategies.	Prior	to	2023,	𝑃!	was	any	positioning	
strategy	that	had	the	fielders	standing	in	fair	territory	with	the	first	baseman	close	enough	to	first	
base	to	cover	it	on	any	ground	balls	in	the	infield.	When	the	new	shift	ban	rule	was	added	in	2023,	
𝑃!	was	constrained	further,	requiring	four	infielders	in	the	dirt	with	two	on	either	side	of	second	
base	[4].	Stochastic	gradient	descent	is	an	unconstrained	optimization	method,	so	we	use	projected	
stochastic	gradient	descent	to	meet	the	constraints	on	𝑃!	[11].	After	each	step	of	gradient	descent	
the	algorithm	checks	that	three	conditions	are	met:	
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1. The	first	baseman	must	be	within	40	feet	of	first	base.	If	not,	his	position	is	projected	back	
into	𝑃!	by	maintaining	the	relative	angle	with	first	base	while	decreasing	the	distance	back	
down	to	40	feet.	

2. Every	infielder	must	be	in	the	infield	dirt,	i.e.,	they	must	be	within	95	feet	of	the	pitching	
rubber	[32].	If	not,	their	position	is	projected	back	into	𝑃!	by	maintaining	the	relative	angle	
with	the	rubber	while	decreasing	the	distance	back	down	to	95	feet.	

3. There	must	be	two	infielders	on	either	side	of	second	base.	If	the	third	baseman	or	
shortstop	have	spray	angles	greater	than	0∘,	they	are	projected	back	into	𝑃!	by	maintaining	
the	depth	from	home	plate	while	decreasing	the	spray	angle	back	down	to	0∘.	Likewise,	if	
the	second	baseman	has	a	spray	angle	less	than	0∘,	his	position	is	projected	back	into	𝑃!	by	
maintaining	the	depth	from	home	plate	while	increasing	the	spray	angle	back	up	to	0∘.	

	
We	also	allow	for	the	option	to	relax	the	2023	shift	ban	constraints,	in	which	case	we	only	check	
that	the	first	baseman	was	close	to	first	base.	Since	the	optimizer	never	moves	fielders	into	foul	
ground	there	is	no	need	to	enforce	the	fielders	in	fair	territory.	
	
When	comparing	the	optimal	positioning	strategies	from	maximizing	outs	(13)	and	from	
minimizing	wOBA	(14)	on	2023	batted	balls,	the	wOBA	optimized	positioning	out	performs	the	out	
optimized	positioning	in	terms	of	expected	number	of	outs	as	well	as	expected	wOBA.	The	wOBA	
optimized	results	are	presented	in	the	next	subsection.	
	
3.5.	Optimization	Results			
Figure	14	shows	our	recommended	positions	with	the	2023	constraints	at	Tropicana	Field	for	2023	
AL	and	NL	MVPs	Shohei	Ohtani	and	Ronald	Acuña	Jr.	The	gray	X's	are	the	initial	positions	in	the	
optimizer.	

	
Figure	14:	2023	wOBA	optimized	positioning	recommendations	against	MVPs	Shohei	Ohtani	and	
Ronald	Acuña	Jr.	The	gray	X's	are	the	starting	points	of	the	fielders	in	the	optimizer.	
	
To	test	the	effectiveness	of	our	recommended	positioning,	we	use	f	and	𝑓woba	to	calculate	the	
expected	outs	and	expected	wOBA	on	all	batted	balls	in	2023	using	our	recommended	positioning,	
and	then	we	compared	that	to	the	expected	outs	and	expected	wOBA	using	the	MLB	average	
starting	positions.	We	removed	all	home	runs	in	2023	as	well	as	any	ball	that	would	have	gotten	out	
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of	Tropicana	Field	since	our	recommended	positions	were	for	the	Trop.	We	also	removed	plays	
with	non-standard	outfield	positioning,	like	we	did	when	we	trained	𝑓¬gb.	This	helped	ensure	that	
our	MLB	average	starting	positioning	assumption	was	never	too	far	off.	We	ultimately	had	62,552	
plays	left	for	testing.	
	
Using	our	positioning,	the	expected	batting	average	in	2023	was	0.305,	and	the	expected	wOBA	was	
0.308.	The	average	starting	positions	gave	an	expected	batting	average	of	0.320	and	an	expected	
wOBA	of	0.321.	Thus,	over	the	62,552	plays	our	positioning	is	expected	to	prevent	about	938	more	
hits	(31	per	team).	Converting	wOBA	to	runs	above	average	[29],	our	positioning	saves	an	expected	
675	more	runs	(22.5	per	team).	However,	there	is	a	notable	discrepancy	between	the	actual	batting	
average	on	these	plays	(0.293)	and	the	expected	batting	average	when	we	assume	average	starting	
positions	(0.319).	Thus,	even	though	we	see	improvement	over	the	average	positioning	with	our	
method,	there	are	inaccuracies	resulting	from	the	outs	model	trained	using	average	starting	
positions.	
	
As	a	final	check	on	our	method,	we	built	another	expected	out	model	using	the	proprietary	MLB	
data,	which	includes	starting	positions,	courtesy	of	the	Texas	Rangers.	While	we	are	not	permitted	
to	share	the	specifics	of	the	models	that	were	learned,	we	can	state	that	these	models	gave	an	
expected	batting	average	of	0.292	when	using	the	average	starting	positions.	This	is	much	closer	to	
the	actual	batting	average	of	0.293.	The	optimal	positions	determined	by	these	new	models	had	an	
expected	batting	average	of	0.281.	This	is	an	improvement	over	the	actual	batting	average	of	0.293	
by	about	750	outs	(25	per	team).	
	
4.	Strategizing	Against	Adaptable	Hitters		
	
We	conclude	this	paper	by	addressing	the	concern	in	[13]	that	hitters	will	observe	the	positions	of	
the	opposing	defenders	and	change	their	strategy	at	the	plate	in	response.	Recall	that	𝒟	is	a	set	of	
possible	choices	of	batted	ball	distributions,	and	in	our	game	model	of	defensive	positioning	(3)-(4),	
the	batter	gets	to	choose	the	distribution	d	in	𝒟	that	his	batted	balls	will	be	sampled	from.	For	
example,	hitters	are	occasionally	asked	to	sacrifice	bunt	in	certain	game	situations	to	advance	a	
baserunner,	so	𝒟	could	be	reasonably	defined	as	{swing	away,	bunt}.	A	particularly	skilled	hitter	
may	have	some	ability	to	go	more	oppo	when	he	observes	an	extreme	pull-side	shift	from	the	
defense,	so	he	would	have	𝒟	=	{pull,	oppo}.	An	equilibrium	pair	of	strategies	is	a	positioning	
strategy	𝑝!∗ ∈ 𝑃!	and	a	batter	strategy	𝑑∗ ∈ 𝒟	satisfying	(3)	in	the	case	where	our	objective	function	
is	expected	outs	and	satisfying	(4)	in	the	case	where	our	objective	function	is	expected	wOBA.	
	
Just	as	in	section	3.4,	we	approximate	these	equilibria:	a	large	number	of	samples	are	drawn	from	
each	of	the	possible	batter	distributions	in	𝒟.	Then	the	approximate	equilibria	when	the	objective	
function	is	outs	in	(3)	are	(𝑝!∗, 𝑑∗)	satisfying	
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where	b	is	the	sample	of	size	N	of	batted	balls	from	d,	and	𝑏6 	is	the	𝑗78	batted	ball	in	the	sample.	
Likewise,	the	approximate	equilibria	when	the	objective	function	is	wOBA	in	(4)	are	(𝑝!∗, 𝑑∗)	
satisfying	
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To	find	these	approximate	equilibria,	we	once	again	use	stochastic	gradient	descent.	Since	the	
batter	can	observe	the	positions	of	the	fielders,	we	assume	that	for	any	choice	of	𝑝!	he	will	use	the	
𝑑 ∈ 𝒟	that	either	minimizes	outs	or	maximizes	wOBA	against	𝑝!.	Thus,	in	(15)	we	calculate	the	
gradient	of	the	minimum	expected	outs	over	𝒟	with	respect	to	𝑝!,	whereas	before	we	just	
calculated	the	gradient	of	expected	outs	with	respect	to	𝑝!	in	(13).	Likewise,	in	(16)	we	calculate	the	
gradient	of	the	maximum	expected	wOBA	over	𝒟	with	respect	to	𝑝!.	
	
This	approach	can	be	generalized	to	any	finite	number	of	batter	actions	𝑑 ∈ 𝒟.	The	examples	above	
had	|𝒟|	=	2,	but	one	could	apply	the	same	methodology	to	some	omnipotent	batter	who	can	choose	
the	precise	spray	angle	at	which	they	hit	the	ball.	Their	action	space	would	have	90	possible	actions,	
one	for	each	spray	angle.	It	is	likely	that	the	positioning	strategy	against	such	a	batter	would	be	the	
least	exploitable	strategy	in	𝑃!.	It	would	have	to	fill	in	as	many	gaps	as	possible.	Nevertheless,	in	the	
following	two	subsections	we	find	equilibria	for	two	possible	batter	action	spaces,	𝒟	=	{pull,	oppo}	
and	𝒟	=	{bunt,	swing	away}.	
	
4.1.	Shift-Beaters			
We	suspect	that	there	are	some	hitters	who	make	an	effort	to	go	more	oppo	when	they	observe	the	
defense	shifting	them	to	the	pull	side.	To	identify	such	hitters,	we	took	the	ball	in	play	data	from	
2021-2022,	and	we	refit	the	spray	angle	distributions	using	the	method	in	section		2.1.	However,	
this	time	we	fit	two	different	𝑝(ℎ)	distributions	for	each	hitter,	one	using	only	data	where	the	
infield	was	shifted	against	them,	and	the	other	using	only	data	where	the	infield	was	not	shifted	
against	them.	We	compared	the	means	of	the	two	distributions	to	identify	hitters	that	went	more	
oppo	against	a	shift.	Of	the	hitters	with	at	least	100	shifted	and	non-shifted	batted	balls	in	the	
training	data,	the	biggest	“shift-beaters"	were	Josh	Bell,	Josh	Rojas,	Chas	McCormick,	Adam	Frazier,	
and	Tyler	O'Neill.	Note	that	Josh	Bell	is	a	switch	hitter,	so	to	clarify,	we	found	him	to	be	a	shift-
beater	when	he	bats	left-handed.	Figure	15	shows	our	posterior	estimates	for	Josh	Bell	and	Chas	
McCormick,	along	with	a	histogram	of	the	spray	angles	used	to	learn	these	distributions.	Recall	that	
we	flip	the	sign	of	spray	angles	for	left-handed	batters,	so	Bell's	actual	spray	angles	would	be	
flipped	the	other	way.	For	the	remainder	of	this	section	we	will	focus	our	attention	on	Chas	
McCormick.	
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Figure	15:	Posterior	estimates	of	Josh	Bell	and	Chas	McCormick's	shift	and	non-shift	spray	angle	
distributions	
	
Let	𝑑oppo	be	McCormick's	batted	ball	distribution	against	the	shift	and	𝑑pull	his	batted	ball	
distribution	against	a	non-shift.	Then	McCormick's	action	set	is	𝒟 = {𝑑oppo, 𝑑pull}.	Applying	(15),	the	
approximate	equilibrium	positioning	strategy	when	maximizing	outs	against	Chas	McCormick	is	
given	by	
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(17)	

The	optimal	positioning	strategy	is	calculated	using	(13)	when	𝑑 = 𝑑oppo	and	𝑑 = 𝑑pull	in	order	to	
compare	those	positioning	strategies	with	the	equilibrium.	
	
Figure	16	shows	the	equilibrium	strategy	(red	dots),	the	strategy	against	𝑑pull	(blue	triangles),	and	
the	strategy	against	𝑑oppo	(orange	triangles).	Again	the	gray	X's	are	the	starting	positions	of	the	
fielders	in	the	optimizer.	The	optimizer	initially	suggested	moving	the	infielders	to	an	unrealistic	
depth,	so	we	added	a	new	constraint	that	the	infielders	had	to	be	within	100	feet	of	the	pitching	
rubber.	
	
Using	our	outs	model	f,	we	found	the	expected	batting	average	when	McCormick	uses	the	pull	
strategy	against	the	blue	defense	is	0.274	and	when	he	uses	the	oppo	strategy	against	the	blue	
defense	it	is	0.271.	When	he	uses	the	pull	strategy	against	the	orange	defense	he	has	an	expected	
batting	average	of	0.275,	and	when	he	uses	the	oppo	strategy	against	the	orange	defense	he	has	an	
expected	batting	average	of	0.269.	It	is	not	surprising	that	the	orange	defense	does	better	against	
the	oppo	strategy	than	the	blue	defense,	nor	is	it	surprising	that	the	blue	defense	does	better	
against	the	pull	strategy	than	the	orange	defense.	However,	it	is	interesting	that	whether	the	
defense	uses	the	blue	or	orange	strategy,	McCormick	is	better	off	using	his	pull	strategy.	That	
suggests	that	the	pull	strategy	dominates	the	oppo	strategy,	and	it	explains	why	the	equilibrium	
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positioning	matches	the	blue	positioning.	If	McCormick's	pull	strategy	dominates	his	oppo	strategy,	
then	when	we	solve	for	the	equilibrium	we	assume	that	regardless	of	positioning	McCormick	
chooses	the	pull	strategy.	Thus,	each	step	of	gradient	descent	in	(17)	uses	the	samples	from	𝑑pull,	so	
we	end	up	in	the	same	place	as	we	do	when	we	solve	(13)	with	𝑑 = 𝑑pull.	Not	surprisingly,	the	
equilibrium	strategy	for	McCormick	is	𝑑∗ = 𝑑pull.	The	expected	batting	average	in	the	equilibrium	is	
0.274,	which	matches	the	expected	batting	average	we	calculated	when	McCormick	uses	his	pull	
strategy	against	the	blue	defense,	as	expected.	
	

	
Figure	16:	The	optimal	positioning	strategies	and	equilibrium	positioning	strategies	against	“shift-
beater"	Chas	McCormick.	McCormick's	pull	strategy	is	dominant,	so	the	equilibrium	defense	is	the	
same	as	the	defense	against	the	pull	strategy.	
	
It	is	not	true	in	general	that	one	of	the	hitter's	strategies	will	dominate	the	other.	In	the	next	section	
we	provide	an	example	where	that	is	not	the	case.	
	
4.2.	Bunting	or	Swinging	Away	
Unlike	Chas	McCormick,	many	hitters	may	struggle	to	go	more	oppo	against	the	shift.	However,	we	
believe	that	most	hitters,	perhaps	with	some	practice,	should	be	able	to	bunt	to	beat	an	extreme	
fielding	alignment.	Left-handed	batters	in	particular	could	benefit	from	bunting	down	the	third	
baseline	against	a	shift	since	these	alignments	often	leave	the	area	by	third	base	wide	open.	In	this	
section,	we	determine	how	a	defense	should	position	when	a	very	pull-heavy	left-handed	batter	
begins	to	show	a	willingness	to	bunt	down	the	third	baseline.		
	
We	started	by	estimating	a	bunt	batted	ball	distribution,	𝑑bunt.	Our	assumption	is	that	we	will	have	
a	left-handed	batter	who	is	trying	to	bunt	down	the	third	baseline,	so	we	took	sacrifice	bunts	from	
2019-2023	that	were	hit	by	left-handed	batters	with	spray	angles	less	than	−22.5∘.	We	shifted	and	
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scaled	the	spray	angles	of	the	bunts	so	that	they	were	between	0	and	1,	and	then	we	used	maximum	
likelihood	estimation	to	fit	a	beta	distribution	to	the	data.	The	resulting	distribution	was	𝑝bunt(ℎ) ∼
Beta(0.945,1.142).	Similarly,	we	fit	a	normal	distribution	to	the	exit	speeds	of	these	bunts	using	
maximum	likelihood	estimation,	𝑝bunt(𝑠) ∼ 𝒩(34,7).	Finally,	we	shifted	launch	angles	so	that	they	
were	between	0	and	180,	and	we	used	maximum	likelihood	estimation	to	fit	a	gamma	distribution	
to	these	shifted	launch	angles,	𝑝bunt(𝑣) ∼ Gamma(α = 4, β = 0.07).	Since	we	defined	these	
distributions	independently,	their	joint	distribution	is	just	the	product,	so	we	have	𝑑bunt =
𝑝bunt(ℎ)𝑝bunt(𝑣)𝑝bunt(𝑠).	Figure	17	shows	an	example	of	a	sample	of	batted	balls	drawn	from	𝑑bunt.	
	

	
Figure	17:	A	sample	of	shift-beating	bunts	from	left-handed	hitters.	

	
Consider	switch-hitter	Carlos	Santana	when	he	bats	left-handed.	Our	batter	action	set	𝒟	is	therefore	
given	by	{𝑑bunt,	𝑑swing}	where	𝑑swing	is	Santana's	left-handed	batted	ball	distribution	from	section	2.	
Applying	(15)	to	this	specific	example	gives	the	optimization	problem	we	need	to	solve	to	find	the	
equilibrium	positioning	strategy	
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(18)	

	
Figure	18	shows	our	positioning	recommendations	against	Santana.	The	blue	triangles	show	the	
positioning	under	the	assumption	that	Santana	will	swing	away,	and	the	orange	triangles	show	the	
positioning	under	the	assumption	that	he	will	bunt.	It	is	notable	that	most	of	the	positions	in	the	
equilibrium	match	the	positions	of	the	blue	defense.	Essentially	the	only	difference	between	the	
equilibrium	and	the	blue	defense	is	that	we	move	the	third	baseman	a	little	shallower	and	closer	to	
the	third	baseline	to	defend	against	the	threat	of	a	bunt.	
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Figure	18:	The	optimal	positioning	strategies	and	equilibrium	strategy	against	Carlos	Santana.	The	
threat	of	a	well-placed	bunt	forces	the	third	baseman	to	move	from	the	shifted	defense	given	by	the	
blue	triangle	to	a	shallower	depth	in	the	equilibrium	strategy.	
	
When	Santana	bunts	against	the	orange	defense,	the	expected	batting	average	is	0.062.	When	he	
swings	away,	the	expected	batting	average	is	0.354.	When	he	bunts	against	the	blue	defense,	his	
expected	batting	average	is	0.453,	and	when	he	swings	away	his	expected	batting	average	is	0.268.	
In	the	equilibrium,	Santana's	optimal	strategy	is	to	swing	away,	which	gives	an	expected	batting	
average	of	0.272.	Clearly	it	is	extremely	advantageous	for	Santana	to	bunt	against	the	shift.	A	
defense	that	shifts	against	Santana	gifts	him	the	incredible	opportunity	to	be	the	greatest	hitter	for	
average	of	all	time,	and	all	he	has	to	do	is	bunt	the	ball	where	the	third	baseman	normally	stands.	It	
is	truly	mystifying	to	us	that	so	few	hitters	bunt	when	an	infield	plays	in	an	extreme	alignment	such	
as	our	blue	defense.	Additionally,	by	being	willing	to	bunt	when	that	is	advantageous,	Santana	
forces	the	defense	to	move	to	the	equilibrium	positioning,	and	in	the	equilibrium	he	has	an	
expected	batting	average	of	0.272,	which	is	four	points	better	than	his	expected	average	when	he	
swings	away	against	the	blue	defense.	In	other	words,	a	willingness	to	bunt	forces	the	defense	into	
a	positioning	strategy	where	Santana	can	swing	away	and	expect	more	hits	than	he	would	get	if	he	
always	swung	away	and	never	bunted.	This	conclusion	echoes	the	statement	in	Tango,	Lichtman,	
and	Dolphin's	the	Book	[30],	which	reads,	“The	batting	team	must	sometimes	attempt	a	[bunt]	to	
keep	the	defense	from	playing	all	the	way	back."	As	great	admirers	of	Tango,	Lichtman,	and	
Dolphin,	we	are	thrilled	to	have	provided	further	evidence	to	support	their	claim.	
	
Admittedly	we	are	not	convinced	that	bunting	would	not	still	be	the	most	effective	strategy	against	
the	equilibrium	positioning,	even	though	Santana's	equilibrium	strategy	is	to	swing	away.	We	
hypothesize	that	the	third	baseman	is	still	too	deep	to	effectively	field	a	bunt,	even	in	the	
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equilibrium,	another	shortcoming	of	the	publicly	available	data	used	to	train	our	out	models.	The	
models	did	not	appropriately	learn	the	relationship	between	depth	and	out	likelihood.	Thus,	we	
once	again	make	use	of	the	models	learned	from	the	proprietary	data	shared	with	us	by	the	Texas	
Rangers.	
	
Consider	the	batter	Joey	Gallo,	who	is	another	pull-heavy	left-handed	batter,	and	who	is	often	at	the	
center	of	shift-ban	discussions	as	a	hitter	who	seems	likely	to	benefit	from	the	shift-ban	rule	[24,	
21].	The	set	𝑑bunt	is	the	same,	but	we	switch	𝑑swing	from	Santana's	batted	ball	distribution	to	Gallo's.	
Then	we	solve	for	the	equilibrium	in	(18)	using	the	Rangers	out	model.	
	
Figure	19	shows	the	positioning	recommendations	for	Gallo.	Note,	the	Rangers	requested	that	we	
only	display	the	location	of	the	third	baseman,	but	the	main	position	of	interest	is	the	third	
baseman	anyways	since	he	is	primarily	responsible	for	the	batted	balls	in	𝑑bunt.	This	time	the	depth	
of	the	third	baseman	in	the	equilibrium	looks	more	reasonable	for	fielding	bunts	than	the	depth	in	
Santana's	equilibrium.	

	
Figure	19:	The	optimal	and	equilibrium	positioning	strategies	of	just	the	third	baseman	against	Joey	
Gallo.	The	threat	of	a	well-placed	bunt	forces	the	third	baseman	to	move	to	a	shallower	depth.	
	
The	expected	batting	average	when	Gallo	bunts	against	the	orange	defense	is	0.036.	When	he	
swings	away	against	the	orange	defense,	the	expected	average	is	0.290.	When	he	bunts	against	the	
blue	defense,	the	expected	average	is	0.574,	and	when	he	swings	away	against	the	blue	defense	the	
expected	average	is	0.223.	In	the	equilibrium,	Gallo's	optimal	strategy	is	to	swing	away,	which	gives	
an	expected	batting	average	of	0.226.	These	results	are	very	similar	to	the	results	we	had	for	
Santana.	Like	Santana,	Gallo	has	the	potential	to	be	the	greatest	hitter	ever	if	he	is	willing	to	bunt	
against	a	shifted	defense.	Also	like	Santana,	if	Gallo	is	willing	to	bunt	when	that	is	advantageous,	he	
forces	the	fielders	to	adjust	to	the	equilibrium	positioning.	From	this	positioning,	he	has	a	better	
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expected	batting	average	when	he	swings	away	than	he	does	when	he	swings	away	against	the	
original	blue	defense.	Just	by	being	willing	to	bunt,	Gallo	would	eventually	face	defenses	that	will	
give	up	more	hits	against	him	when	he	swings	away.		
	
5.	Conclusion	
	
In	this	paper,	we	estimated	joint	probability	distributions	of	batted	ball	spray	angle,	launch	angle,	
and	exit	speed	as	well	as	models	to	estimate	the	likelihood	of	an	out	and	expected	wOBA	given	a	
batted	ball	trajectory	and	fielder	positioning.	We	used	those	models	in	a	novel	approach	to	optimize	
fielder	positioning.	We	determined	that	our	approach	decreases	expected	hits	allowed	and	
expected	runs	allowed	relative	to	MLB	average	fielder	positioning	strategies.	We	also	developed	a	
zero-sum	game	model	to	position	against	adaptable	hitters	who	change	their	batted	ball	tendencies	
in	response	to	the	defense’s	positioning.	Notably,	we	discovered	that	some	left-handed	hitters	can	
significantly	improve	their	batting	average	by	bunting	against	a	shifted	defense.	This	leads	us	to	
wonder	if	the	2023	shift-ban	was	necessary	at	all.	If	the	goal	of	the	ban	was	to	increase	batting	
averages	across	the	league,	a	better	way	to	achieve	that	goal	may	have	been	to	encourage	shifting	
while	also	encouraging	pull-heavy	hitters	to	practice	and	start	implementing	some	opposite	field	
bunts.	
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