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1. Introduction 
 
Soccer tracking data has now been available for 25 years, with Derby County the first to 
utilize the outputs for analysis [1]. This system relied on a set of cameras installed in the 
stadium and on humans to manually annotate player locations at 10 frames-per-second. The 
data generated was used for measuring fitness outputs (i.e., how far a player ran, number of 
sprints etc.), and subsequently was used for tactical analysis, a key factor in enabling Sam 
Allardyce’s Bolton Wanderers to overachieve for several seasons.  
 
By 2008, advances in computer vision allowed for the automatic tracking of players and the 
ball, enabling real-time data analysis. However, the full potential of tracking data was initially 
constrained by limited availability, often restricted to a team's own games. This hindered the 
use of tracking data for broader applications like scouting and recruitment. Subsequently, 
league-wide deals were arranged, but this still limited analysis to within-leagues, precluding 
cross-league analysis and comparison. 
 
The advent of broadcast tracking systems promised to overcome these limitations by 
providing data for any game where broadcast video was available. However, the data 
obtained from broadcast footage is inherently incomplete due to several factors, such as 
players being out of the main camera's view, close-up shots, picture quality issues, and 
scenes where players obscure each other from view. In essence, even though broadcast 
tracking data can be generated – these occlusions mean that it still only captures a portion of 
what one could expect from tracking data from an in-venue setup.  
 
1.1 Limitations of Existing Data Streams for Scalable Tactical Analysis  
 
To understand the limitations of incomplete data when conducting nuanced tactical analysis, 
we focus on the motivating task of predicting each player’s likelihood of receiving a given 
pass from a teammate. This task is ostensibly a simple one within the context of sport 
analytics, but can reveal deep tactical insights into the ways professional teams press, build-
up, and create goal-scoring opportunities. While expert coaches can perform this task for an 
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individual pass, how can this task be performed for every pass in a match? Or for every pass 
in a season? Or for every pass through the hundreds of thousands of men’s and women’s 
professional matches that are played across the globe every year? The only way to perform 
these analyses is with complete (with all agent locations being provided continuously 
throughout the game) and scalable (across all games) data digitization.  
 
Although in-venue tracking systems generate highly accurate and complete tracking data, 
licensing agreements and the operational costs have meant that these systems have not 
scaled across the world game. One data stream that is widely available is event data, which 
logs the sequential stream of semantic events within games. While event data covers the 
majority of professional games, it only captures the player events that are on-ball, missing 
off-ball actions (e.g., how a player positions themselves to receive a pass). In this sense, event 
data is incomplete, and cannot be used to perform tasks that require perception of all player 
behaviors.  
 
While broadcast tracking addresses the limitations of in-venue tracking systems by being 
able to scale globally, like event data it is also not a complete data stream. We have discussed 
the importance of having complete tracking data for understanding a team’s passing 
patterns. In one example game, in the frames where passes occur, only an average of 43% of 
players can be visually perceived in broadcast tracking, meaning that over half the players 
on average are occluded. These occlusions impact the visibility of the most important agents 
during passes: passers, receivers, and the ball. In 21% of pass frames the passer is occluded, 

Figure 1: (a) Shows the moment where a player approaching the byline (Yellow #20) is preparing to pass the ball. Which 
players are the most likely receivers? The only way to answer this question in a data-driven way is with In-Venue 
Tracking data (b), as Event Data (c) lacks the sufficient granular information to answer this question, and Raw Broadcast 
Tracking (d) suffers from heavy occlusions where only 1 of the passer's 10 teammates are visible. In (e) we show how our 
Imputed Tracking data generates realistic behaviors for players that are occluded in broadcast tracking, thus enabling 
more nuanced downstream analysis. 
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and in 39% of pass frames the receiver is occluded. Furthermore, the ball's small size and 
fast movement mean that its trajectory is also heavily occluded and/or noisy. The difficulties 
that occluded data poses in capturing the context around pass events is perhaps even more 
acute in the case of goal-scoring opportunities. In the evaluation game, of the passes that 
were made to receivers who subsequently attempted a shot, the receiver was occluded 17% 
of the time when the pass was made. Soccer is a low-scoring game where scoring 
opportunities are sparse. The absence of this important context in broadcast tracking 
impairs the ability to perform complete and nuanced analysis.   
 
In this paper, we demonstrate that generative AI (specifically diffusion models) can be 
utilized to impute highly realistic behaviors for agents (players and the ball) when they are 
occluded in broadcast tracking. We showcase how this approach makes a considerable step 
from incomplete raw broadcast tracking, towards the generation of in-venue quality tracking 
without in-venue cameras. This is a landmark contribution towards the democratization of 
tracking data across the global game. A comparison of our imputed tracking data and 
broadcast footage, in-venue tracking, event data, and broadcast tracking can be viewed in 
Figure 1.  
 

2. Generating Complete Tracking Data via Diffusion  
 
In this section we give a high-level overview of our imputation method, including how we 
encode broadcast tracking data, fuse broadcast tracking with event data, and utilize 
generative AI models to produce highly photorealistic trajectories.  
 

2.1 Encoding Broadcast Tracking Data 
The first task of imputation is to encode broadcast tracking data, which forms the strongest 
signal for inferring the locations of occluded agents. The two key challenges of encoding 
tracking data are: (1) modelling each agent's past behaviors, and (2) representing inter-
agent spatial dynamics. In our setting, the first challenge is especially difficult, because 
players often remain occluded for long periods of time (up to a minute). As a result, it is vital 
to be able to encode multiple minutes of broadcast tracking at a time. 
 
In previous works, tracking data has been visualized as a 2D top-down image and processed 
through computer vision models [2, 3] i.e., convolutional neural networks [4]). However, 
while agent spatial inter-relationships can be perceived from a single image, the agents’ long-
term temporal histories cannot. Furthermore, the high dimensionality of images makes it 
intractable to jointly process more than a few consecutive image frames at a time. In our 
setting, where multiple minutes of tracking context is required, image-based approaches are 
not appropriate.  
 
Tracking data is an inherently compressed data representation, and therefore it makes more 
sense to impute behaviors by using this stream directly. One important challenge of using 
tracking data directly is the permutation problem. AI models generally assume that their 
inputs are consistently ordered e.g., words passed to a large language model are always 
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entered sequentially. However, there is no natural ordering of players that persists from 
frame to frame and from game to game, which means that most standard deep learning 
models are forced to learn the same relationships for each of the (10!)2 possible 
permutations of agent orderings i.e., the number of ways in which the two teams of 10 
outfield players can be ordered. One approach that addresses the permutation problem is to 
consistently order players by inferring their instantaneous spatial role within a formation 
template [5, 6]. This method is limited by its use of a single static template, failing to 
represent how player roles change depending on the current phase of play (e.g., corners, 
dead-balls, counterattacks). 
 
Another way of tackling the permutation problem is by using permutation invariant models 
i.e., models where changing the order of the players has no impact on the model’s output. 
One such family of models that have this property are Graph Neural Networks (GNNs) [7], 
which encode information that has an underlying graph structure. These models have been 
applied to sports tracking data by representing each agent as a node in a fully connected 
graph, i.e., where there is an edge between every pair of nodes [8, 9, 10]. While formulating 
tracking data as a graph solves the spatial modelling challenge, existing applications have 
only endowed GNNs with short-term temporal context (i.e., <10 seconds). 
 
The backbone of nearly all modern state-of-the-art AI models (e.g., OpenAI’s ChatGPT [11]) 
are Transformers [12], which are neural networks that are closely related to GNNs. 
Transformers primarily rely on a single simple operation: self-attention. For a given 
collection of tokens (e.g., a sequence of words) the attention mechanism will infer each 
token's (e.g., word's) dependence on every other token from large amounts of training data. 
After this operation, each token is updated with the context with respect to all other tokens. 
The success of the attention mechanism on language modelling problems has shown its 
ability to learn complex long-term interdependencies within sequential data. This is an 
appealing property for encoding tracking data, which contains long-term spatial and 
temporal dependencies.  
 
We argue that the optimal way to adapt Transformers to sports tracking data is through 
spatiotemporal axial attention (SAA) [13, 14], which consists of two interleaved attention 
modules: temporal attention and axial attention. In temporal attention (Figure 2a), each 
agent’s temporal context is encoded by completing self-attention between each of an agent’s 
past locations. In spatial attention (Figure 2b), the spatial relationships within a single frame 
are modelled by completing self-attention between each agent’s locations at that instant. By 
interleaving these operations, both the temporal and spatial dependencies within the 
sporting scene are jointly modelled. SAA has two key advantages: First, SAA avoids the 
permutation problem as no ordering is imposed on agents. Secondly, temporal attention is 
an extremely computationally efficient method for modelling agent’s long-term histories. 
This is particularly crucial when accurately predicting the behaviors of agents that are 
occluded for long periods of time.  
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2.1 Enhancing Broadcast Tracking with Event Data 
Although broadcast tracking provides an essential signal for the accurate synthesis of 
complete tracking data, it has several limitations. First, broadcast tracking struggles to track 
the ball continuously and accurately, due to its small size and fast movement. Secondly, there 
are many continuous periods of the game where broadcast tracking does not provide any 
coverage. Although these periods are typically relatively short (<10 seconds), synthesizing 
accurate agent behaviors for these segments is extremely difficult without additional 
contextual information. We address these challenges by integrating event data with 
broadcast tracking data to estimate occluded agent behaviors. This is a paradigm shift away 
from prior works that treat sport as a unimodal domain i.e., only using tracking data. Our 
insight is that sport is multi-modal, consisting of multiple spatiotemporal input modes – 
namely tracking data and event data.  
 
We use the insight that, like tracking data, event data can also be framed as a spatiotemporal 
modality, consisting of a temporal dimension (i.e., the chronological ordering of each player’s 
events), and a spatial dimension (i.e., representing each specific player) and thus can be 
encoded using SAA. We utilize the flexibility of the Transformer architecture by jointly 
processing these modalities together to produce an encoding that contains both tracking and 
event context, as is shown in Figure 3. Collectively, this architecture enables the first fusion 
of event and tracking data in a deep learning model, which is a landmark moment for the 
ways in which sports data is understood and processed by AI models.  
 

  

 

 

                      

  

 

 

                     

Figure 2: Illustration of Spatiotemporal Axial Attention from the perspective of player #20 at the current timestep. In 
Temporal Attention (a) each agent’s past behaviors are encoded by constructing a fully connected graph comprised of a 
player’s past and present locations. Spatial attention (b) is the mechanism where an agent’s spatial dependencies are 
modelled. This is done by constructing a fully connected graph comprised of each agent’s present locations. Interleaving 
these operations collectively results in the modelling of both temporal and spatial dependencies.   
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2.3 Generating Photorealistic Tracking Data via Diffusion  

To this point, the approach we have outlined for fusing event data with broadcast tracking 
data can accurately predict agent locations, however these locations collectively do not 
necessarily form realistic human motion. This is caused by the high level of uncertainty in 
agent locations, particularly due to the noise and heavy occlusions in the broadcast tracking 
input. In practice, this means that behaviors generated in this way often exhibit jitter (i.e., 
unsmooth trajectories) and occasionally teleport between locations.   
 
To alleviate these issues in generating agent behaviors, we utilize diffusion [15], which is a 
family state-of-the-art generative AI models that have most notoriously been used in the 
generation of highly realistic images from captions [16, 17]. At a simple level, diffusion 
models generate data via iteratively denoising from a random initial state. Starting with pure 
noise, diffusion models progressively refine the sample, gradually creating a higher and 
higher fidelity generation. The process of iterative denoising is largely what makes the 
diffusion approach well-suited to the generation of images. Iterative denoising means that 
models both learn to construct the coarse features (e.g., the main subject of an image) and 
granular features (e.g., visual textures) that comprise an image, resulting in highly 
photorealistic generations. Diffusion has similar advantages in the generation of tracking 
data, which also contains both rich coarse features (e.g., agents’ rough locations) and 
granular features (e.g., the smoothness of agent motion). Moreover, just as images can be 
generated by diffusion models by conditioning on textual captions, we generate complete 
tracking data through conditioning on our broadcast and event data encodings. We visualize 
the diffusion generation process in Figure 4.  
 
 

Figure 3: Illustration of how we fuse where Event Data and Broadcast Tracking data to produce a play-level encoding. 
The key module within this architecture is Spatiotemporal Axial Attention, which processes spatiotemporal data via 
interleaved temporal and spatial attention. 
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3. Unlocking Downstream Analysis with Imputed Data 
To evaluate the accuracy of our imputation, we separately extract downstream metrics from 
in-venue tracking, imputed tracking, and broadcast tracking on a test game. This allows us 
to determine how similar the remote tracking datasets (broadcast tracking and imputed 
tracking) are to in-venue tracking data. While there are many valid discriminative tasks that 
could be used for this downstream sporting analysis, here we use the task discussed in 
Section 1.1 - for a given pass, what is the probability that each attacking player will be the 
pass receiver. This is often called the xReceiver metric [10] and is dependent both on agents’ 
coarse locations and on fine-grained details such as agent velocities, accelerations, and body 
orientations. For the xReceiver outputs to match the outputs of in-venue tracking, our 
imputed data must correctly generate these complex features in trajectory space. In this 
section, we outline our method for implementing the xReceiver model, along with a 
discussion of the xReceiver outputs for in-venue tracking, raw broadcast tracking, and our 
imputed tracking.   
 

3.1 xReceiver Dataset  
We train and validate our xReceiver model on 130 games of tracking data. For each of these 
games, we have access to both the in-venue tracking and broadcast tracking data. We focus 
on all successful passes, using 5 seconds of tracking context leading up to 0.2 seconds before 
the pass. For the purposes of this analysis, we only inspect passes where the pass’ temporal 
context exists entirely in in-play segments of the game. Using tracking data directly rather 
than extracting handcrafted temporal features (e.g., velocity and acceleration) increases the 
amount of information available to models and is less sensitive to small amounts of noise. 
We use a 90:10 training and validation split, with features including each agent’s (x, y) 
locations, the agent’s type (i.e., goalkeeper, ball, or outfield player), and an indicator as to 
whether the agent is on the attacking team.  
 
 
 

                     

           

 

Figure 4: Visualizes how tracking data is generated with diffusion via iteratively denoising an initial pure noise sample. 
Gradually, this noise is refined to form a highly realistic tracking data.  
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3.2 xReceiver Model  

We use SAA as the underlying xReceiver model architecture, demonstrating the flexibility of 
having a powerful model which extracts spatiotemporal dependencies from tracking data. In 
essence, we argue that SAA should be the de facto AI model for processing tracking data, 
rather than having intermediate representations (e.g., images) or handcrafting temporal 
features. All agents’ trajectories are processed by a SAA module followed by a linear 
projection layer. Then, each attacking agent’s outputs are fed through a softmax activation 
function, which ensures that the xReceiver model maintains the Law of Total Probability (i.e., 
all attacking player xReceiver values sum to 1). Models are trained using cross entropy loss. 
Two instances of this model are trained, one using in-venue tracking to comprise agent 
locations, and another that uses broadcast tracking.  
 
For testing, the xReceiver model that is trained on in-venue tracking is applied to in-venue 
tracking. Likewise, the xReceiver model that is trained on raw broadcast tracking is applied 
to the raw broadcast tracking data. In the case of imputed tracking, the model trained on in-
venue tracking is used. This enables an analysis of imputed tracking data’s ability to be 
substituted for in-venue tracking.  
 

3.3 xReceiver Quantitative Results 
We use two metrics to compare the quality of raw broadcast and imputed tracking's 
xReceiver outputs with the in-venue outputs. First, we report how frequently the true 
receiver is among the top-k most likely predicted receivers from each dataset. The second 
metric directly compares how similar the in-venue xReceiver outputs are with the remote 
tracking dataset (broadcast tracking / imputed tracking) xReceiver outputs. For every pass 
in each dataset, we extract the set of high likelihood receivers (i.e., players with an xReceiver 
value over 0.1). Then, we compare these sets of players using the Intersection over Union 
(IoU) metric. IoU computes the ratio between the intersection (i.e., the players that both data 
sources agree are high probability receivers) and the union (i.e., the total number of unique 
players in the two sets of high probability receivers). The IoU metric is computed separately 
between (1) in-venue and raw broadcast tracking, and (2) in-venue and imputed tracking. 
These results are shown in Table 1.  
 
The first notable result is that broadcast tracking exhibits the weakest performance in each 
of the extracted metrics. This clearly shows the difficulties that arise in conducting 
downstream analyses on incomplete data which is heavily impaired by occlusions. 
Comparatively, our imputed data has much stronger performance. In terms of the top-k 
metrics, our imputed data's xReceiver outputs closely approach the accuracy shown with in-
venue tracking data. In terms of the IoU metric, our imputed tracking also considerably 
outperforms the raw broadcast tracking data. Despite this, our imputed data still does not 
reach the theoretical limit of 1 (the point at which the high probability receivers in the two 
sets are identical for every pass), showing that our imputation model can still be improved 
in future work. While we only focus on the xReceiver task in this paper, this evaluation will 
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be expanded to encompass the rich suite of downstream analytics tasks that have been 
developed in the sporting community over the last 15 years. 
 

Metric Raw Broadcast Imputed  In-Venue 

Top-1 42.03 55.43 59.06 

Top-2 59.42 76.81 79.35 

Top-3 71.01 88.04 90.94 

Top-4 80.43 93.84 93.48 

Intersection over Union 0.5105 0.7121 - 

 
3.3 xReceiver Qualitative Results 

Now, we qualitatively analyze the xReceiver outputs. Returning to the play shown in Figure 
1, all the event data can tell us is that this play ends with Yellow #20 crossing the ball to 
Yellow #28, who registers a shot-on-target from near the penalty spot. But which other 
players were available? Was this the most threatening pass? How likely was this pass to 
succeed? We only focus on the first of these questions for this paper, but with complete 
tracking data each of these questions can be answered in a data-driven way. We visualize 
each dataset’s xReceiver outputs for this example in Figure 5. For this example, in-venue 
tracking data’s xReceiver outputs tell us that there are three likely receivers of the pass, one 
of which is the actual receiver.  
 
In contrast, the broadcast tracking's xReceiver model predicts three likely receivers, none of 
which are the actual receiver. These three players appear to be deemed high probability 
receivers because they are the players most visible in the xReceiver model's 5 seconds of 
tracking context. This highlights the heavy bias against occluded players that emerges when 
conducting data-driven analysis on incomplete tracking data. It is also notable that the 
xReceiver outputs of broadcast tracking also cannot be easily interpreted, due to the 
uncertainty concerning agents' real locations.  
 
Visually, our imputed tracking data is complete, with player locations closely resembling in-
venue tracking. Additionally, player trajectories are smooth, representing realistic human 
motion. However, one discrepancy is that unlike the in-venue outputs, the imputed data 
deems player #28 to be a high likelihood receiver. This highlights the sensitivity of the 
xReceiver prediction to minor differences in player velocities and accelerations. However, 
the fact that this is the only discrepancy between the in-venue and imputed outputs for this 
example is a strong result, especially considering the large occlusions present in broadcast 
tracking. This result strongly motivates the importance of imputation for enabling more 
nuanced data-driven analysis when in-venue tracking is not available. More examples can be 
found in Appendix A (images) and B (video). 

Table 1: Quantitative Results showing each dataset’s (Raw Broadcast, Imputed, In-Venue) results in terms of the top-k 
metrics and the Intersection over Union between the Raw Broadcast and In-Venue xReceiver outputs, as well as between 
the Imputed and In-Venue xReceiver outputs.  
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Figure 5: Illustrates the xReceiver outputs for a pass using raw broadcast tracking (1st row), our imputed tracking (2nd 
row), and in-venue tracking (3rd row). The player who passes the ball (Yellow #20) has a green border, while the 
predicted high likelihood receivers have a pink border.  

The three high likelihood receivers predicted in the broadcast tracking are heavily biased towards the most recently 
players, which is problematic as the actual receiver (Yellow #28), who is making an attacking run into the box and has 
been occluded for a long period of time, is therefore not deemed a high likelihood receiver. With our model, we impute 
highly realistic motion for occluded agents, which results in xReceiver outputs that much more closely match the in-venue 
outputs. Notably, in both the in-venue and imputed results, the actual receiver is deemed a high probability receiver.  

 
 

In the broadcast tracking outputs the three high likelihood receivers appear to be heavily biased towards the players that 
are most visible in the 5 seconds of trajectory context used for this prediction. This is the actual receiver (Yellow #28) 
does not appear in this context, it is not deemed a high likelihood receiver 
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4. Summary 
In this paper we have presented the importance of imputation for analyzing sports broadcast 
tracking data. This is a landmark step on the road towards making complete player tracking 
available across the global game. In future work we will broaden this evaluation to include 
the rich suite of data-driven sporting analyses that have been developed in the sports 
community over the last 15 years. Another contribution in the paper is a review of the 
previous methods in which AI models process sports tracking data. We argue that 
spatiotemporal axial attention (a Transformer adapted specifically to process 
spatiotemporal data) should be the de facto approach to all machine learning tasks that use 
sports tracking data as an input. Finally, we show that spatiotemporal axial attention can be 
extended in a simple and principled manner to jointly process both event and tracking data. 
We see this as a paradigm shift away from a unimodal representation (tracking data only) 
towards seeing sports data as multimodal, including semantic (event data) and fine-grained 
(tracking) streams.   
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Appendix A 
In this appendix there are three additional examples of the tracking and xReceiver 
outputs of broadcast tracking, imputed tracking, and in-venue tracking. These 
examples further reinforce the importance of quality imputation to deliver highly 
accurate nuanced analyses where in-venue tracking is not available.  
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Figure A-1: Illustrates the xReceiver outputs for a pass using raw broadcast tracking (1st row), our imputed tracking (2nd 
row), and in-venue tracking (3rd row). The player who passes the ball (Yellow #20) has a green border, while the 
predicted high likelihood receivers have a pink border.  
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Figure A-2: Illustrates the xReceiver outputs for a pass using raw broadcast tracking (1st row), our imputed tracking (2nd 
row), and in-venue tracking (3rd row). The player who passes the ball (Yellow #20) has a green border, while the 
predicted high likelihood receivers have a pink border. 
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Figure A-3: Illustrates the xReceiver outputs for a pass using raw broadcast tracking (1st row), our imputed tracking (2nd 
row), and in-venue tracking (3rd row). The player who passes the ball (Yellow #20) has a green border, while the 
predicted high likelihood receivers have a pink border. 
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Appendix B 
 
Supplementary Video Link: 

• https://www.dropbox.com/scl/fi/q7du2g2j1rncxxxqad8zr/Sloan-
Video-1.mp4?rlkey=nav8pjv3pktc3218nmvu6vmd4&dl=0 

• Password: sloan2024 
 
GitHub evaluation link:  

• https://www.dropbox.com/scl/fi/6rzat1wmski5zkq7wfeap/merged_o
utputs.parquet?rlkey=byaqpcf92f0wfjcieuwavg8vy&dl=0  

• Password: sloan2024 
 
 
 

https://www.dropbox.com/scl/fi/q7du2g2j1rncxxxqad8zr/Sloan-Video-1.mp4?rlkey=nav8pjv3pktc3218nmvu6vmd4&dl=0
https://www.dropbox.com/scl/fi/q7du2g2j1rncxxxqad8zr/Sloan-Video-1.mp4?rlkey=nav8pjv3pktc3218nmvu6vmd4&dl=0
https://www.dropbox.com/scl/fi/6rzat1wmski5zkq7wfeap/merged_outputs.parquet?rlkey=byaqpcf92f0wfjcieuwavg8vy&dl=0
https://www.dropbox.com/scl/fi/6rzat1wmski5zkq7wfeap/merged_outputs.parquet?rlkey=byaqpcf92f0wfjcieuwavg8vy&dl=0

