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1. Introduction 
 
Fourth-down decisions are some of the most important decisions NFL coaches make during a game. 
These decision involve teams and coaches deciding to either attempt to achieve a first-down (i.e. 
go-for-it), or kick the ball away (i.e. not go-for-it) by punting or attempting a field-goal.  A fourth-
down decision comes down to assessing the following probabilities: a successful fourth-down 
attempt, winning given a successful and unsuccessful fourth-down attempt, winning given a 
successful and unsuccessful field-goal attempt, and winning given a punt. Taking a weighted 
average of these win probabilities and choosing the maximum gives the decision that maximizes a 
team’s win probability.  

As discrete high-impact decisions, fourth downs present a unique opportunity for analytics to 
influence game outcomes. Given this opportunity, many papers have tried to analyze fourth down 
coaching decisions and suggest optimal choices depending on the game situation [1,2,3]. Public-
facing models have been developed that automatically give recommendations for all fourth-down 
scenarios [4,5]. Several papers have shown that coaches act conservatively relative to what would 
be optimal to maximize their team’s probability of winning [3, 6], though in recent years coaches 
have become more aggressive, adhering more closely to prescriptions suggested by these public-
facing models [7].  

While fourth-down play-by-play data is readily available for all fourth-down plays, we only observe 
fourth-down attempts conditional on teams being in a fourth-down situation and deciding to go-
for-it. In general, we would expect teams that are more likely to succeed on a fourth-down attempt 
are more likely to go-for-it when given a choice, whereas teams less likely to succeed are more 
likely to punt or attempt a field goal. In certain situations where teams are forced to go-for-it given 
the game situation, for example when trailing by more than 3 points with less than 2 minutes left in 
the game, we expect teams less likely to succeed on a fourth down attempt to be in these situations 
more often. Teams with worse offenses, or who are playing worse that game, are more likely to be 
trailing and need to attempt fourth downs to get back into the game. Figure 1 shows empirical 
success probabilities for fourth down attempts separated by game situation. Fourth down attempts 
are successful more often when teams have a choice of whether to go-for-it, compared to when the 
game situation forces teams to go-for-it.  
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Figure 1. Average fourth-down success rates on attempts taken during the 2014-2021 regular 
seasons. Fourth and short is defined as 3 yards to-go or less, and fourth and long is defined as 8 
yards to-go or more. The "must go” category are game situations where teams are forced to go-for-
it, defined here as fourth downs with less than 2 minutes to go in the game, and either trailing by 1-
16 points in their own half, or trailing by 4-8 or 12-16 points in the opponent’s half. The “choice to 
go” category are game situations where teams have a choice whether to go-for-it or not, defined 
here as any fourth downs in the first or third quarters.  

To produce unbiased fourth down probability estimates, models must include all variables that 
affect both the decision to go-for-it and the probability of success. If all variables are not included, 
comparisons made between the set of situations where teams go-for-it and situations where teams 
do not may be biased. This idea was explored in [8], who showed using tracking data that in the set 
of plays deemed “fourth and 1” in the play-by-play data, teams who went for it were on average 
closer to the first down line than teams who did not. This difference caused models that used play-
by-play data and assumed all these plays had an equal distance to gain to be overly aggressive. In 
this paper we call this preferential bias, and our goal is to extend the ideas from [8] to correct for 
this bias over all fourth down success probability estimates. We frame this as a missing data 
problem, fitting a Heckman selection model to all fourth down play-by-play data from the 2014-
2021 seasons, including situations where teams decided not to go-for-it. We compare these bias-
corrected probabilities to those which ignore this bias to show current fourth down probabilities 
may be biased high and low in certain situations, leading to over- and under-aggressive decision 
recommendations. The remainder of our paper is outlined as follows. In Section 2 we introduce the 
missing data framework and the Heckman selection model. Section 3 describes the data and model 
fitting process. We describe our results in Section 4, and finish with a concluding discussion in 
Section 5. 
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2. Fourth downs as a missing data problem 
 
In each fourth down scenario, we only observe one outcome of the two choices: either go-for-it or 
kick the ball away. The other outcome is missing, and if there is dependence between the decision-
making process and the probability of fourth down success we will have bias in our fourth down 
estimates [9]. We can attempt to break the dependence by including all relevant covariates in our 
fourth down probability model. If, conditional on our included covariates, there is no dependence 
between the fourth down decision and outcome, then including these covariates would remove the 
bias in our estimated probabilities. This assumption is referred to as the missing at random (MAR) 
assumption [10]. However, it is unlikely that this assumption holds, especially when only using 
play-by-play data [8]. It is more likely that even conditional on included covariates, teams with 
higher probability of success are more likely to go-for-it when there are multiple viable choices. 
Additionally, teams that are forced to go-for-it based on the game situation likely have a lower 
probability of success given being in that situation usually means the team is trailing in the game. 
Data where there is dependence between missingness and the outcome is referred to as missing not 
at random (MNAR), and requires modelling of the missing data mechanism to avoid biased 
probability estimates [11].  

 

2.1. Heckman selection model 
 
In this paper we choose to use a Heckman selection model to account for the dependence between 
the missingness and outcome mechanisms [12, 13]. We assume a bivariate probit distribution for 
the probabilities of fourth down success and choosing to go-for-it. For fourth down play 𝑖 let 𝑌𝑖  
denote the binary outcome and 𝑅𝑖 denote the binary decision to go-for-it. We only have outcome 
data 𝑌𝑖  for plays where 𝑅𝑖 = 1, otherwise we consider the data missing. The Heckman model 
assumes the following models for 𝑌 and 𝑅 
 
 

P(Yi = 1|𝑋𝑖) = Φ(𝑋𝑖𝛽) (1) 

P(𝑅𝑖 = 1|𝑍𝑖) = Φ(𝑍𝑖𝛾) (2) 

where Φ is the standard normal cumulative distribution, Yi = 1 if the fourth down play is successful 
and 0 otherwise, and 𝑅𝑖 is an indicator of missingness, equal to 0 if the team did not attempt to go-
for-it on fourth down. The bivariate probit model assumes a latent bivariate normal distribution for 
𝑅𝑖

∗ and 𝑌𝑖
∗ of the form 
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Yi
∗ = 𝑋𝑖𝛽 + 𝜖𝑖 (3) 

𝑅i
∗ = 𝑍𝑖𝛾 +  𝜖𝑖

𝑟 (4) 

 

 (
𝜀

𝜀𝑟) ~𝑁 ((
0
0

) , (
1 𝜌
𝜌 1

)) (5) 

 
 
where 𝑌𝑖 = 1 if 𝑌𝑖

∗ > 0 and 𝑅𝑖 = 1 if 𝑅𝑖
∗ > 0. The correlation coefficient 𝜌 denotes the dependence 

between the probability of a successful fourth down and the probability of attempting the fourth 
down characteristic of our MNAR assumption. The MAR assumption is equivalent to assuming 𝜌 =
0, in which case the selection model for 𝑅 would not affect our estimated probabilities in (1).  
 
 

2.2 Generalized Heckman model 
 
The Heckman model described above assumes a constant correlation parameter over all data. 
However, we do not expect this to be the case with our missing fourth down data. In scenarios 
where both going-for-it and kicking are viable options, we expect a positive correlation between Y 
and 𝑅 because teams more likely to succeed are more likely to choose to go-for-it. In situations 
where the game situation forces teams to go-for-it, we expect correlation to be in the opposite 
direction because teams in these situations are generally worse, or playing worse in that game, 
relative to teams not forced to go-for-it in these situations. While it is possible to condition our 
outcome model in (1) on the game situation, at best the correlation 𝜌 would be reduced to zero in 
these “must-go” situations, and we still suspect it to vary over the data (see Section 5 for further 
details). Instead, we decide to generalize the model to allow for the correlation 𝜌 to depend on 
game situation covariates [14, 15]. We assume  

  

arctan(𝜌𝑖) = 𝐶𝑖𝜅 (6) 

where 𝐶𝑖 are a set of game situation covariates, including time remaining and score differential. The 
hyperbolic tangent link function maps 𝐶𝑖𝜅 to the interval (-1, 1). Equations (1)-(6) make up our 
Heckman selection model. The joint modelling of outcome and missingness gives marginal 
probabilities of 𝑌 estimated in (1) that account for the preferential bias in fourth down decision 
making.  

 
 
 
 



 

 5 

 
3. Fitting the model 
 
3.1. Data 
 
We use play-by-play data from the 2014-2021 NFL regular seasons provided by the nflfastR 
package [16]. We include all fourth down plays where a rush, pass, punt, or field goal is attempted, 
excluding plays where a penalty resulted in a first down. This resulted in 29,239 fourth down plays, 
of which teams attempted to go-for-it 4,368 times. This data also includes Las Vegas closing spread 
and total lines taken from Pro-Football-Reference (PFR) which we use as proxies for team strength 
and offensive and defensive ratings. In addition, we use coaching data from PFR to determine which 
coach is involved in each fourth down decision, allowing us to encode coaching decision 
preferences into the model [17].  

 
3.2. Model fitting 
 
To fit the Heckman model described in Section 2, we estimate the parameters in (3)-(6) via 
Bayesian inference. We compute parameter posteriors using Hamiltonian MCMC methods with the 
rstan package V2.26.13 [18, 19].  Our covariates 𝑋 for the outcome model include yards to gain a 
first down, yards from the opponent’s endzone, spread, and the total line, similar to the model given 
in [5]. In our selection model we include all covariates 𝑋 as well as game situation variables 
including time remaining, score differential, and timeouts remaining. We also include a coaching 
random effect variable to capture differences in preferences between coaches. See the Appendix for 
a full list of covariates.  
 
Heckman models can suffer from collinearity issues when covariates in the outcome model (1) and 
selection model (2) are identical [20]. Typically, at least one instrumental variable is required; a 
covariate that is dependent with selection 𝑅, but independent of the outcome 𝑌 given our covariates 
𝑋. In our case we have a set of game situation variables that are included in (2) and not (1) that may 
fit this criterion. However, we also include these game situations covariates in our model for the 
correlation 𝜌 in (6). Since we expect coaching preferences by itself to be a weak instrument, we 
assist in the identifiability of parameters in (3) and (6) by treating a subset of fourth downs a priori 
as having a selection probability of 1. For these data the joint likelihood of (3), (4), and (5) 
marginalizes to the outcome model likelihood (3), allowing us to better estimate these parameters 
[21]. The criteria for a selection probability of 1 are given in the description of Figure 1. In total 502 
out of the 4,368 fourth down attempts in our data satisfy these criteria, of which 497 (>99%) went 
for it. Code used in this project is publicly available on Github1. 

 
 
 
 

                                                        
1 https://github.com/danieldalygrafstein/nfl4th-heckman 
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4. Results 
 
Fitting our model in Section 3 generates posterior estimates for all parameters 𝛽, 𝛾, 𝜅 and 𝜌 in 
equations (3)-(6). Results for the estimated posterior dependence 𝜌 between fourth down success 
and the fourth down decision process are given in Figure 2. We can see that fourth downs occurring 
during the start of the first or second half tend to have a positive correlation. This means we expect 
the observed probability of success of these fourth downs to be higher when teams decide to go-for-
it, compared to the success we would have observed for teams that decided not to go-for-it. Similarly, 
near the end of the first and second halves, there tends to be a negative correlation between success 
probability and the decision to go-for-it. Teams in these situations are more likely to be forced into 
the decision based on the game situation, performing worse than teams that are not forced to go-for-
it. Additionally, the correlation increases with the difference in score. Teams winning in the game are 
likely playing better, and thus more likely to succeed on an attempted fourth down relative to teams 
that are trailing. 
 

 
 

 
Figure 2. Posterior mean correlation 𝜌 for all 29,239 fourth down plays in our data. Score 
differentials are taken with respect to the team in possession, with a positive score differential 
indicating the team facing the fourth down is leading. While displayed over two covariate 
dimensions time and score differential, our model for correlation (6) includes additional covariates. 
See the Appendix for a full list of covariates.   
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4.1. Quantifying the preferential bias 
 
Our model attempts to correct for the preferential bias captured in Figure 2. To quantify this bias we 
compare the posterior mean outcome probabilities in our model to a naïve model where just a probit 
regression on the observed fourth down outcomes is fit as in equations (1) and (3). In this naïve 
model we ignore all fourth down plays where teams decided to kick it away, implying a MAR for these 
fourth downs. Figure 3 compares the differences in the estimated probabilities between these two 
models over different yards-to-go and field positions. Overall, there is between a -0.15 and 0.09 
difference between the mean posterior probability estimates of the naive and Heckman models. 
Positive differences (meaning the naïve model probabilities are higher) typically occur in short 
yardage situations in the opponent’s half of the field. This is likely because better teams, or teams in 
better situations (in ways not captured by the success model (3)), will choose to go-for-it in these 
situations more often. Negative differences occur deep in a team’s own half, or in fourth-and-long 
situations near the opponent’s goal line. In these cases better teams are not going-for-it, because 
these fourth down attempts typically occur in desperate game situations.  Overall, we find the model 
that does not correct for preferential decision-making bias is over-aggressive in fourth and short 
situations in the opponent’s half, and under-aggressive in fourth and long situations near the 
opponent’s endzone or in a team’s own half. 
 

 

 
Figure 3. Difference in posterior mean probabilities between the Heckman model constructed in 
Section 2, and a naïve model probit regression using (3) over only fourth downs that were 
attempted. Positive bias indicates the naïve probability estimates are higher than the Heckman 
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model (i.e. a positive correlation between the decision and outcome) and negative bias indicates the 
opposite. Biases are averaged over all yards to gain, yard line combination. 

 

4.2. Unbiased coaching preferences 
 

In addition to game situation and team metrics, we include a coaching random effect in our 

selection model (4). We assume a 𝑁~(0, 𝜎𝑐𝑜𝑎𝑐ℎ
2 ) distribution for these parameters, with dummy 

variable encoding for each coach, equal to 1 if they were coaching when a fourth down play 
occurred. These random effects allow us to estimate coaching preferences independent of the game 
situation and team ability. Table 1 shows the top 5 and bottom 5 coaches in terms of fourth down 
aggressiveness. We find Doug Pederson to be the most aggressive coach, and Kyle Shanahan the 
least aggressive in our dataset.  

 

Top 5 Aggressiveness Bottom 5 Aggressiveness 

Coach 
Random 

Effect 
Go-for-it 

probability 
Coach 

Random 
Effect 

Go-for-it 
probability 

Doug Pederson 0.278 0.671 Kyle Shanahan -0.168 0.499 

John Harbaugh 0.203 0.643 Jon Gruden -0.167 0.499 

Raheem Morris 0.172 0.631 Mike McCoy -0.164 0.500 

Brandon Staley 0.162 0.628 Bruce Arians -0.154 0.504 

Mike McCarthy 0.158 0.626 Mike Mularkey -0.152 0.505 

Table 1. Mean posterior coaching preference random effects estimated as part of the selection 
model (4). The go-for-it probabilities are the estimated mean posterior probabilities that each 
coach will go-for-it on fourth down when in a fourth and 1 at midfield, in a tied game, at the start of 
the fourth quarter, during the 2021 season. 

 

4.3. Examples where preferential bias influences fourth down recommendations 
 

In this Section we give some examples where our Heckman model gives different fourth down 
recommendations than the naïve model conditioned only on fourth down plays where teams go-
for-it. In general, our model gives slightly less aggressive recommendations in fourth-and-short 
situations, and slightly more aggressive recommendations in fourth-and-long.  

For example, in a 2017 game between the Arizona Cardinals and Seattle Seahawks, the Seahawks 
were down 9 points with 13:08 left in the fourth quarter and faced with a fourth and 1 on the 
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Cardinals 31 yard line. In this situation the naïve model gives the Seahawks a 58% chance of 
succeeding on a fourth down attempt, while the Heckman model only gives them a 50% chance. 
Using win probabilities from the nfl4th package [5], the naïve model gives the Seahawks a 27.6% 
chance of winning if they go-for-it, while only a 26.2% chance of winning if they attempt a field goal. 
The Heckman model gives the Seahawks a 26.0% chance of winning if they go-for-it. The Seahawks 
kicked a field goal, which according to the naïve model is the wrong choice, but the correct one 
according to the Heckman model. 

In another example, a 2018 week 16 game between the Pittsburgh Steelers and New Orleans Saints, 
New Orleans is trailing by 4 with 6:17 left in the fourth quarter. They are faced with a fourth and 11 
from the Steelers 32 yard line. The naïve model gives the Saints a 33% chance of succeeding on a 
fourth down attempt, while the Heckman model gives the Saints a 41% chance of succeeding. Win 
probabilities give the Saints a 39.0% chance of winning if they go-for-it under the naïve model, a 
41.8% chance of winning under the Heckman model, and a 40.5% chance of winning if they kick a 
field goal. The naïve model recommends a field-goal attempt, which is what the Saints did, while the 
Heckman model recommends they go-for-it. 

 

5. Discussion 
 
In this paper we developed a model to account for preferential decisions when modelling NFL fourth 
down success. We found there is a positive correlation between decisions and success when there 
are multiple viable choices for teams, and a negative correlation when teams are forced to go-for-it 
by the game situation. This causes modelled fourth down probabilities to be biased high in fourth-
and-short scenarios, and biased low in fourth-and-long scenarios, which may result in over or under 
aggressive decision recommendations when not correcting for this bias. One alternative modelling 
approach we could have used would be to condition our fourth down model on the current game 
state by using win probability. This may remove the negative correlation found in fourth-down 
decisions in ‘must-go’ situations, however we would still expect the correlation between decision and 
outcome to vary over game state, with stronger positive correlation when both going-for-it and 
kicking are viable options (i.e. have similar win-probabilities).  
 
We expect this preferential bias to decrease as the number of relevant covariates included in the 
model increases. The inclusion of tracking data, or team-specific covariates, would likely get us closer 
to the MAR assumption and reduce our estimated correlation coefficient 𝜌 [8]. On the other hand, the 
linearity assumptions made in our model equations (3)-(6) may have caused underfitting of the 
decision and selection models, causing an underestimation in the magnitude of 𝜌. Future work could 
explore extensions to the Heckman model that allow for nonparametric model equations [22, 23].  
 
While in this paper we aimed to fit a model that would be applicable to teams league-wide, coaches 
almost certainly have fourth down decision models tailored to their specific teams. Conditioning on 
a given team should reduce preferential bias, as there is not variability between the skills of the 
different teams unaccounted for in the fourth down model. However, we would still expect some 
preferential bias, caused by week-to-week variability in team performance and opposition, dynamic 
in-game factors, play selection, or injuries. Thus even comparing within a team, we expect the same 
trend of positive and negative correlation seen in Figure 2. This means that conditional on a single 
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team, we expect the team is more likely to complete fourth downs they decide to go-for when given 
a choice, and less likely when forced into a decision by game situation. We recommend this 
preferential bias be accounted for when designing decision models, at least as part of a sensitivity 
analysis evaluating the MAR assumption of current models.  
 
Almost all sports data we collect is observational, conditional on players, coaches, and teams deciding 
to perform an action. In many cases it is likely that models creating metrics and prescribing decisions 
based on these data do not satisfy the MAR assumption, and there is dependence between these 
decisions and the action’s success. Examples from other sports could include choosing to take a shot 
in soccer or basketball, choosing to dump the puck in or attempt a controlled entry in hockey, or 
attempting to go for the green on a par 5 in golf. We should be aware of these potential biases, and 
correcting for them may lead to more accurate metrics and decision prescriptions.  
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Appendix 
 
A.1. Covariates Included in the Generalized Heckman Model 
 
 

Covariate Description X Z C 
ydstogo Yards to go for a first down ✓ ✓ ✓ 

ydstogo_square Yards to go for a first down squared ✓ ✓  
yardline_100 Yards from the opponent’s goal ✓ ✓ ✓ 

yardline_100_square Yards from the opponent’s goal squared ✓ ✓  
ydstogo_yardline_int ydstogo*yardline_100 ✓ ✓ ✓ 

posteam_spread Closing spread line of the team in possession ✓ ✓  
total_line Closing total line of the game ✓ ✓ ✓ 

year Season the play occurred in (categorical) ✓ ✓  
score_differential Score difference   ✓ ✓ 

half_seconds_remaining Seconds remaining in the current half  ✓ ✓ 
second_half Second half binary variable  ✓ ✓ 

posteam_timeouts_remaining Timeouts remaining for the team in possession  ✓ ✓ 

coach Coach of the team in possession  ✓  
Table A1. All covariates used in our Heckman model described in Section 2. The ticks in the final 
three columns indicate whether the covariate is included in model equations given by (3), (4), and 
(6), respectively. All numeric variables are standardized to have sample means of 0 and variances of 
1. Second order and an interaction effect are included for the ydstogo and yardline_100 variables, 
while only main effects are included for other variables. Each team-year is assigned a single coach. 
If a team has multiple coaches in a season, we choose the one coaching for the most games. We 
encode coach parameters as a random effect, assuming coaching parameters follow a 𝑁~(0, 𝜎𝑐𝑜𝑎𝑐ℎ

2 ) 

distribution.  

 
 


