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1.	Introduction	
	
Machine	learning	(ML)-powered	football	analytics	has	received	considerable	interest	in	recent	years	
[1,	2,	3,	4,	5,	6,	7],	with	majority	of	existing	analytic	measures	centered	around	offense	strategies	and	
performances	[5,	6].	In	contrast,	the	defensive	side	of	the	game	has	received	relatively	less	attention	
and	development.	At	the	core	of	understanding	and	analyzing	any	defensive	strategy	is	the	coverage	
scheme,	i.e.,	the	rules	and	responsibilities	of	each	defender	tasked	with	stopping	the	pass.	Classifying	
the	coverage	scheme	for	every	pass	play	provides	 insights	and	new	understanding	to	the	football	
game	to	teams,	broadcasters	and	fans	alike.	The	preferences	of	play	callers	become	apparent	through	
coverage	scheme	data,	such	as	Bill	Belichick	using	Cover	1	at	a	top	5	rate	in	five	consecutive	seasons.	
Coverage	scheme	classification	also	allows	deeper	understanding	on	how	respective	coaches	and	
teams	 continuously	 adjust	 their	 strategies	based	on	 their	 opponent’s	 strengths.	 For	 example,	 the	
Packers	and	Chiefs	both	faced	significantly	more	man	coverage	through	the	first	11	weeks	of	the	2022	
season	 than	 they	 did	 in	 2021	 after	 both	 teams	 traded	 away	 their	 leading	 receivers	 during	 the	
offseason	 (Davante	 Adams	 &	 Tyreek	 Hill,	 respectively).	 Finally,	 coverage	 scheme	 classification	
enables	the	development	of	new	defensive-oriented	analytics	such	as	uniqueness	of	coverages	[18].	
In	2020,	Brandon	Staley	designed	the	most	unique	set	of	coverages	for	the	Rams	while	the	fired	Gregg	
William’s	was	the	least	unique.	
	
Manual	 identification	 of	 these	 coverages	 on	 a	 per-play	 basis	 is	 both	 laborious	 and	 difficult	 as	 it	
requires	 football	 specialists	 to	 carefully	 inspect	 the	 game	 footage.	 Thus,	 there	 is	 a	 need	 for	 an	
automated	coverage	classification	model	to	effectively	and	efficiently	scale	to	reduce	cost	and	turn-
around	time.	This	coverage	classification	model	also	needs	to	address	the	inherent	ambiguity	around	
the	deployed	coverage	schemes	that	can	be	difficult	to	grasp	even	for	expert	reviewers.	For	example,	
the	defensive	coaching	staff	will	often	disguise	their	coverages	to	mislead	the	quarterback.	It	is	thus	
important	to	develop	model	explanation	method	to	facilitate	the	understanding	of	what	the	machine	
learning	model	utilized	to	classify	these	coverages	and	arrived	at	a	given	conclusion.	Figure	1	below	
shows	the	location	of	all	offensive	and	defensive	players	at	the	start	of	an	example	play	(left)	and	in	
the	middle	of	 the	 same	play	 (right).	 The	model	 showed	 relatively	 low	 confidence	 in	 its	 coverage	
classification	on	this	play,	with	the	top	two	predictions	(Cover	3	Zone	&	Cover	1	Man)	falling	under	
50	percent.	The	play	action	fake	and	the	defenders’	reactions	to	it	along	with	the	route	distribution	
made	it	harder	for	the	model	to	determine	whether	it	was	man	or	zone	coverage.	
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Figure	1:	Example	of	an	ambiguous	play	that	shows	the	complexity	of	the	task.	Left,	at	the	start	of	
the	play,	and	right	in	the	middle	of	the	play.	Full	list	of	player	acronyms	is	in	Appendix.	

	
To	the	best	of	our	knowledge,	ML-based	coverage	classification	has	not	been	fully	studied.	Previous	
efforts	 from	[8]	dabbled	on	this	 topic	by	adapting	the	convolutional	neural	network	(CNN)-based	
Kaggle	Zoo	winning	solution	of	the	2020	Big	Data	Bowl	[17],	but	ignored	the	temporal	progress	of	
the	play.	Based	on	our	analysis,	this	approach	struggled	in	achieving	sufficient	accuracy	needed	for	
productionization	and	reduction	of	manual	review.	Production	readiness	is	defined	here	as	achieving	
>95%	accuracy	in	identifying	man	versus	zone-type	plays,	as	well	as	ability	to	determine	plays	that	
require	 further	 expert	 reviewing.	In	 this	 paper,	 we	 present	a	novel	 deep	 learning	 approach	 that	
significantly	 outperforms	 [8]	 for	 automatic	 coverage	 classification.	 Raw	 sensor	 data	 comprised	
of	location,	 speed	 and	 acceleration	 is	 collected	for	every	 player	 and	 utilized	 as	 inputs	 into	 an	
automatic	coverage	classification	pipeline.	We	baseline	using	the	published	CNN-based	model	[8,	17]	
as	well	as	the	improved	versions	with	incorporated	long	short-term	memory	(LSTM)	component.	We	
find	 that	our	proposed	addition	of	 attention	 layers	results	 in	 improved	classification	accuracy,	 as	
these	layers	enables	the	model	to	learn	to	focus	on	specific	aspects	of	a	play.	Further	performance	
gain	is	achieved	by	applying	label	smoothing	to	tackle	the	inherent	challenges	in	distinguishing	the	
intricate	coverage	schemes,	and	model	ensemble	to	bootstrap	decisions	from	multiple	independently	
trained	base	models.	Finally,	we	incorporate	model	explanations	via	play	embedding	analysis	and	
gradient-based	approaches	that	provide	confidence	that	the	notoriously	opaque	deep	learning	model	
correctly	captures	football	knowledge,	and	aligns	with	human	experts’	understanding.	These	model	
explanations	also	help	speed	up	visual	review	processes,	and	bring	additional	insights	about	defense	
coverage	schemes.		
	
This	remainder	of	the	paper	is	organized	as	follows:	we	review	the	related	work	on	tracking-based	
football	 analytics,	 coverage	 classification,	 and	 model	 explanation	 in	 Section	 2.	 In	 Section	 3,	 we	
present	our	coverage	modeling	and	model	explanation	approaches.	 In	Section	4,	we	describe	our	
evaluation	results	on	coverage	classification	and	model	explanation	results.	In	Section	5,	we	conclude	
by	summarizing	our	approach	and	results,	and	outlining	our	planned	future	works.		
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2.	Related	work	
2.1	Tracking-based	football	analytics	
Football	tracking	data	contains	rich	information	of	the	game	dynamics	including	the	player	and	ball	
location,	speed,	acceleration	in	real-time.	This	enriched	large-scale	data	has	attracted	multiple	 in-
depth	studies	to	analyze	team	and	specific	player’s	performance,	including	trajectory	prediction	[7],	
quarterback	evaluation	[5,	6],	pass	inference	penalty	prediction	[9],	receiver	openness	and	expected	
gain	prediction	[3],	and	run	vs.	pass	prediction	[4].	Other	published	works	focused	on	expanding	the	
analytics	capability,	either	with	additional	data	sources	or	improved	model	architecture	design.	In	
[1],	the	authors	demonstrated	the	importance	of	incorporating	charting	annotations	with	tracking	
data.	 Authors	 in	 [2]	 focused	 on	 developing	more	 advanced	 architecture	 components	 for	 feature	
representation	learning	to	tackle	the	variable	duration	problem	of	events	and	the	ordering	problem	
of	players.	In	[10],	a	graph	neural	network	was	developed	to	better	capture	the	player	interactions	
and	their	fast	progression	over	time.		

2.2	Football	coverage	classification	
Despite	 the	 criticality	 of	 analyzing	 and	 understanding	 the	 defensive	 strategies,	 it	 has	 only	 been	
investigated	in	a	few	works	so	far.	Dutta	et.al.	[11]	developed	an	unsupervised	learning	approach	to	
group	each	player’s	pass	coverage	into	the	high-level	man	vs.	zone	categories.	The	approach	from	
[12]	focused	on	team-wide	defense	coverages,	but	is	based	only	on	vision	data.	The	most	relevant	
work	to	ours	 is	 [8],	where	B.	Baldwin	developed	a	convolutional	neural	network	to	 identify	eight	
defensive	 coverage	 schemes.	 However,	 only	 a	 single	 frame	 from	 each	 play	 is	 utilized	 for	 the	
identification.	 The	 temporal	 progression	 of	 the	 player	 location	 and	 interactions	 contains	 critical	
information	about	the	coverage	scheme,	and	relying	on	the	static	features	from	certain	frame	could	
significantly	 limit	 the	 predictive	 power.	 In	 this	 paper,	we	 design	 and	 describe	 new	 architectural	
components	 that	 tackle	 the	 temporal	 modeling	 challenge	 and	 beyond,	 leading	 to	 a	 performant	
classification	model.		

2.3	Model	explanation	for	sports	analytics	
Although	deep	neural	network	models	have	achieved	remarkable	results	in	various	sport	analytics	
problems,	 its	 black-box	 nature	 prohibits	 interpretation	 of	 how	 it	 came	 to	 the	 conclusion.	 The	
explainability,	however,	is	critical	in	1)	extracting	additional	insights	on	the	data	and	predictive	task,	
2)	verifying	that	the	model	correctly	captured	the	related	sport	knowledge,	and	3)	indicating	when	
human	experts	should	be	involved	in-the-loop	to	resolve	any	prediction	issues.	The	explainability	of	
sports	analytics	models	was	studied	only	recently.	In	[13],	interpretable	decision	tree-based	models	
were	developed	along	with	neural	network	models	for	football	pass	vs.	rush	prediction	to	study	how	
much	accuracy	of	DNNs	they	can	capture.	A	case	study	on	outcome	prediction	of	volleyball	matches	
was	conducted	in	[14]	that	utilized	different	explanation	approaches	including	Boolean	Rule	Column	
Generation,	ProtoDash,	 and	SHAP	 (SHapley	Additive	 exPlanations).	 For	baseball	predictions,	 [15]	
utilized	Shapley	values	to	get	both	local	feature	importance	and	global	feature	importance	for	batter	
vs.	 pitcher	 plate	 appearance	 (PA).	 [16]	 leveraged	 LIME	 (Local	 Interpretable	 Model-agnostic	
Explanations)	for	NBA	gameplay	predictions	that	discovered	insights	leading	to	the	success	of	a	given	
NBA	team.	These	works	focused	on	the	explanation	of	high-level	statistical	features	such	as	player	
historical	performances.	Our	work	in	this	paper	provides	comprehensive	understanding	on	both	the	
global	level	that	discovers	important	samples	of	interest	for	manual	review,	and	for	the	first	time,	on	
the	instance	level	that	uncovers	the	leading	evidences	on	the	fine-grained	play	tracking	data.			
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3.	Task	Definition,	Data,	and	Methods	
3.2	Task	Definition	
We	define	 the	 defensive	 coverage	 classification	 problem	 as	 a	multi-class	 classification	 task,	with	
three	types	of	man	coverage	(where	each	defensive	player	covers	certain	offensive	player)	and	five	
types	of	zone	coverage	(each	defensive	player	covers	a	certain	area	on	the	field).	These	eight	classes	
are	visually	depicted	in	Figure	2	below:	Cover	0	Man,	Cover	1	Man,	Cover	2	Man,	Cover	2	Zone,	Cover	
3	Zone,	Cover	4	Zone,	Cover	6	Zone	and	Prevent	(also	zone	coverage).	Multitude	of	information	over	
time	must	be	accounted	for	to	properly	identify	the	correct	coverage,	including	the	way	defenders	
lined	up	before	the	snap,	the	adjustments	to	offensive	player	movement	once	the	ball	 is	snapped,	
coverage	disguises	and	even	blown	coverage	assignments.	

Figure	2.	Defensive	coverage	types	considered	in	our	classification	task.	Circles	in	blue	are	the	
defensive	players	laid	out	in	a	particular	type	of	coverage;	circles	in	red	are	the	offensive	players.	

Full	list	of	player	acronyms	is	in	Appendix.	
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Figure	3.	Player	tracking	data	illustration	on	the	snapshots	of	the	1st	frame	(left)	and	the	10th	
frame	(right)	of	a	Cover	1	Man	play.	A	human	reviewer	visually	inspects	the	entire	play,	taking	into	
account	multitude	of	interactions	and	positions,	before	making	the	final	determination	that	this	is	a	

Cover	1	Man	play.	Full	list	of	player	acronyms	is	in	Appendix.	
	
The	complexity	and	time-dependency	of	correctly	identifying	a	coverage	is	 illustrated	in	Figure	3,	
which	shows	two	timed	snapshots	for	a	Cover	1	Man	play.	The	offensive	players	are	depicted	in	red,	
and	 the	 defensive	 players	 in	 blue.	 The	 letter	within	 the	 blue	 and	 red	 circles	 denotes	 the	 player	
position	 on	 the	 field.	 In	 order	 to	 correctly	 determine	 the	 coverage	 as	 Cover	 1	 Man,	 the	 human	
reviewer	or	the	model	needs	to	account	for	the	1)	interaction	between	the	wide	receivers	(WR)	and	
cornerbacks	(CB),	2)	interaction	between	the	running	back	(RB)	and	linebackers	(OLB,	ILB),	and	3)	
the	location	of	the	safety	in	the	middle	of	the	field	(SS)	as	a	single-high	safety	patrolling	the	deep	
middle	area,	over	the	duration	of	the	play.	

3.2	Data		
Game	 tracking	 data	 is	 captured	 at	 10	 samples	 per	 second,	 including	 the	 player	 location,	 speed,	
acceleration	and	orientation.	This	is	available	for	every	player	and	every	play	from	2018	to	2021	by	
NFL’s	Next	Gen	Stats.	We	utilize	2018-2020	seasons	data	for	model	training	and	validation,	and	2021	
season	data	for	model	evaluation.	Each	season	consists	of	around	17000	plays.	Initial	data	cleaning	
was	applied	to	remove	noise	introduced	by	sensor	errors.	For	model	training,	we	utilize	the	tracking	
data	and	the	manually	annotated	coverage	labels.		
	
We	plot	 the	 coverage	 class	distribution	and	 its	 change	over	 seasons	 in	Figure	4.	The	data	 shows	
unbalanced	distribution	over	the	classes	where	Cover	1	Man	and	Cover	3	Zone	are	dominant	and	
Prevent	class	is	in	the	minority.	This	is	to	be	expected:	Cover	1	Man	and	Cover	3	Zone	are	the	two	
base	coverages	in	modern	football	and	Prevent	coverage	is	a	situational	play	call	mostly	saved	for	
end	of	regulation	situations.	Additionally,	the	distribution	over	the	seasons	highlights	the	fact	that	
the	Man-type	 coverages	 popularity	 is	 generally	 decreasing	 season	 by	 season	 from	2018	 to	 2021	
compared	to	the	Zone-type	coverages.	
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Figure	4.	Coverage	class	distribution	over	
2018-2021	seasons.	

Figure	5.	The	explainable	coverage	classification	
framework,	starting	with	inputs	from	the	top	of	the	
sketch.	Detailed	information	about	the	model	is	in	
Section	3.5	and	about	the	explanations	in	Section	

3.6.	
	

3.3	Explainable	Coverage	Classification	Framework	
Figure	 5	 illustrates	 our	 overall	modeling	 framework,	with	 the	 input	 of	 player	 tracking	 data	 and	
coverage	labels	starting	at	the	top	of	the	figure.	Given	the	input,	we	first	conduct	feature	engineering	
to	construct	the	player	pair-wise	relative	features	similar	to	[8],	and	then	utilize	convolutional	neural	
network	(CNN)	 to	model	 the	complex	player	 interactions	similar	 to	 the	Kaggle	Zoo	solution	 [17].	
Unlike	[8]	and	[17],	we	apply	a	self-attention	module	that	learns	to	aggregate	the	frame	embeddings	
to	focus	on	the	most	critical	time	steps,	and	an	ensemble	model	that	pools	the	decisions	made	by	each	
model	individually.	The	pooled	decision	is	the	output	coverage	classification.	In	addition,	we	develop	
a	comprehensive	model	explanation	method	based	on	the	learned	play	embeddings	to	provide	both	
global	 and	 instance	 explanations.	 Global	 explanation	 utilizes	 embedding	 analysis	 to	 uncover	
potentially	 problematic	 plays	 for	manual	 review,	whereas	 instance	 explanation	 utilizes	 gradient-
based	 CNN	 explanation	 to	 highlight	most	 critical	 player	 interactions	 leading	 up	 to	 the	 identified	
coverage.	In	the	next	sections,	we	will	describe	details	in	the	feature	and	data	engineering	(Section	
3.4),	CNN-attention	model	architecture	(Section	3.5),	and	model	explanation	methods	(Section	3.6).		
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3.4	Data	and	Feature	Engineering	

Figure	6.	Data	processing	x,	y	definition	shown	on	
football	field.	Player	raw	features	including	the	
location,	speed,	acceleration	etc.	are	decomposed	

onto	the	two	axes.	

Algorithm	1.	Play	trimming	algorithm.	

	
We	perform	similar	data	processing	steps	as	described	in	[8]	and	[17]	that	included	decomposing	
raw	features	into	x	and	y	axes	(as	defined	in	Figure	6),	unifying	all	play	directions	to	left-to-right,	and	
augmenting	 the	 y-axis	 location	 during	 training	 using	 random	 flipping	with	 a	 0.5	 probability.	We	
highlight	key	differences	to	[8]	and	[17]	that	we	implement	to	improve	the	model’s	performance:	

• Full	offensive	players.	[8]	limited	the	feature	engineering	to	5	non-quarterback	offensive	
players.	We	expand	to	 full	non-quarterback	offensive	players	of	10	 to	maximize	 the	 input	
information.	This	provides	the	flexibility	to	let	the	model	learn	to	capture	the	most	important	
signals	for	coverage	classification.		

• Play	trimming.	We	utilize	a	sequence	of	frames	in	the	play	to	make	the	prediction,	whereas	
both	[8]	and	[17]	were	based	on	a	single	frame.	As	such,	the	duration	of	the	play	needs	to	be	
taken	into	account.	Since	the	play	lengths	vary	dramatically,	we	perform	trimming	of	longer	
plays	 to	 focus	 on	 the	 first	 several	 seconds	 that	 contain	 the	 most	 important	 coverage	
indicators.	The	detailed	trimming	logic	is	described	in	Algorithm	1.		

• Temporal	downsampling.	Due	to	the	incorporation	of	full	offensive	players	and	additional	
frames	 from	 the	play,	 the	 size	of	 the	 input	 tensor	 to	 the	model	 increases	 significantly.	To	
reduce	 the	 memory	 footprint	 and	 make	 both	 training	 and	 inference	 more	 efficient,	 we	
experimented	 temporal	 downsampling	 of	 the	 play	 with	 different	 factors.	 We	 found	
downsampling	 by	 a	 factor	 of	 2	 (reducing	 to	 5	 frames	 per	 second)	 did	 not	 reduce	 the	
classification	performance,	and	utilize	it	for	all	experiments	in	this	paper.	

	
After	 the	raw	data	has	been	processed,	we	perform	 feature	engineering	 to	construct	 the	play	
feature	 sequence	 as	 the	 input	 for	 model	 digestion.	 For	 a	 given	 frame,	 our	 representation	 is	
inspired	by	the	Zoo	model	from	2020	Big	Data	Bowl	Kaggle	solution	[17]:	we	construct	an	“image”	
for	each	time	step	with	the	defensive	players	at	the	rows	and	offensive	players	at	the	columns.	
The	 “pixel”	 of	 the	 “image”	 thus	 represents	 the	 features	 for	 the	 intersecting	 pair	 of	 players.	
Different	 from	 [17],	 we	 extract	 a	 sequence	 of	 the	 frame	 representations,	 which	 effectively	
generates	a	mini-“video”	to	characterize	the	play.	
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Figure	7.	Illustration	of	the	example	features	for	the	1st	frame	(left)	and	the	10th	frame	(right)	in	
correspondence	to	Figure	3.	The	x	axis	definition	is	given	in	Figure	6.	Player	acronyms	are	the	same	

as	in	Figure	3	and	the	full	list	is	in	Appendix.	
	
Figure	7	visualizes	how	the	features	evolve	over	time	in	correspondence	to	the	two	snapshots	given	
in	Figure	3.	For	visual	clarity,	we	only	show	four	features	out	of	all	the	ones	we	extracted:	“x	position	
to	LOS	(line	of	scrimmage)”	and	“x	speed”	for	defenders,	which	capture	their	location	and	speed	on	
the	horizontal	direction	of	the	play	field;	“relative	x	position”	and	“relative	x	speed”	for	the	interacting	
defensive	and	offensive	player	pair,	where	the	feature	value	is	reflected	at	the	“pixel”.	The	pixel	color	
encodes	the	value	according	to	the	color-bar.	Notice	how	the	features	progress	over	time	as	players	
move:	for	example,	at	10th	frame	on	the	“relative	x	speed”	feature,	the	3	wide	receivers	(WR)	columns	
have	 generally	 larger	 values,	 indicating	 the	 aggressing	 movements.	 On	 the	 other	 hand,	 on	 the	
“relative	 x	position”	 feature,	 their	 intersecting	 “pixels”	with	 SS	 and	3	CBs	have	 relatively	 smaller	
values,	 indicating	 the	 close	 proximity	 these	 players	 got	 into.	 Comparatively,	 reading	 from	 the	 “x	
position	to	LOS”	feature,	large	values	for	the	SS	and	3	CBs	confirm	their	locations	on	the	field.	
	
Altogether,	we	construct	the	following	two	sets	of	 features:	1)	defender	features	consisting	of	the	
defender	 position,	 speed,	 acceleration	 and	 orientation,	 on	 x	 and	 y	 axis	 that	 corresponds	 to	 the	
horizontal	and	vertical	direction	of	the	field;	2)	defender-offense	relative	features	consisting	of	the	
same	attributes	but	calculated	as	the	difference	between	the	defensive	and	offensive	players.	Aside	
from	 the	 player	 movement	 features,	 we	 also	 experimented	 with	 incorporating	 game	 contextual	
information	including	the	down,	yards	to	endzone,	yards	to	go,	number	of	pass	rushers	and	running	
routes	 etc.	 These	 extra	 features	 did	 not	 show	 clear	 improvement	 of	 the	 coverage	 classification	
performance	and	was	thus	removed	from	the	productionized	pipeline.	We	conjecture	that	the	rich	
tracking	data	 inherently	 cover	 game	and	play	 information	 for	 the	model	 and	 the	 context	did	not	
provide	additional	perspectives.			

3.5	Coverage	Classification	Model	
We	develop	an	ensemble	CNN-attention	model	that	utilizes	the	features	constructed	in	Section	3.4	
for	 coverage	 classification.	 We	 describe	 the	 key	 architectural	 designs	 that	 are	 important	 for	
performant	modeling	in	the	next	few	subsections.		
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Figure	8.	Diagram	of	the	convolutional	module	

	
Figure	9.	Self-attention	mechanism	for	temporal	modeling.		

3.5.1	CNN	module	
The	“image”	feature	construction	as	in	Section	3.4	facilitated	the	modeling	of	each	play	frame	through	
a	CNN.	Figure	8	shows	the	internal	structure	of	our	CNN:	we	modified	the	convolutional	(Conv)	block	
utilized	by	the	Zoo	solution	[17]	with	a	branching	structure	that	is	comprised	of	a	shallow	1-layer	
CNN	and	a	deep	3-layer	CNN.	Batch	normalization	is	utilized	after	each	convolution	layer	and	dropout	
is	applied	at	the	end	of	the	block.	An	important	detail	on	the	convolution	layer	is	the	internal	1x1	
kernel:	 having	 the	 convolutional	 kernel	 looking	 at	 each	 player	 pair	 individually	 ensures	 that	 the	
model	is	invariant	to	the	player	ordering.	In	data	processing,	the	ordering	needs	to	be	consistent	over	
time	for	a	play.	For	simplicity,	we	order	the	players	based	on	their	NFL	ID	for	all	play	samples.	
	
After	the	2D	Conv	Block,	pooling	is	applied	along	the	offense	axis	(“image”	columns).	The	results	are	
then	fed	into	a	one-dimensional	(1D)	Conv	Block	composed	of	a	similar	structure	as	2D	Conv	Block,	
but	with	1D	convolutional	layers.	Following	[17],	we	utilize	a	weighted	combination	of	average	and	
max	 pooling	 with	 the	 weights	 of	 0.7	 and	 0.3.	 We	 experimented	 with	 modified	 weights	 but	 the	
modifications	did	not	provide	any	performance	 improvement.	At	 the	end	of	 the	CNN	module	 is	a	
linear	 block	 that	 consists	 of	 3	 fully	 connected	 layers	 with	 batch	 normalization	 and	 dropout	 in	
between.	We	obtain	the	frame	embeddings	as	the	output	of	the	CNN	module.		

3.5.2	Temporal	modeling	
Once	the	ball	is	snapped,	a	play	takes	only	a	few	seconds	to	complete.	Within	the	short	period,	the	
fast-progressing,	 rich	 temporal	dynamics	 contain	key	 indicators	 to	 identify	 the	 coverage.	The	ML	
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model	needs	to	not	only	aggregate	the	information	contained	in	individual	frames,	but	also	capture	
the	correlations	among	the	frames	and	potentially	weigh	them	differently.	We	design	a	self-attention	
module	[21]	for	the	temporal	modeling	and	compare	it	with	a	more	conventional,	bidirectional	LSTM	
approach	 (quantitative	 comparison	 in	 Section	 4.1).	 High-level	 illustration	 of	 the	 self-attention	
module	 is	 given	 in	 Figure	 5,	 where	 the	 self-attention	 module	 is	 stacked	 on	 top	 of	 the	 frame	
embeddings	 learned	 from	 the	 CNN.	The	 learned	 attention	 embeddings	 as	 the	 output	 are	 then	
averaged	to	obtain	the	embedding	of	the	whole	play.	Finally,	a	fully	connected	layer	is	connected	to	
determine	the	coverage	class	of	the	play.		
	
We	 illustrate	 the	 internal	 structure	 of	 the	 self-attention	module	 in	 Figure	9,	where	 the	 attention	
weights	are	calculated	as	the	scaled	dot-product	between	each	query	frame	and	every	key	frames.	
The	weights	 are	 then	 used	 in	 the	 linear	 combination	 of	 the	 value	 frames	 to	 compute	 the	 frame	
representations.	Specifically,	

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑!, ℎ𝑒𝑎𝑑!, ⋯ , ℎ𝑒𝑎𝑑")	
ℎ𝑒𝑎𝑑# = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊#

$ , 𝐾𝑊#
% , 𝑉𝑊#

&)	
where	𝐾, 𝑉, 𝑄	are	frame	embeddings	learned	from	the	constructed	“image”	feature,	𝑊#

$ ,𝑊#
% ,𝑊#

& 	are	
the	layer	weights,	and	ℎ	is	the	number	of	attention	heads.	

3.5.3	Model	ensemble	and	label	smoothing	
As	described	in	Section	3.2,	the	8	coverage	schemes	have	an	imbalanced	distribution:	for	example,	
Cover	1	Man	and	Cover	3	Zone	are	frequently	utilized	while	Prevent	and	Cover	2	Man	are	rare.	In	
addition,	we	identified	adjustments	in	more	specific	coverage	calls	that	can	lead	to	ambiguity	among	
the	 8	 general	 coverage	 classes	 for	both	 manual	 charting	 and	 model	 classification.	The	 coverage	
imbalance	and	ambiguity	make	the	clear	separation	among	coverages	challenging.		
	
We	utilize	model	ensemble	to	tackle	these	challenges	during	model	training.	We	experimented	with	
the	following	ensemble	methods:	fusion,	voting,	and	gradient	boosting,	along	with	different	number	
of	base	models.	In	fusion,	all	base	models	are	jointly	trained	with	the	training	loss	calculated	from	
the	 averaged	 output	 of	 all	 base	 models.	 Voting	 differs	 from	 fusion	 by	 fitting	 base	 models	
independently,	and	averaging	their	outputs	only	during	inference.	For	gradient	boosting,	the	base	
models	are	trained	sequentially,	where	the	training	target	is	associated	with	outputs	from	previously	
fitted	base	models.	Our	study	shows	that	in	fact,	the	more	straightforward	voting	method	achieves	
the	best	classification	result	and	the	5-model	ensemble	works	the	best.	In	the	voting-based	ensemble,	
each	 base	 model	 has	 the	 same	 CNN-attention	 architecture	 and	 is	 trained	independently	 from	
different	 random	 seeds.	 The	 final	 classification	 takes	 the	average	 over	 the	 outputs	 from	 all	 base	
models.		
	
We	further	incorporate	label	smoothing	into	the	cross-entropy	loss	to	handle	the	label	ambiguity.	
The	idea	is	to	encourage	the	model	to	adapt	to	the	inherent	coverage	ambiguity	instead	of	overfitting	
to	potentially	biased	annotations.	To	smooth	the	labels,	in	the	loss	calculation,	the	original	one-hot	
class	 distribution	 is	 combined	 with	 a	 small	 amount	 of	 uniform	 class	 distribution	 to	 introduce	
uncertainty.	For	example,	Cover	3	Zone	 label	 is	modified	as	90%	probability	of	3-Zone	and	equal	
probabilities	 of	 anything	 else.	 Denote	 the	 original	 one-hot	 encoded	 label	 vector	 for	 sample	 𝑥	as	
𝑦'()*+"(,	and	the	number	of	classes	as	𝐾 = 8.	Label	smoothing	is	calculated	as,		

𝑦'-./*-+01((," = (1 − 𝛼)𝑦'()*+"(, + 𝛼/𝐾	
where	𝛼	is	the	tunable	weighting	parameter	to	control	the	smoothing	strength.	𝑦'-./*-+01((,"	is	then	
used	in	the	cross-entropy	loss	calculation.	



	 11	

3.6	Model	Explanations	

Figure	10.	Global	explanation:	t-SNE	
embeddings	of	a	downsampled	subset	of	2018-
2020	season	training	plays.	The	plays	are	

color-encoded	according	to	the	ground-truth	
annotation	shown	in	the	legend.	The	legends	
are	shortened	class	labels	of	the	original	8	
classes	as	depicted	in	task	definition,	with	M	

representing	Man	and	Z	representing	Zone,	and	
the	word	Cover	removed.	

Figure	11.	Potentially	mislabeled	plays	
highlighted	on	the	t-SNE	embeddings.	The	top-
ranked	identifications	by	the	KNN	algorithm	
are	shown	with	triangles.	The	color	encodes	

ground-truth	coverage	annotation.	
	

	
The	black-box	nature	of	deep	neural	networks	prohibits	the	interpretation	of	how	it	determines	the	
coverage	scheme	from	tracking	data.	Our	analysis	reveals	the	inherent	challenges	in	ensuring	that	
the	model	 captures	 the	 football	 knowledge,	 and	 reviewing	 the	model’s	 decision	 under	 coverage	
ambiguities	 and	 wrong	 classifications.	 To	 tackle	 this,	 we	 develop	 a	 two-stage,	 top-down	 model	
explanation	approach.		
	
The	 first	 stage	 analyzes	 the	 learned	 play	 embeddings	 from	 the	 coverage	 classification	model	 to	
discover	 any	 patterns	 that	 require	 manual	 review.	 We	 utilize	 t-distributed	 stochastic	 neighbor	
embedding	 (t-SNE)	 [26]	 and	 experimented	with	 the	 parameters	 including	 perplexity,	 number	 of	
iterations	and	the	random	seed	to	extract	stable	2D	projections.	To	reduce	visual	clutter,	we	perform	
stratified	sampling	to	analyze	a	subset	of	all	training	data	that	consists	of	around	9000	plays.	The	
projected	2D	embeddings	are	visualized	 in	Figure	10.	We	 find	 that	 the	majority	of	each	coverage	
scheme	are	well	separated,	demonstrating	the	classification	capability	gained	by	the	model.	However,	
we	highlight	 two	 important	 patterns	 that	 need	 further	 investigation:	 1)	 a	 small	 number	 of	 plays	
deviate	significantly	from	their	respective	coverage	cluster.	This	could	be	attributed	to	mislabels	of	
the	coverage	or	high	degree	of	coverage	ambiguity.	2)	among	certain	coverages,	there	is	significant	
overlapping	of	plays.	For	example,	we	identify	a	long,	curved	cluster	consisting	of	a	mixture	of	Cover	
1	Man	and	Cover	3	Zone	plays	 (blue	and	green	 samples)	 and	 the	 cluster	deviates	 from	 the	main	
clusters	of	both	types.	This	could	entail	inherent	ambiguity	that	can	exist	between	these	two	coverage	
concepts	and	specific	adjustments	on	play	calls	that	are	not	accounted	for	in	the	general	ground-truth	
labeling.	To	effectively	extract	the	example	plays	associated	with	these	patterns	for	manual	review,	
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we	utilize	basic	outlier	detection	and	unsupervised	clustering	methods.	The	detailed	methods	and	
our	findings	from	manual	review	are	described	in	Section	4.2.1.	

Figure	12.	Instance	explanation:	we	utilized	Guided	GradCAM	algorithm	to	extract	the	highlighted	
pixels	and	mapped	them	back	to	football	field	where	the	line	thickness	corresponds	to	the	player	

interaction	strength.	
	
To	shed	lights	on	model’s	decision	and	speed	up	the	manual	review	on	individual	plays,	we	develop	
the	second	stage	of	instance	explanation.	It	zooms	into	the	individual	play	of	interest,	and	extracts	
frame-by-frame	 player	 interaction	 highlights	 that	 contribute	 the	most	 to	 the	 identified	 coverage	
scheme.	 This	 is	 achieved	 through	 Guided	 GradCAM	 algorithm	 [22]	 and	 the	 extraction	 process	 is	
illustrated	 in	 Figure	 12.	 Starting	 from	 the	 coverage	 classification	 score	 obtained	 by	 the	 model	
(bottom	of	the	figure),	the	algorithm	consists	of	two	steps.	The	first	step	(left	branch	in	Figure	12)	
uses	Guided	Backpropagation	[27]	to	extract	the	salient	pixels	of	the	input	image	that	activate	the	
neurons.	These	highlights	are	class-agnostic,	general	contributing	features.	The	second	step	(right	
branch	 in	Figure	12)	uses	GradCAM	 to	back-propagate	 the	 coverage	 score	using	 the	gradients	 to	
localize	class-discriminative	pixels.	Note	that	we	utilize	the	feature	maps	at	the	output	of	the	2D	Conv	
Block	(as	in	Figure	8)	to	extract	the	GradCAM	result.	Results	from	these	two	steps	are	then	element-
multiplied	 and	 we	 select	 frame	 with	 the	 highest	 activation	 as	 the	 most	 critical	 time	 step	 for	
explanation.	Considering	the	multiple	base	models	(not	shown	in	Figure	12	for	conciseness)	used	in	
the	ensemble,	we	also	 select	 the	base	model	 that	outputs	 the	highest	activation.	The	explanation	
result	 is	 coverage-discriminative,	 pixel-level	 highlights	 on	 the	 transformed	 “image”	 feature	 as	 in	
Figure	7.	As	the	final	step	to	illustrate	the	highlights	intuitively,	we	map	them	back	on	the	football	
field	and	visualize	the	corresponding	player	interactions.	The	line	thickness	annotates	the	interaction	
strength.	The	detailed	results	on	example	plays	are	shown	in	Section	4.2.2.	
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4.	Metrics	and	results	
	
In	 this	 section,	 we	 describe	 the	 experimental	 metrics	 and	 results	 for	 our	 explainable	 coverage	
classification	 model.	 We	 first	 introduce	 the	 quantitative	 experiment	 setup	 and	 performance	
comparison	to	baseline	models	(Section	4.1).	Next,	we	provide	results	from	our	model	explanation	
methods	and	the	insights	discovered	by	them	(Section	4.2).		

4.1	Quantitative	evaluation	
Table	1.	Best	model	and	training	parameters	from	hyperparameter	optimization.		

CNN	output	
dimensionality	

Learning	
rate	

Weight	
decay	

Label	
smoothing	
weight	

Dropout	rate	
for	fully	
connected	
layers	

Dropout	rate	
for	
convolutional	
layers	

Number	of	
heads	in	self-
attention	
module	

128	 0.0054	 0.0005	 0.07	 0.3	 0.2	 16	
	
As	mentioned	in	Section	3.2,	we	utilize	2018-2020	seasons	data	for	model	training	and	validation,	
and	2021	season	data	to	for	quantitative	evaluation.	We	performed	a	5-fold	cross-validation	to	select	
the	 best	 model	 during	 training.	 We	 apply	 the	 Adam	 optimizer	 with	 weight	 decay	 and	
perform	hyperparameter	optimization	to	select	the	best	settings	on	multiple	model	architecture	and	
training	parameters.	The	best	parameters	are	shown	in	Table	1.		
	
To	evaluate	the	model	performance,	we	computed	the	coverage	accuracy,	F1	score,	top-2	accuracy	
and	accuracy	of	the	man	vs.	zone	task.	The	CNN-based	Zoo	model	used	in	[8]	is	the	most	relevant	for	
coverage	classification	and	we	used	it	as	the	baseline.	In	addition,	we	consider	improved	versions	of	
the	 baseline	 that	 incorporate	 the	 temporal	modeling	 components	 for	 comparative	 study:	 a	 CNN-
LSTM	model	that	utilizes	a	bi-directional	LSTM	to	perform	the	temporal	modeling,	and	a	single	CNN-
attention	model	 that	 is	 used	 as	 the	 backbone	 of	 our	model,	 but	without	 the	 ensemble	 and	 label	
smoothing	components.	We	obtain	the	performance	results	from	5	runs	with	different	random	seeds	
and	report	the	average	and	standard	deviation	measures.	The	results	are	shown	in	Table	2.	
	

Table	2.	Quantitative	evaluation	of	the	coverage	classification	model	in	comparison	with	the	
baseline	and	improved	versions	of	it.	

Model	 Test	acc.		
8	coverages	
(%)	

Top-2	acc.	
8	coverages	
(%)	

F1	score	
8	coverages	

Test	acc.	
Man	vs.	Zone	(%)	

Baseline:	Zoo	model	 68.8±0.4	 87.7±0.1	 65.8±0.4	 88.4±0.4	
CNN-LSTM	 86.5±0.1	 93.9±0.1	 84.9±0.2	 94.6±0.2	
CNN-attention	 87.7±0.2	 94.7±0.2	 85.9±0.2	 94.6±0.2	
Ours:	ensemble	of	5	
CNN-attention	models	

88.9±0.1	 97.6±0.1	 87.4±0.2	 95.4±0.1	

We	observe	that	incorporation	of	the	temporal	modeling	module	significantly	improves	the	baseline	
Zoo	model	that	was	based	on	a	single	frame.	Compared	to	the	strong	baseline	of	CNN-LSTM	model,	
our	 proposed	 modeling	 components	 including	 the	 self-attention	 module,	 model	 ensemble	 and	
labeling	 smoothing	 combined	 provide	 significant	 performance	 improvement.	 The	 final	 model	 is	
performant	as	demonstrated	by	the	evaluation	measures.	 In	addition,	we	identify	very	high	top-2	
accuracy	and	significant	gap	to	the	top-1	accuracy.	This	can	be	attributed	to	the	coverage	ambiguity:	
when	the	top	classification	is	incorrect,	the	2nd	guess	often	matches	human	annotation.	
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4.2	Model	explanation	results	

4.2.1	Global	explanations	
As	shown	in	Figure	10	and	described	in	Section	3.6,	we	observe	interesting	cluster	patterns	among	
different	 coverage	 types.	 In	 this	 experiment,	 we	 utilize	 basic	 outlier	 detection	 and	 clustering	
algorithms	to	further	investigate	these	patterns.		
	
First,	we	notice	that	some	plays	are	“mixed”	into	other	coverage	types.	These	plays	could	potentially	
be	mislabeled	and	deserve	manual	inspection.	To	automatically	identify	the	candidates	to	review,	we	
design	 a	 self-verification	method	 that	 compares	 each	 play’s	 coverage	 label	with	 the	 labels	 of	 its	
neighbors	 on	 the	 learned	 embedding	 space.	 This	 is	 achieved	with	 a	 K-Nearest	 Neighbors	 (KNN)	
classifier.	For	each	example,	we	compute	its	correctness	score	as	the	classification	probabilities	on	
its	 annotated	 class	 label	 from	 the	 KNN.	 We	 experimented	 with	 different	 K,	 i.e.,	 the	 number	 of	
neighbors	parameter	and	chose	a	relatively	large	parameter	of	K=80	to	avoid	prioritizing	samples	
inside	 the	 ambiguity	 regions.	 The	 lowest-score	 examples	 are	 shown	 in	 Figure	 11.	We	 randomly	
sampled	13	plays	from	the	highlighted	examples	for	expert	review	and	found	that	12	out	of	the	13	
plays	were	indeed	labeled	incorrectly.	The	remaining	one	play	was	designated	as	a	zone	match	split-
safety	coverage	that	falls	in	between	Cover	2	Zone	(label)	and	Cover	2	Man	(model	classification).	
Inspection	of	the	play	footage	revealed	that	the	two	outside	cornerbacks	(CBs)	kept	their	eyes	on	the	
QB	the	entire	time,	which	could	not	be	accounted	for	by	the	tracking	data.	
	
The	 second	 interesting	 observation	 from	Figure	 10	 is	 that	 there	 are	 several	 overlapping	 regions	
among	 the	 coverage	 types,	 indicating	 coverage	 ambiguity.	 We	 identify	 the	 most	 prominent	
ambiguities,	and	utilize	a	clustering	algorithm	to	extract	the	associated	example	plays.	Considering	
the	 complex	 topology,	 we	 apply	 spectral	 clustering	 algorithm	 [28]	 on	 the	 play	 embeddings.	We	
experimented	 with	 different	 number	 of	 cluster	 parameter,	 by	 starting	 with	 a	 small	 value,	 and	
gradually	 increasing	 it	 such	 that	 the	visually	 identified	ambiguity	region	 is	covered	by	one	of	 the	
clusters.	Note	that	the	clustering	algorithm	is	not	aimed	for	the	optimal	separation	of	the	plays,	but	
rather	to	effectively	select	the	plays	associated	with	the	ambiguity	region.	The	identification	results	
on	 three	prominent	regions	are	visualized	 in	Figure	13.	Our	expert	 review	uncovered	 interesting	
patterns	on	the	adopted	coverages:	

• The	first	ambiguity	region,	as	shown	in	Figure	13(a),	deals	with	the	two	different	single-high	
coverage	concepts:	Cover	3	Zone	vs	Cover	1	Man.	The	main	distinction	between	these	two	
coverages	is	man	vs	zone	coverage.	Most	of	the	play	examples	in	this	region	involve	some	sort	
of	“pattern	matching”.	In	these	plays,	the	coverage	responsibilities	are	contingent	upon	how	
the	offensive	receivers’	routes	are	distributed,	and	adjustments	can	make	the	play	look	like	a	
mix	of	zone	and	man	coverages.	For	example,	one	such	adjustment	we	identified	applies	to	
Cover	 3	 Zone,	 when	 the	cornerback	 (CB)	 to	 one	 side	 is	 locked	 into	man	 coverage	 (“Man	
Everywhere	he	Goes”	or	MEG)	and	the	other	has	a	traditional	zone	drop.		

• The	second	ambiguity	region,	Cover	4	Zone	vs.	Cover	6	Zone	as	shown	in	Figure	13(b),	deals	
with	another	pair	of	coverages	that	have	overlap	in	their	assignments.	Cover	6	Zone	is	best	
understood	as	a	split	field	coverage,	where	one	side	of	the	defense	is	playing	Cover	4	Zone	
and	the	other	is	playing	Cover	2	Zone.	This	means	one	side’s	cornerback	(the	Cover	2	side)	is	
responsible	for	the	“flat”	area,	while	the	other	is	responsible	for	the	deep	outside	quarter	of	
the	 field.	 A	 key	 indicator	 in	 identifying	 Cover	 6	 from	Cover	 4	will	 be	 the	 flat	 cornerback	
initially	staying	in	place	or	stepping	down	at	snap,	while	the	deep	quarter	cornerback	will	
start	by	backpedaling.	On	a	number	of	plays	in	this	region,	the	flat	area	wasn’t	threatened	by	
any	receivers,	so	that	cornerback	eventually	had	the	freedom	to	drop	back,	making	it	look	
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more	like	Cover	4.	Another	pattern	from	the	examples	was	the	relative	depth	of	the	safeties.	
On	mostly	plays,	the	defense	presents	more	of	a	single-high	safety	shell	pre-snap,	with	one	
safety	significantly	deeper	than	the	other.	Spacing	of	the	safeties	made	it	appear	that	they	are	
responsible	for	a	deep	half	rather	than	a	deep	quarter,	especially	if	they	are	wider.	

• A	majority	of	play	examples	in	the	third	region,	Cover	0	Man	vs.	Cover	1	Man	as	shown	in	
Figure	13(c),	are	in	the	red	zone,	especially	within	the	5-yard	line.	Given	the	reduced	space	
in	this	area	of	the	field,	it	becomes	more	difficult	to	determine	whether	there	is	a	“deep	safety”	
(an	indicator	of	Cover	1	Man).	On	the	plays	outside	the	red	zone,	the	defense	showed	a	single-
high	safety	at	snap.	However,	that	player	did	not	drop	into	the	deep	middle	on	any	of	those	
plays.	Instead,	that	player	would	end	up	in	man	coverage	to	replace	a	blitzing	player	or	help	
double	a	dangerous	receiver.	

(a)	t-SNE	embeddings	for	Cover	3	Zone	(left),	Cover	1	Man	(middle),	and	the	identified	ambiguity	
cluster	in	red	with	randomly	sampled	10	plays	marked	with	black	“x”	for	manual	review	(right).	

(b)	t-SNE	embeddings	for	Cover	4	Zone	(left),	Cover	6	Zone	(middle),	and	the	identified	ambiguity	
cluster	in	red	with	randomly	sampled	10	plays	marked	with	black	“x”	for	manual	review	(right).	

(c)	t-SNE	embeddings	for	Cover	0	Man	(left),	Cover	1	Man	(middle),	and	the	identified	ambiguity	
cluster	in	red	with	randomly	sampled	10	plays	marked	with	black	“x”	for	manual	review	(right).	

Figure	13.	Ambiguity	analysis	on	the	3	prominent	overlapping	regions	from	t-SNE	
embeddings:	Cover	3	Zone	vs.	Cover	1	Man	(a),	Cover	4	Zone	vs.	Cover	6	Zone	(b),	and	Cover	0	Man	

vs.	Cover	1	Man	(c).	
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4.2.2	Instance	explanations	
We	demonstrate	the	instance	explanation	results	in	this	subsection.	We	first	inspect	the	extracted	
explanations	for	“easier”	examples	whose	coverage	strategy	is	clear,	to	verify	that	the	explanations	
capture	the	meaningful	player	interactions.	Then,	we	utilize	the	explanation	method	to	shed	light	on	
model’s	decision	on	some	low-confidence	plays.		

	

Figure	14.	Instance	explanation	results	on	a	Cover	1	Man	play	(top)	and	a	Cover	3	Zone	play	
(bottom).	
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Figure	14	visualizes	the	instance	explanations	of	a	Cover	1	Man	play	and	a	Cover	3	Zone	play.	Note	
that	 the	 frames	are	selected	using	the	method	described	 in	Section	3.6	and	Figure	12.	On	the	top	
figure,	 the	 explanation	 picks	 up	 the	 frame	 2.7	 seconds	 into	 the	 play	 and	 the	 strong	 interaction	
identified	by	the	model	between	the	left	slot	WR	and	slot	CB.	This	is	aligned	with	the	clear	indicator	
of	man	coverage	with	the	CB	squaring	up	on	the	receiver	and	following	him	inside	and	then	outside	
on	a	whip	route.	To	the	other	side	of	the	formation,	the	explanation	correctly	identifies	that	the	two	
defensive	backs	follow	the	receivers	they	align	across	from	even	as	the	receivers	switch	inside	and	
outside,	a	key	man	coverage	indicator.	The	TE	aligned	in	the	slot	is	followed	by	FS	on	an	out-breaking	
route,	while	the	WR	aligned	wide	is	followed	by	the	CB	on	an	in-breaking	route.	When	we	consider	
the	deep	middle	FS,	the	play	is	clearly	Cover	1	Man.		
	
On	the	bottom	plot	of	Figure	14,	the	initial	drops	of	both	outside	corners	to	the	outside	thirds	without	
any	regard	for	the	routes	being	run	clearly	shows	Cover	3	Zone.	The	explanation	picks	up	this	frame	
at	5.5	seconds	into	the	play,	when	the	pass	rush	has	forced	the	QB	to	scramble,	but	each	of	these	deep	
third	players	have	maintained	their	responsibilities.	The	strong	interaction	between	the	TE	in	the	
deep	middle	of	the	field	and	both	the	MLB	and	CB	is	the	correct	reasoning	of	a	Cover	3	framework:	
he	wouldn’t	be	that	open	if	the	defense	was	playing	man	or	match	coverage.	At	the	same	time,	the	
MLB	having	strong	interactions	with	both	inside	TEs	who	aligned	on	his	side	of	the	formation	pre-
snap	is	another	clear	piece	of	evidence:	he	 is	 in	zone	so	he	did	not	 follow	either	TE,	even	as	they	
entered	and	exited	the	area	he	was	responsible	for.	
	
After	confirming	the	utility	of	the	instance	explanation	method,	we	utilize	it	to	shed	light	of	model’s	
decision	when	 the	 prediction	 confidence	 is	 low.	 These	 plays	 deserve	manual	 inspection	 and	 the	
instance	explanation	can	help	speed	up	the	process.	Figure	15	demonstrates	the	explanation	result	
of	a	play	where	the	model	identifies	Cover	1	Man	with	61.7%	probability	and	Cover	0	Man	with	28.4%	
probability.	When	asked	to	explain	the	decision	of	Cover	1	Man,	the	algorithm	identifies	the	frame	
(Figure	15	top	plot)	 that	comes	after	 the	play	action	 fake.	At	 that	point	 it	 is	clearer	that	 the	SS	 is	
patrolling	the	deep	middle.	The	highlighted	interactions	between	WR	and	CB	are	indeed	the	correct	
evidences	of	man	coverage.	When	asked	to	explain	Cover	0	Man,	the	algorithm	picks	up	the	frame	
(Figure	 15	 bottom	 plot)	 that	 comes	 significantly	 earlier	 in	 the	 play,	 right	 after	 the	 snap	 as	 the	
quarterback	has	turned	his	back	to	fake	the	handoff	to	the	RB.	The	highlighted	interaction	between	
the	SS	and	the	right	WR	is	due	to	the	safety	moving	in	that	direction,	which	may	have	led	the	model	
to	think	he	is	 in	man	coverage	instead	of	playing	the	deep	middle.	This	play	also	conforms	to	our	
findings	from	the	third	ambiguity	region	(Figure	13(c)):	the	condensed	space	given	the	proximity	to	
the	goal	line	makes	it	harder	for	the	model	to	identify	whether	there	is	a	“deep	safety”.	
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Figure	15.	Instance	explanation	result	on	a	play	with	61.7%	predicted	probability	of	Cover	1	Man	

(top)	and	28.4%	predicted	probability	of	Cover	0	Man	(bottom).	
	
Looking	back	at	the	play	we	illustrated	in	Figure	1,	the	model	predicted	Cover	3	Zone	with	44.5%	
probability	and	Cover	1	Man	with	31.3%	probability.	We	generate	the	explanation	results	for	both	
classes	as	shown	in	Figure	16.	The	top	plot	for	Cover	3	explanation	comes	right	after	the	ball	snap.	
The	CB	on	the	offense’s	right	has	the	strongest	interaction	lines,	because	he	is	facing	the	QB	and	stays	
in	place.	He	ends	up	squaring	off	and	matching	with	the	receiver	on	his	side	who	threatens	him	deep.		
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Figure	16	Instance	explanation	result	on	a	play	with	44.5%	predicted	probability	of	Cover	3	Zone	
(top)	and	31.3%	predicted	probability	of	Cover	1	Man	(bottom).	This	is	the	same	play	as	the	one	we	

illustrated	in	Figure	1.	
	
The	bottom	plot	for	Cover	1	explanation	comes	a	moment	later,	as	the	play	action	fake	is	happening.	
One	of	the	strongest	interactions	is	with	the	CB	to	the	offense’s	left,	who	is	dropping	with	the	WR.	
Play	footage	reveals	that	he	keeps	his	eyes	on	the	QB	before	flipping	around	and	running	with	the	
WR	who	is	threatening	him	deep.	The	SS	on	the	offense’s	right	also	has	a	strong	interaction	with	the	
TE	on	his	side,	as	he	starts	to	shuffle	as	the	TE	breaks	inside.	He	ends	up	following	him	across	the	
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formation,	 but	 the	 TE	 starts	 to	 block	 him,	 indicating	 the	 play	was	 likely	 a	 run-pass	 option.	 This	
explains	the	uncertainty	of	the	model’s	classification:	the	TE	is	sticking	with	the	SS	by	design,	creating	
biases	in	the	data.	

5.	Conclusion	
	
This	paper	presents	a	novel	ensemble	CNN-attention	model	to	classify	defense	coverage	schemes	in	
a	 performant	 manner.	 It	 significantly	 outperformed	 existing	 frame-based	 model	 and	 achieved	
production-ready	 performance.	 This	 approach	 is	 easily	 generalizable	 and	 extensible	 to	 include	
additional	 types	 of	 coverages	 beyond	 the	 eight	 coverages	 we	 considered	 in	 the	 paper.	 The	
classification	model	has	been	deployed	to	production	by	NFL	NGS	engineering	and	product	teams.		
	
To	extract	 insights	regarding	coverage	ambiguity	and	model	decision-making	process,	we	 further	
developed	a	comprehensive	model	explanation	method.	Through	global	explanation	that	uncovers	
coverage	ambiguity	patterns	and	instance	explanation	that	highlights	critical	signals	on	the	player	
interactions,	our	approach	revealed	interesting	insights	about	the	team	and	player	behaviors.	This	
also	enables	intelligent	selection	of	plays	for	efficient	human	reviews.		
	
In	future	work,	we	plan	to	investigate	game-theoretic	approaches	[23,	24]	for	the	explanation	of	the	
coverage	classification	model.	In	addition,	we	would	like	to	study	temporal	graph	neural	networks	
(GNNs)	that	can	directly	model	the	player	interactions	from	raw	data,	as	well	as	GNN-based	model	
explanation	approaches	[25].	
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Appendix	
	
Player	position	acronyms	in	Figure	2	

Defensive	positions	
W	 "Will"	Linebacker,	or	the	weak	side	LB	
M	 "Mike"	Linebacker,	or	the	middle	LB	
S	 "Sam"	Linebacker,	or	the	strong	side	LB	
CB	 Cornerback	
DE	 Defensive	End	
DT	 Defensive	Tackle	
NT	 Nose	Tackle	
FS	 Free	Safety	
SS	 Strong	Safety	
S	 Safety	

Offensive	positions	
X	 Usually	the	number	1	WR	in	an	offense,	they	align	on	the	LOS.	In	trips	formations,	this	

receiver	will	often	align	isolated	on	the	backside.	
Y	 Usually	the	starting	TE,	this	player	will	often	align	in-line	and	to	the	opposite	side	as	

the	X.	
Z	 Usually	more	of	a	slot	receiver,	this	player	will	often	align	off	the	LOS	and	on	the	same	

side	of	the	field	as	the	TE.	
H	 Traditionally	a	 fullback,	 this	player	 is	more	often	a	 third	WR	or	a	 second	TE	 in	 the	

modern	league.	They	can	align	all	over	the	formation,	but	are	almost	always	off	the	line	
of	scrimmage.	Depending	on	the	team,	this	player	could	also	be	designated	as	a	F.	

T	 The	featured	running	back.	Other	than	empty	formations,	this	player	will	align	in	the	
backfield	and	be	a	threat	to	receive	the	handoff.	

QB	 Quarterback	
C	 Center	
G	 Guard	
Player	position	acronyms	in	other	figures,	if	not	in	the	above	

Defensive	positions	
LB	 Linebacker	
ILB	 Inside	Linebacker	
OLB	 Outside	Linebacker	
MLB	 Middle	Linebacker	

Offensive	positions	
RB	 Running	Back	
FB	 Fullback	
WR	 Wide	Receiver	
TE	 Tight	End	
LG	 Left	Guard	
RG	 Right	Guard	
T	 Tackle	
LT	 Left	Tackle	
RT	 Right	Tackle	
	


