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1. Introduction 

In a fluent invasion sport like soccer, tactical analysis typically breaks a match down to distinct 
game-phases in which teams perform tactical patterns. A tactical pattern is defined as repeatable, 
coordinated movements of either the whole team or a group of players and conducted in specific 
situations [1],[2],[3]. To derive meaningful insights in the tactics of a team, these patterns are 
identified and annotated manually by experts while observing the video footage [4], [5]. Although 
video analysis departments are a well-established part of professional soccer and specialists in 
tagging such patterns, this task is often repetitive, time-consuming, and subjective. Thus, with 
tracking and play-by-play data being available at large scales, the automated detection of tactical 
patterns has become one of the most important jobs in (team) sports [6],[7]. Successful applications 
include pattern detection for goal scoring [8], counterpressing [4], counterattacks [9], and 
defending corner kicks [10],[11]. Their implementation in existing workflows have been shown to 
save video analysts a great deal of time by (semi-)automating otherwise purely manual processes. 

Detecting tactical patterns is not available off-the-shelf but bears three inherent challenges that 
need to be addressed appropriately to obtain a method that can be used in practice: (I) The 
detection task is usually considered a supervised learning problem that relies on a great deal of 
manually annotated situations so that a classifier can be trained to detect patterns of interest. The 
data used for the training is assembled by forming pairs of situations (the input) and corresponding 
manual labels (the output) where the classifier learns to act as a function approximator that 
transforms situations into labels. (II) The second challenge is the permutation problem that is 
inherent to all multi-agent scenarios like team sports. An appropriate solution needs to be agnostic 
about the ordering of the players to account for different lineups, in-game role changes and 
substitutions. Hence, the pattern detector must be in- or equivariant with respect to the ordering of 
players. Unfortunately, existing approaches often oversimplify the problem by breaking the high- 
dimensional spatiotemporal input data down to lower dimensional hand-crafted features [4], [8], 
[11]. (III) Last but not least, the number of players involved in a pattern is often unknown 
beforehand and may vary from pattern to pattern. This holds particularly for applications in 
opponent analysis where the goal is to detect novel and so far, unknown patterns. Apart from 
computing individual scores for players [12], there is, as of now, no convincing solution to compute 
the subgroup of players that is important for a given situation.1 

Thus, an appropriate solution to the detection of tactical patterns should (I) require only little 
manual effort, (II) be in- or equivariant with respect to the ordering of players, and (III) identify 
relevant subgroups of players automatically. Fortunately, these requirements are not unique to 
sports analytics and have been studied in other contexts before. For example, semi-supervised 

 
1 Mathematically, the power set π(X) contains all possible subsets of a set X and is of size 2|X|. While, 
in basketball computing 210 = 1,024 different subsets per timestep may perhaps be tractable, we 
have 222 = 4,194,304 different subsets of players per frame in soccer which is clearly infeasible. 
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learning deals with scenarios where labeled instances are scarce but unlabeled ones can be 
accessed in abundance. Equivariance and subgroups of agents can be captured by graph neural 
networks (GNNs) [13] that have also been shown to work well in spatiotemporal domains like 
invasion sports [14], [15]. 

Putting everything together, we propose a semi-supervised and sequential variational autoencoder 
(VA) for detecting tactical patterns on team-, group- and player-levels. Internally, a graph neural 
network remedies permutation problems and allows to focus the algorithms attention on arbitrary 
subgroups of players, including opponents. Our contribution can thus be seen as a sequential and 
order equivariant generalization of semi-supervised variational autoencoders [16], [17], [18], or, 
alternatively, as a semi-supervised extension of existing approaches for detecting patters in 
trajectory-based data [19]. 

Our framework allows to address a variety of problems relevant in practice, ranging from the 
detection of patterns on team-, group- and player-levels like, for example, overlapping runs. 
Recently, Fassmeyer et. al. [17] proposed a similar approach. Though their approach is tailored to 
the detection of team-patterns, they showed its usefulness for the detection of counterattacks [9]. 
In this study, we are the first to explore arbitrary tactical patterns, involving small groups of 
players. An example is overlapping runs2, a pattern conducted by only two players of a team, as well 
as patterns involving larger groups of players on the example of chances without a shot.3 The latter 
constitutes a complex tactical event with varying numbers of players involved and serves to 
demonstrate the universal applicability of the proposed approach to arbitrary tactical patterns. In 
both tasks, the proposed method outperforms purely supervised competitors. The superiority of 
the proposed methodology is further highlighted by another set of experiments focusing on only the 
movement model of the proposed approach. Though not explicitly designed for movement 
prediction, the latter certainly constitutes an important part in the detection of tactical patterns 
with multiple moving players at a time. We report on a side experiment in the Appendix, showing 
that the movement prediction of our method significantly advances the state-of-the-art on an open- 
source Basketball dataset. 

We conclude the paper by presenting useful practical applications, again using the detection of 
overlapping runs as a showcase. Our method not only saves a great deal of time for video analysts 
by finding the relevant scenes of a match automatically, but also enables coaching staffs to derive 
long-term insights by processing data at large scales to support opponent analysis as well as 
scouting talents. 

 
 
 
 
 
 
 
 

2 Two examples of overlapping runs can be found here: https://bit.ly/3o2zIQ5. Both the 
overlapping—the player running behind the player in ball possession—and the overlapped 
player—the player in possession of the ball—are highlighted in the video. 
3 Chance without shot events are defined as situations with a significant chance to score a goal 
without a shot actually being taken or without an owngoal being scored. A video of an exemplary 
chance without shot event can be found here: https://bit.ly/3E4LrTD. 
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2. Section 
2.1. Data and Expert-Labeling 
For the purpose of this study, we make use of in total 14 matches of tracking and event data of the 
German National team played in 2021, including their four matches played at the European 
Championship. Tracking data are acquired using the Chyronhego TRACAB System (Generation 5) 
evaluated in [20] and are sampled at 25 frames per second. The respective event data, acquired by 
Sportec Solutions AG (following the official event data catalogue of German Bundesliga Match-Data) 
are synchronized with the positional data using the methodology of Anzer et. al [21]. We will focus 
on tracking data in this paper and make use of event data only in the evaluation. More information 
on both, positional and event data can be found in [4], [8], [17], [21]. 

In the following, we define an overlapping run as a separated two (attackers) versus one (defender) 
situation with one attacker being in possession of the ball and dribbling toward the defender. The 
second attacker, performing the overlapping run, runs with high speed past the ball possessing 
attacker toward the opposing goal line. By doing so, the runner creates a new passing option for his 
teammate. These situations are difficult to defend since the running player has no direct opponent 
and the opposing defender must choose between defending the runner or the dribbling player. 

 
According to that definition, a professional match analyst from the German National team hand- 
labeled all overlapping run situations (in total 32) of four matches of the German national team 
played in 2021. For all situations both the overlapping (the player running past his teammate) and 
the overlapped player (the ball possessing player) is annotated by the expert, however, only the 
former is used as input to the algorithm. Two of those matches are independently labeled by a 
second analyst from a Bundesliga club to determine the inter-annotator agreement. 

 

2.2. Preprocessing 
An architecture based on graph neural networks (GNNs) allows us to directly operate on tracking 
data as input. We aim to predict target variables that originate either from the available event data 
(chance without shot) or from external annotations (overlapping run, expert labels). While the event 
data uses the same time code as the tracking data, the time format for the expert annotations uses a 
video footage clock and needs to be synchronized with the tracking data. Thus, the latter case 
includes a preprocessing step to align the manually provided timestamps to their corresponding 
frames in the tracking data. Since the coarse timing information and the subsequent transformation 
process render the label information ambiguous, it is important to include a short context window 
around the identified frame. Since the expert annotations denote the start of an overlapping 
situation, we additionally annotate the next 10 frames as well with the expert label. 

The tracking data is given as a long consecutive sequence. By contrast, our models operate on game 
segments of different lengths and we need to split the game at hand into smaller chunks. Also, the 
model objective consists of a supervised and unsupervised part such that the proposed 
SequentialM2 (further described in the next section) requires simultaneous sampling of labeled and 
unlabeled data points. We simply generate unsupervised data by applying a sliding window of 
length 50 with 50% overlap on the full game data. For the supervised part, we extract “positive” 
training sequences by adding a contextual window around the timestep where a label of an 
arbitrary agent is active, and randomly sample from the remainder of the data to construct a 
"negative" dataset of the same size. The trajectories are centered and normalized to the interval [- 
1,1] both in x- and y-direction. Finally, the trajectory data is converted to velocity information by 
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subtracting consecutive player coordinates. Note that this does not involve any loss of information 
with respect to player locations since the movement can be reconstructed from the x/y-coordinate 
of the first timestep and the subsequent velocity vectors. 

 
 

2.3. Method 
We employ strategies from the work of Kingma et al. [18], who propose a principled probabilistic 
approach to semi-supervised learning based on the idea of variation autoencoders [26], [27]. VAEs 
use neural networks to parametrize a generative model (or encoder) and an associated variational 
distribution (or decoder), and aim to reconstruct the given input data via a low-dimensional 
bottleneck z. 

 
 

 
Figure 1: Each players’ trajectory is fed through a recurrent neural network (RNN) with shared parameters and 
subsequently updated by a GNN. 

 

To apply this setting to the semi-supervised domain, Kingma et al. [18] integrate discrete label 
information y into the data generation process (alongside continuous factors z). Their resulting 
objective function, referred to as M2 model, can be divided into a supervised and unsupervised 
part: The supervised part can be seen as a regularized classification objective, where the 
reconstruction task of the VAE acts as a regularization term. In the case of unlabeled data points, 
the label information is treated as an unobserved latent variable, so that inference also needs to be 
performed for the labels. This mechanism provides an effective way to learn from unobserved data 
as it encourages the model to assign high probability values to label values that achieve a small 
reconstruction loss. Thus, after training, the variational distribution on y can be used for classifying 
new data points. 

 
Due to the sequential nature of spatiotemporal tracking data, it is vital to elevate the M2 principle 
to a sequential definition. A popular realization of generative and inference processes that extend 
VAEs to model complex sequential distributions is found in the VRNN framework proposed by 
Chung et al. [18]. Their approach can be seen as a VAE realization at each timestep, with each VAE 
conditioned on the hidden state of a recurrent neural network (RNN) at the previous timestep. We 
adopt this idea and combine it with the M2 formulation to derive a general semi-supervised 
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approach for the sequential domain: Our framework, referred to as SequentialM2, can therefore be 
viewed as a combination of the two previously mentioned methods (VRNN + M2). 

 
The overall layout of the proposed approach is depicted in Figure 1. To capture the time 
dependence of successive observations, we leverage the hidden state of an RNN network [24] that 
operates on input x and both latent variables (z and y). The RNN state at time t-1 encodes a 
selective summary of previous time steps and latent variables. The main idea is to use this state (ht- 

1) as an additional functional input for all components of the encoding and decoding parts governed 
by the M2 assumption. Thus, the emerging training criterion can be interpreted as the M2 objective 
summed over each timestep of the input sequence. 

 
 

2.4. Multi-Agent Setting 
To generalize the derived framework to a multi-agent setting for applications in (team) sports, we 
integrate an attention-based graph neural network (GAT) [28], into the architecture. Such deep 
approaches are usually the model of choice when dealing with graph-structured data. Specifically, 
they operate by learning a chain of hidden representations for each node through an iterative 
process that relies on aggregating messages from interactive nodes. In fact, different proposed 
architectural variants such as GCN [26], GraphSAGE [27] or GATs [28] mainly differ in their notion 
of passing messages along the edges of the graph and aggregating neighborhoods. However, since 
the ordering of nodes in a graph structure is arbitrary, the aggregation operators are required to be 
permutation invariant (mean or sum are frequent choices). 

 
 
 

Figure 2: Euclidean distance between nodes (players). Only nearby players influence the computation of the node 
embeddings. 

 
Graph attentive networks improve previous GNN configurations by computing node 
representations according to an attention strategy. An attention mechanism implicitly assigns 
weights to nodes in a neighborhood, thus governing the learning process towards the important 
pieces of data for the task at-hand. While there are various forms to realize such a mechanism, we 
use a simple single-layer neural network operating across pairs of nodes. To stabilize the learning 
process, we replicate this process multiple times with differing weight parametrizations, and 
subsequently concatenate their separately inferred embeddings, which defines a single GNN layer 
output (this process is referred to as multi-head attention, see for example [28]). 

To embed the previously described concept into our overall architecture, we represent multi-agent 
trajectory data encoding each player as a node of the graph. This way, the model can utilize a GNN 
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as a tool for information propagation, capable of modeling interaction patterns among different 
players. For predictions on player-levels, it is crucial to model their interaction with players nearby. 
Thus, we obviate direct influence of distant players in the computations by using a k-nearest 
neighbor approach (see Figure 2).4 However, it is worth noting that eradicating remote players in 
the graph does not curtail the (implicit) aggregation of remote information. Specifically, by adding 
depth to the network (stacking GNN layers upon each other), the receptive field, i.e., the number of 
nodes that affect computations, is effectively increased. Additionally, we introduce a variant of skip 
connections as presented in Xu et al. [25]: the final feature representation is directly aggregated 
from all node embeddings of the previous layers. This mechanism adds to the expressiveness of the 
network and allows the model to accommodate structural information from different levels of 
granularity at prediction time. 

To put everything together, at each timestep, the GNN updates recurrent player states by 
additionally considering neighborhood information, see Figure 1. Since the hidden states serve as 
input to all encoding and decoding modules, the computed quantities (i.e., latent variables and 
agent positions) depend indirectly on the respective preceding quantities.5 This allows the model to 
properly account for coordination among the different players. 

3. Empirical Setup 
The experiments conducted in this paper are based on a dataset consisting of four distinct soccer 
games from the German national team. We use two (concatenated) games for training, one for 
model selection, and one game for testing. Each soccer game consists of roughly 140,000 timesteps, 
where each timestep encodes the x/y-coordinates of the players, plus a per-match-average of eight 
manually provided overlapping situations as well as three chance without shot situations. In the 
training process, parameters of the proposed methods are optimized and saved when the 
corresponding weight configuration improves the current best AUC value on the validation game. 
The reported results denote the quantities on the test game with the best parametrization after 100 
epochs. All methods are implemented from scratch using PyTorch [29]. 

 
3.1. Learning Tasks: 
The first task focuses on overlapping runs. An overlapping run is an established tactical pattern in 
soccer that involves a pair of two players: the ball carrier dribbles the ball (typically in the opposing 
half close to the sideline), a teammate runs past him at high speed, and creates a pass option 
towards the opposing goal.6 Although the offensive pattern is rather simple, a well-timed 
overlapping run can pose a critical problem for defenders. In total 32 overlapping runs from four 
matches were tagged manually, including the information of the two players involved. Two matches 
were labeled independently of a second expert agreeing on 22 out of 26 scenes corresponding a 
pairwise inter-annotator agreement of 84.61 %. As a second task, we evaluate detecting individual 

 
 
 

4 Also, choosing a k-nearest neighbor adjacency matrix alleviates the oversmoothing problem 
where all node representations collapse to the same quantity. 
5 Note here that we opt for the most general formulation of achieving multi-agent coordination. 
However, under certain circumstances it may be useful to additionally employ GNN modules for the 
encoding and decoding building blocks.oppo 
6 A video with exemplary overlapping run situations can be found here: https://bit.ly/3o2zIQ5. 
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patterns using the chance without shot event.7 The task is straight forward because these situations 
are already annotated in the event data. Nevertheless, the task allows us to study the effect of the 
number of provided labels and predictive accuracy. 

 
To assess the detection performance, we mainly use two different performance metrics. Having 
described the overall goal under the viewpoint of extracting a candidate set of game situations to 
increase efficiency for game analysis, the area under the ROC curve (AUC) is a suitable metric as it 
aggregates true positive (TP) and false positive (FP) values for different model thresholds. While it 
is a reasonable performance metric in the present context, there are still two points to consider 
when stating AUC values. Firstly, the action labels of interest are given only for individual 
timestamps and not for the broad game sequence they refer to, a fact that also reflects on the 
computation of TP and FP values: A potential user of the system contemplates situations holistically 
and detecting an unlabeled event that is only a couple of frames off the actual annotation is 
unproblematic. Secondly, a highly unbalanced label distribution for the test set, as given here, may 
be overly optimistic, since good AUC values are frequently driven by the ease of achieving good FP- 
rates. To address these two issues, we also report the F1-score on the test set for contiguous game 
sections. The components defining the F1-score are computed in accordance with [17] and ground 
on probability estimates for frames in the test game. Since the F1-score is basically the harmonic 
mean between precision and recall, false positives and false negatives are equally taken into 
consideration. The model outputs denote agent probabilities, consequently, we define the test game 
probabilities by choosing the maximum probability value across the agent dimension for each 
timestep of the game. 

 
3.2. Baselines: 
To properly assess the performance of the SequentialM2, we introduce a (fully supervised) 
sequential baseline model denoted as DetNet. The DetNet essentially adheres to an RNN's logic for 
classifying sequences. However, to account for spatiotemporal tracking data, the model additionally 
incorporates a GNN similarly to the SequentialM2 model, which processes RNN states to aggregate 
player dependencies. In this scenario, a soccer game is essentially treated as a long-supervised 
sequence where all time frames other than the situations of interest are labeled as negative. 
Accordingly, the model parameters are learned by randomly sampling game segments of length 50 
from the fully annotated training games and optimizing a standard binary cross-entropy loss. 

 
For the detection of overlapping runs, we also incorporate a rule-based detection, designed by 
professional match-analysts from the German National team. For all individual ball possessions (i.e., 
distance between player and ball < 2m) in the offensive third (i.e., more than 17.5m in the 
respective opposing half) and the outside lane (i.e. distance to the vertical midline of the pitch 
bigger than 17m), the rule-based system classifies situations where a teammate passed by the ball 
possessing player on the side of the closest sideline (i.e., there are two consecutive frames t and t+1 
in which the overlapping player passed behind the ball possessing player in the vertical direction of 
the pitch with a speed higher than 10 km/h. To ensure comparability to the proposed deep 
architectures, we add a context of +/- two seconds to the detected timestamps, and compute F1- 
scores accordingly. 

 
We report the quantitative results of both our model and the two baseline models in Table 1. The 
table shows that for both tasks, the detection of Chances without shot and for overlapping runs, the 

 

7 A video of an exemplary chance without shot event can be found here: https://bit.ly/3E4LrTD. 
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SequentialM2 model performs best in AUC as well as in F1-Scores. The performance disparity to the 
(highly overfitting) purely supervised baseline highlights the importance of an effective 
regularization mechanism that operates solely on the surplus of unsupervised positional data. Also, 
this demonstrates the universal applicability of the proposed concept, which underlines its 
advantage over task-specific rule-based solutions. 

 

Table 1: Results of the tactical pattern detection. 
 

Task Model AUC F1-Score 
 DetNet 0.62 - 

Overlapping run Rule-based baseline - 0.31 
 SequentialM2 0.93 0.4 

Chance without a shot 
DetNet 0.69 - 
SequentialM2 0.98 0.37 

 
 
 

Although overlapping runs can be clearly defined and accordantly labeled by different experts, it 
cannot be captured as accurately by hand-crafted rules as the proposed method allows us to. 
Although patterns like chance without shot are identifiable, the involved experts in our experiment 
were not able to define a rule-based detector of this event. However, using our method, Figure 3 
shows a correctly identified example for the Chance without shot detection task. The lower part of 
the figure shows the detection probabilities inferred from the inference network of the 
SequentialM2. The red vertical indicator reflects the ground-truth annotation from the event data. 
The blue vertical indicator reflects a probability amplitude within the shown game excerpt. The two 
pictures above display the associated snapshots for the blue (left picture) and red (right picture) 
vertical lines from the test match, respectively. As can be seen, the model assigns the highest 
probability value to the location of the ground-truth assignment, highlighting its potential in 
learning the inherent patterns of agent-level game situations. 
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Figure 3: TP example for agent label “chance without shot”. The figure shows the predicted probability values for an 
approx. 7 seconds excerpt from the validation game. The red vertical line indicates the event annotation. The respective 
video can be found here: https://bit.ly/3E4LrTD. 

 

4. Practical Application 

In this section we show how the automatic detection of overlapping runs can support the everyday 
processes of professional match-analysts and coaching staffs. Figure 4 shows an excerpt of a 
tactical match-report that is created immediately after every match. Within this one figure, the 
coaches get an overview of all overlapping runs that were detected during the match. Each run is 
plotted at its location (playing direction normalized for each team, i.e., Germany playing from left to 
right; France vice versa). The involved players are shown by their jersey number and the color of 
the line also indicates whether the player conducting the overlapping run received the pass (green 
trajectory) or not (red trajectory). Instead of just providing the absolute number, the percentage 
close to the center of the pitch compares the number of overlapping runs per side with the 
historical team average helping coaches to put the numbers into context. Additionally, to that plot, 
timecodes of the respective overlapping runs are provided to the coaches in form of a Hudl 
Sportscode XML-File which they can directly import into their video analysis software.8 

 
Figure 4 entails overlapping run situations detected in the opening match of Group F during the 
European Championship in 2021 in Munich.9 Both Robin Gosens (jersey number 20) on the left 
German side and Benjamin Pavard (jersey number 4) on the right French side overlapped twice but 
never received the ball. In total the French team conducted their overlapping runs with a higher 

 
8 A detailed case study of how automated extracts seamlessly fit into the processes of match 
analysts is presented in [4]. 
9 A summary of the match, including various details, can be found 
here: https://www.youtube.com/watch?v=20xO2Cwvs7U 

http://www.youtube.com/watch?v=20xO2Cwvs7U
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diversity, with four different players performing overlapping over their left attacking side. In 
contrast, Germany only performed two overlapping runs over their right side with Thomas Müller 
(jersey number 25) and Matthias Ginter (jersey number 4) receiving the ball. As mentioned above, 
another helpful information for the German coaching staff is that their team conducted less 
overlapping run situations than they typically do (-23%).10 

 

Figure 4: Excerpt from a Match Report showing all overlapping runs conducted by both teams. 
 

Another relevant use-case is opponent analysis. Since overlapping runs are often difficult to defend, 
knowing which opposing players are typically involved in the pattern, is a strategic edge in tactical 
match-preparation. This information is usually gathered by video analysts, who manually annotate 
multiple matches of an opposing team by tagging the respective scenes of interest and bringing 
them together as a resulting statistic. Using our automated detection, the results presented in Table 
2. an be produced automatically for each upcoming opponent. It shows which players perform 
overlapping runs (rows) and who is being overlapped the most (columns). The matrix also reveals 
preferences of pairings that conduct overlapping run situations together. 

 
The fact that Leroy Sané, Kai Havertz and Thomas Müller—three players with a lot of playing time 
as offensive wingers—are overlapped frequently is kind of expectable due to their position. Further 
analysis shows that the pairing of Leroy Sané and Matthias Ginter creates many overlapping run 
situations as well. For the overlapping runners, it is also no surprise that this is usually performed 
by defensive wingbacks like Robin Gosens or Ridle Baku. However, the fact that Joshua Kimmich, a 
player with only three matches as defensive back and the remaining ones as central defender, is 
involved in so many overlapping run situations (8 times overlapping; 6 times overlapped) is a 
valuable insight. 

 
 

10 Note that the benchmark for the French team purely relies on a small data sample, i.e. all their 
matches at the European Championship 2021. 
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Table 2: Frequency of overlapping runs for the German National Team in Season 2021/2022. 
 

 
 

Similarly, this approach could also be used in a player recruitment setting. If a team is searching for 
a wing back with a strong offensive drive, the frequency with which he is supporting his offensive 
winger through overlapping runs serves as a good indicator. This way, the identified candidates are 
evaluated independently of their number of such actions, which is the only information available in 
traditional scouting databases. Additional insights can be generated by augmenting overlapping 
runs into key performance indicators like pitch control to understand how much space was created 
and where, or quantifying the value of an overlapping run with subsequent xG (expected goals, e.g. 
[21]) values. 

 

5. Conclusion and Future Work 

We proposed a semi-supervised graph neural network for pattern detection in team sports. The 
method worked successfully with only a few labeled data points and was observed to empirically 
outperform fully supervised competitors. The flexibility of the granularity of the detected patterns 
as well as the drastically reduced labeling effort, poses a huge benefit for practical applications. 
Future work will address the detection of a variety of new patterns as well as testing the approach 
in other team sports such as basketball. 
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Appendix 
 
Modeling Movement Patterns 

We already showed the empirical success of our approach in detection performance. However, to 
demonstrate the generality of our approach, we validate its additional functionality by modeling 
future agent behavior. For detection tasks, the model needs to reason about the whereabouts of 
players in the near future and we would like to use the opportunity to additionally evaluate this 
feature. To ensure comparability with existing methods designed for trajectory forecasting, we run 
experiments on a public basketball dataset provided by STATS SportVU. The dataset comprises 
tracking positions of offensive plays from the 2016 NBA regular season covering more than 1200 
different games. Each game segment consists of 50 timesteps sampled at 5 frames per second, with 
each timestep encoding x/y-positions for all 11 agents (the 10 players on the court and the ball). 
The dataset contains already preprocessed multi-agent trajectories and therefore comprises merely 
the final preprocessing step of Section 2.2. 

 
Recent work emphasizes the importance of location-based goals in modeling human motion 
patterns [32], [33]. These methods are characterized as weakly supervised since they use the given 
trajectory data and an externally selected speed threshold to identify stationary points for each 
player. Such (weak) label information can be obtained, for example, by capturing the playing field 
as a grid of macro-areas, where each cell can represent a potential long-term goal of an agent. At 
each timestep, the agent's ground-truth objective is then defined as the location where the agent is 
stationary, i.e., moving below a prespecified speed threshold. Since the proposed framework 
incorporates discrete supervised signals into the assumption of the data generating process, such 
information can be naturally integrated into our overall scheme. Specifically, the task can be 
formalized within the SequentialM2 workflow as maximizing the supervised part of our objective 
function, where supervision in this case refers to the inferred long-term grid locations. 

 
Table 3 summarizes the results. The Mean L2-Error represents the mean square error between the 
real observed and the predicted positions over the entire sequence. The Final L2-Error follows the 
same logic but uses only the last timestep for comparison. Since offensive and defensive players 
inherently materialize different strategies and thus different trajectory patterns, we train distinct 
models for both subsets of players. The reported metrics refer to a prediction interval of 40 and 30 
timesteps, with an observation/burn-in period of 10 and 20 timesteps, respectively. 

 
The proposed SequentialM2 model framework accommodates not only mutual influences among 
different players, but also discrete generative factors, which yields a better approximation of the 
underlying multi-modal data distribution. This aspect is reflected in the impressive quantitative 
results shown in Table 3: though our method is not explicitly designed for trajectory forecasting, 
we exceed current state-of-the-art in nearly all tested scenarios. Further, the consistently lower 
performance errors in defensive scenarios highlight their reactive nature and accompanying lower 
complexity compared to offensive strategies. 



15 

 

 

 

A visual representation of the modeling task for an offensive rollout can be found in Figure 5: After 
an initial observation phase, the model predictions are evaluated against the ground-truth 
trajectories. In addition, we illustrate their corresponding label information with black boxes, 
where the color intensity corresponds to the frequency of the (weakly obtained) location-based 
labels. The picture underlines the models’ ability for effective sampling from the label space, since 
it captures highly complex changes in movement directions. 

 

Table 3: The Mean L2-error represents the mean square error between the ground-truth and the predicted positions 
over the entire sequence. The final L2-error follows the same logic, but only refers to the last timestep. Bold is the highest 
in the L2 and final L2 column for each task. 

 
Task Model L2 Final L2 
10-40 (ATK) STGAT [30] 

Social-Ways [31] 
Weak-Supervision [33] 
DAG-Net [32] 
SequentialM2 

9.94 
9.91 
9.47 
8.98 
8.41 

15.80 
15.19 
16.98 
14.08 
12.64 

10-40 (DEF) STGAT [30] 
Social-Ways [31] 
Weak-Supervision [33] 
DAG-Net [32] 
SequentialM2 

7.26 
7.31 
7.05 
6.87 
6.45 

11.28 
10.21 
10.56 
9.76 
8.85 

20-30 (ATK) C-VAE [34] 
DAG-Net [32] 
SequentialM2 

7.08 
6.66 
6.49 

- 
- 
10.62 

20-30 (DEF) C-VAE [34] 
DAG-Net [32] 
SequentialM2 

4.98 
5.01 
5.04 

- 
- 
7.44 

 
Figure 5: Modeling offensive player trajectories by observing 10 timesteps and predicting 40. 
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