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1. Introduction	
	
Defensive	players	in	football	have	complex	trajectory	patterns	that	are	hard	to	accurately	model	and	
evaluate.	This	is	due	to	the	defenders’	inherently	reactive	role,	which	requires	them	to	dynamically	
respond	 to	offensive	 strategies	and	on-the-spot	decisions	by	 the	quarterback.	Amongst	defensive	
players,	defensive	backs	are	the	most	challenging	to	model.	They	often	travel	long	distances	during	
passing	plays	 to	 fulfill	 their	 coverage	 responsibilities	 and	 change	 trajectories	depending	on	 their	
perception	 of	 where	 the	 ball	 will	 go.	 This	 is	 in	 contrast	 to	 other	 defensive	 players,	 whose	 total	
distance	travelled	and	directions	of	movement	are	generally	much	more	limited.				

There	are	11	players	lined	up	on	each	of	the	offensive	and	defensive	side	for	every	play	in	a	National	
Football	League	(NFL)	game,	which	translates	to	22	players	interacting	with	each	other	at	any	given	
time.	Individual	player	trajectories	are	affected	by	their	personal	assignments,	the	current	overall	
strategy	(e.g.,	man	versus	zone	coverage),	and	the	movement	and	decisions	of	surrounding	players	
and	the	ball.	A	football	human	expert	is	able	to	evaluate	and	predict	a	defensive	back’s	trajectory,	as	
there	exists	an	 innate	ability	 in	humans	to	predict	near-future	events	and	take	sequential	actions	
while	accounting	for	complex	arrays	of	factors	and	potential	outcomes	via	joint	attention.	However,	
evaluating	large	numbers	of	interacting	inputs	to	generate	sequential	predictions	remains	difficult.		

Developing	the	ability	to	predict	and	evaluate	these	trajectories	is	of	paramount	importance	to	better	
assessments	of	defensive	coverage,	offensive	strategy,	quarterback	decision-making	quality	and	even	
the	probability	of	winning	plays	and	games.	It	is	even	more	challenging	to	predict	“what-if”	scenarios	
–	 for	 example,	 how	 should	 the	 defensive	 backs’	 trajectories	 change	 if	 the	 receiver	 targeted	 in	 a	
passing	play	 is	changed?	Answering	these	questions	 in	a	quantitative	manner	can	provide	talking	
points	 to	 football	 enthusiasts,	 and	 also	 help	 analytics-driven	 teams	 to	 better	 understand	 their	
offensive	and	defensive	decisions.		

An	example	of	a	“what-if”	scenario	in	a	passing	play	is	shown	in	Figure	1,	where	a	defender	covering	
two	receivers	may	move	toward	different	directions	depending	on	who	the	player	perceives	as	the	
targeted	ball	receiver.	A	targeted	receiver	refers	to	the	player	that	is	thrown	the	ball	to	in	the	passing	
play,	while	a	non-targeted	receiver	is	an	eligible	offensive	player	who	could	but	was	not	thrown	the	
ball	to	during	the	play.	As	shown	in	Figure	1,	the	task	is	to	predict	the	trajectory	from	pass	forward	
to	pass	arrival	(in	red	dashed	lines)	of	Defender	#25	(shaded	in	yellow)	when	the	targeted	receiver	
is	Player	#13,	and	Defender	#25	moves	to	the	 left	 to	stop	the	player.	The	other	possible	targeted	
receiver	is	Player	#81,	and	a	what-if	scenario	would	be:	what	would	be	Defender	#25’s	trajectory	if	
the	 targeted	 receiver	 was	 Player	 #81	 instead	 of	 Defender	 #25?	We	 expect	 the	 model	 to	 adjust	
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predictions	 based	 on	 this	 change	 in	 the	 targeted	 receiver,	 and	 to	 shift	 the	 defender’s	 predicted	
trajectory	towards	the	right	to	stop	Player	#81.	

	

	

Figure	1.	Schematic	of	a	passing	play,	with	defensive	players	in	red	and	offensive	players	in	blue.	Our	
task	 is	 to	predict	 the	 trajectory	 (in	 red	dashed	 lines)	of	Defender	#25	(shaded	 in	yellow).	 In	 this	
example,	the	targeted	receiver	is	Player	#13	so	Defender	#25	moves	to	the	left	to	stop	the	player.	The	
other	potential	targeted	receiver	is	Player	#81,	and	a	what-if	scenario	would	be:	what	would	be	the	
Defender	#25’s	trajectory	if	the	targeted	receiver	was	Player	#81?		

In	this	paper,	we	utilize	player	and	ball	sensor	data	collected	through	radio-frequency	identification	
(RFID)	tags	on	player’s	shoulder	pads	and	in	the	game	ball,	with	the	tags	transmitting	location	data	
every	10th	of	a	second.	The	data	includes	coordinates,	orientation	and	direction	information	for	each	
player	in	the	field,	as	well	as	the	location	and	speed	of	the	football.	We	also	focus	on	passing	plays,	
and	not	rushing	plays,	as	passing	plays	generally	require	the	defensive	backs	to	cover	long	distances	
and	change	trajectories	based	on	the	targeted	receiver.	

The	 prediction	 of	 defensive	 backs’	 trajectory	 is	 essentially	 equivalent	 to	 a	 sequence	 prediction	
problem	where	the	input	sequence	is	the	observed	positions	of	a	player	and	the	output	is	a	sequence	
identifying	the	player's	future	positions.	At	each	time	step	t,	sensor	data	is	processed	to	include	the	
spatial	x-y	coordinates	(𝑥!" ,	𝑦!" ,)	of	player	i	at	previous	time	steps	[1,	2,	3].	Our	task	is	to	predict	the	
defensive	backs’	x-y	coordinates	for	a	fixed	number	of	future	time	steps	𝑇#$%&'	to		𝑇#$%&()*+_-".+#- 	
while	 observing	 their	 ground-truth	 positions	 from	 time	 step	 1	 to	 	𝑇#$% .	 An	 example	 of	 using	 5	
previous	 time	 steps	 to	 predict	 defender	 trajectories	 up	 to	 10-time	 steps	 later	 is	 schematically	
depicted	in	Figure	2.		
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Following	the	success	of	recurrent	neural	network	(RNN)	models	for	sequence	prediction	tasks,	we	
utilize	 long	 short-term	memory	 (LSTM)	as	part	 of	 our	models	 to	predict	defender	 trajectories	 in	
football	passing	games.	The	models	are	capable	of	addressing	what-if	situations	as	depicted	in	Figure	
1,	and	generate	realistic	trajectories	when	switching	the	targeted	receiver	for	a	play.	We	also	develop	
trajectory	metrics,	as	traditional	metrics	are	unable	to	fully	evaluate	performance	for	this	use	case.	
Regression	metrics	such	as	root	mean	squared	error	(RMSE)	require	us	to	calculate	errors	relative	
to	 known	 results;	 this	 does	 not	 exist	 for	 hypothetical,	 what-if	 situations.	 For	 a	 defensive	 back	
guarding	two	eligible	receivers,	we	calculate	the	RMSE	with	the	actual	receiver’s	recorded	trajectory	
versus	the	predicted	trajectory.	For	the	other	potential	receiver,	we	cannot	calculate	RMSE	due	to	a	
lack	of	actual	 trajectories.	The	newly-developed	metrics	score	each	 trajectory	 independently,	and	
incorporate	 spatial	 information	 and	 the	maximum	possible	 physical	 effort	 that	 a	 defender	 could	
realistically	 exert.	 This	 enables	 efficient	 evaluation	 and	 modeling	 by	 being	 able	 to	 differentiate	
between	real-world	blown	coverage	and	modeling	errors.		

	

Figure	2.	Task	definition	of	sequence	prediction,	with	a	prediction	window	of	10-time	steps	
illustrated.	

	
The	 paper	 is	 structured	 as	 follows:	 first,	we	 describe	 previous	work	 in	 this	 space	 and	 some	 key	
concepts	that	are	used	as	building	blocks	for	this	work	in	Section	2.	We	detail	steps	that	were	taken	
to	mitigate	data	quality	 issues	 that	affect	model	 training	and	performance,	and	present	sequence	
models	capable	of	predicting	defender	trajectories	and	providing	what-if	predictions	in	Section	3	and	
Section	 4.	 Finally,	 we	 describe	 trajectory	 metrics	 capable	 of	 evaluating	 the	 performance	 of	 a	
defender’s	trajectory,	aggregating	individual	trajectory	metrics	to	quantify	performance	of	a	play	or	
games	in	Section	5.	

2. Related	Work	and	Key	Concepts	
	
Different	aspects	of	this	problem	have	been	studied	by	respective	scientific	communities,	including	
computer	vision,	robotics,	and	self-driving	vehicles.	Broadly,	there	are	two	main	groups	of	human	
behavior	forecasting	as	classified	by	interaction	type:	human-space	interactions,	and	human-human	
interactions	[4].	The	former	learns	scene-specific	motion	patterns	[5,6,7,8,9,10,11];	the	latter	focuses	
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on	how	people	interact	with	each	other,	and	where	the	model	learns	about	the	dynamic	content	of	
the	scenes.	In	this	section,	we	focus	and	review	only	the	most	closely	related	literature.	

2.1.	Human-Human	Interaction		
A	 pioneering	model	 of	 human	motion,	 called	 social	 forces	 model	 was	 proposed	 by	 Helbing	 and	
Molnar	[12].	The	social	forces	model	proposed	two	types	of	forces:	1)	attractive	forces	that	guide	
people	towards	their	goal	and	2)	repulsive	forces	that	encourage	people	to	avoid	collisions.	Although	
the	 model	 was	 first	 realized	 in	 1995,	 it	 continued	 to	 achieve	 competitive	 results	 on	 modern	
pedestrian	 datasets.	 Social	 forces	 model	 was	 later	 extended	 to	 robotics	 [13],	 and	 activity	
understanding	 [14,15,16,17,18].	 Separately,	 Gaussian	 processes	 were	 used	 for	 modeling	 human	
motion	by	Tay	and	Laugier	[19]	and	Wang	et.	al.	[20].		

The	original	method	and	its	extensions	were	limited	by	two	assumptions.	First,	these	methods	used	
hand-crafted	functions	to	model	“interactions”	for	specific	settings	rather	than	inferring	them	in	a	
data-driven	fashion.	Thus,	these	models	captured	simple	interactions	but	had	difficulty	generalizing	
in	more	complex	settings,	such	as	football	games	where	settings	change	considerably	depending	on	
play	calls,	teams	and	player	skillsets.	Secondly,	these	methods	do	not	take	interactions	that	occur	in	
the	most	distant	future	into	account.	In	contrast,	generic	data-driven	approaches	that	were	proposed	
recently	have	outperformed	these	traditional	approaches.	

2.2.	Recurrent	Neural	Networks	(RNNs)	for	Human	Motion	Trajectory	Prediction	
There	exist	variants	of	RNNs,	most	notably	Long-Short	Term	Memory	(LSTM)	and	Gated	Recurrent	
Units	(GRU).	LSTM	networks,	which	are	used	in	this	paper,	are	well-suited	for	processing	and	making	
predictions	based	on	time	series	data,	as	there	can	be	lags	of	unknown	duration	between	important	
events	in	a	time	series.	Compared	to	traditional	vanilla	RNNs,	GRUs	and	LSTMs	are	less	negatively	
affected	 by	 the	 vanishing	 gradient	 problem	 during	 model	 training	 and	 have	 less	 long-range	
dependency	issues.	Both	LSTM	and	GRU	networks	have	found	success	with	applications	in	sequence	
prediction	in	a	variety	of	domains	including	machine	translation	[21],	speech	recognition	[22,	4,	23],	
and	image	captioning	[24,	25].		

Following	this,	Alahi	et.	al.	[1]	approached	the	human	trajectory	prediction	problem	as	a	sequence	
prediction	 task	 and	 applied	 RNNs	 to	 solve	 it.	 There	 were	 challenges	 in	 capturing	 interactions	
between	people	with	one	independent	RNN	per	person,	and	Alahi	demonstrated	that	the	addition	of	
a	social	pooling	layer	that	connected	all	neighboring	LSTMs	could	enable	interaction	modeling.	We	
apply	and	describe	an	adaptation	of	Alahi’s	social	pooling	concept	to	football	games	in	Section	3.2,	
and	utilize	tabular	sensor-based	data	as	opposed	to	Alahi’s	image-based	data.		

2.3.	1-Dimensional	(1D)	Convolutional	layers	to	extract	time-dependent	features	
A	convolutional	neural	network	(CNN)	is	a	standard	model	building	block	in	the	machine	learning	
community,	 with	 2-dimensional	 (2D)	 convolutions	 successfully	 employed	 in	 images	 and	 3-
dimensional	 (3D)	 convolutions	 in	 videos	 [30,31,32,33].	 Since	 player	 tracking	 data	 arrives	 from	
sensors	 in	 the	 form	 of	 one-dimensional	 (1D)	 signals,	 we	 employ	 1D	 convolutions	with	 different	
kernel	sizes	to	extract	information	from	multiple	players	and	to	predict	defender	trajectory.		

A	 pooling	 layer	 is	 commonly	 applied	 after	 CNN	 layers,	 and	 the	 resultant	 pooled	 output	 is	 a	
summarized	version	of	the	detected	features.	In	additional	to	reducing	model	over-fitting,	pooling	
provides	 translational	 invariance:	 input	 translations	 in	 space	 would	 not	 result	 in	 different	
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trajectories	(e.g.,	same	trajectory	shifted	 in	space),	and	mirrored	 inputs	would	generate	mirrored	
predicted	trajectories.	

3. CNN-LSTM	based	models	for	defender	trajectory	predictions	
	
Two	 related	 models	 are	 described;	 both	 are	 capable	 of	 predicting	 a	 defender’s	 trajectory	 while	
accounting	for	the	targeted	receiver	and	ball	movement.	A	CNN-LSTM	based	model	is	presented	in	
Section	3.1,	and	CNN-LSTM	model	with	social	pooling	adaptation	is	described	Section	3.2.	

3.1.	Defender	CNN-LSTM	model	
A	schematic	of	the	deep	learning	model	architecture	is	shown	in	Figure	5.	Potential	features	from	
tabular	sensor	data	and	game-related	information	were	 initially	evaluated	via	feature	 importance	
using	a	traditional	XGBoost	model,	and	this	initial	screening	step	is	further	described	in	Section	4.2.	
Important	 features	 comprise	 of	 information	 from	 the	 defender,	 ball	 and	 targeted	 receiver.	 The	
defender	and	targeted	receiver	data	are	treated	as	separate	inputs	to	easily	accommodate	what-ifs	
situations	(described	in	Section	1),	where	we	would	preferentially	change	the	targeted	receiver.		

All	inputs	are	first	passed	independently	through	1D-CNN	layers	followed	by	pooling.	The	CNN	layers	
extract	relevant	patterns	through	time	(usually	3	to	5-time	steps	prior	to	current	time	step)	that	can	
be	easily	interpreted	by	the	LSTM	network.	These	CNN-extracted	features	are	then	concatenated	and	
repeated	for	K	time	steps,	and	the	LSTM	sequence	model	predicts	for	K	future	time	steps	(usually	set	
to	10	or	15-time	steps).	A	dense	layer	is	finally	applied	to	each	output	step	of	the	LSTM	as	we	seek	to	
minimize	the	RMSE	between	the	predicted	position	and	the	real	position.		

	

Figure	5.	Defender	CNN-LSTM	model	architecture.	Features	are	passed	through	1D-CNN,	pooled	
and	then	concatenated	together.	The	model	is	trained	to	predict	spatial	positions.	

3.2.	Defender	CNN-LSTM	model	with	social	pooling	
The	 inclusion	of	a	social	pooling	strategy	 into	 the	Defender	CNN-LSTM	model	 improves	defender	
trajectory	predictions,	as	it	enables	the	model	to	account	for	interactions	with	other	players	who	are	
spatially	close	to	the	defender.	This	is	similar	to	how	a	defender	would	account	for	the	behaviors	of	
surrounding	players	when	deciding	next	course	of	action.	The	social-pooled	model	architecture	is	
shown	 in	 Figure	6.	 Inputs	used	 in	Defender	CNN-LSTM	model	 such	 as	 ball	 location	 and	 targeted	
receiver	 data	 are	 retained,	 and	 social-pooling	 simply	 augments	 the	 model’s	 ability	 to	 extract	
essential,	high-level	features	from	ball	and	receiver	data.	
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Figure	6.	Defender	CNN-LSTM	Model	with	Social	Pooling,	for	predicting	defender	trajectory	with	
other	neighbors’	information.	
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and	width	of	the	rectangle	and	we	look	to	predict	the	jth	defender’s	trajectory.	Instead	of	a	spatial	
cutoff,	we	apply	social	pooling	to	all	other	defensive	backs	within	the	play,	and	separately	to	ball	and	
receiver	inputs.	Note	the	social	pooling	layer	does	not	introduce	any	additional	parameters.	

4. Experiments	
	
Results	presented	in	this	section	utilized	an	NFL-collected	dataset	in	2018	and	2019.	Data	prior	to	
2018	was	 unavailable	 due	 to	 changes	 in	 sensor	 hardware	 and	 software,	 which	 limited	 the	 total	
number	of	observations	available.	The	data	was	split	into	1,068,910	unique	trajectories	of	defenders	
for	training,	and	264,155	unique	trajectories	for	testing.	The	train	and	test	set	were	also	split	by	play	
to	prevent	information	leakage.	

4.1. Data	cleaning,	outlier	detection	and	replacement		
As	with	most	real-world	noisy	data,	data	cleaning	was	necessary	prior	to	model	training	to	ensure	
realistic	trajectories	and	accurate	performance.	We	first	filtered	and	removed	all	plays	that	contained	
‘superhuman’	movements,	 i.e.,	movements	 by	 a	 player	 that	 exceeds	 limitations	 of	 human	beings.	
Specifically,	we	upper	bounded	the	recorded	speed	at	12.47	yards	per	second.	Extending	from	this	
speed	limit	and	with	a	time	step	of	0.1s	between	recorded	data	points,	we	also	removed	plays	where	
the	distance	between	two	consecutive	observed	points	in	a	player’s	trajectory	is	larger	than	1.247	
yards.		
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Secondly,	we	removed	plays	that	contained	player	trajectories	that	were	outside	of	the	football	field	
during	 a	 play.	 Retaining	 these	 problematic	 trajectories	 in	 the	 dataset	would	 result	 in	 the	model	
learning	inappropriate	behaviors	such	as	running	off	the	field	during	a	play.	Finally,	we	only	retained	
data	from	pass	forward	to	pass	arrived.	This	is	because	we	are	primarily	concerned	about	trajectories	
of	the	defensive	back	and	how	they	reacted	to	different	potential	ball	receivers	(which	is	hardest	to	
predict)	while	the	ball	in	still	in	the	air.	

4.2. Input	features	
We	applied	an	XGBoost	model	and	simple	LSTM	models	to	quickly	explore,	sub-select	and	validate	a	
variety	of	raw	and	engineered	features.	Potential	features	included	player	speed,	acceleration,	types	
and	number	of	personnel	on	the	field	for	each	play,	x-y	coordinates	of	players	a	few	time	steps	prior,	
direction	and	orientation	of	 the	players	 in	motion,	and	ball	 trajectory	and	velocity.	Useful	 feature	
engineering	steps	included	differencing	(which	renders	the	time	series	stationary)	and	directional	
decomposition	 (which	 decomposed	 a	 player’s	 rotational	 direction	 in	 x	 and	 y	 directions).	 Game-
related	features	such	as	player	role,	yards	to	go	to	first	down,	yard	from	endzone	were	evaluated	but	
deemed	as	not	 important	by	 these	 initial-screening	models.	This	 feature	 reduction	 is	 essential	 in	
avoiding	 model	 overfitting,	 due	 to	 the	 limited	 number	 of	 observations	 and	 the	 redundancy	 of	
information	in	the	many	input	features.	

Experimentation	indicated	that	using	defenders’	inputs	between	3	to	5	previous	time	steps	as	inputs	
were	sufficient,	and	longer	time	steps	did	not	result	in	better	performance.	Inputs	from	the	ball	and	
the	targeted	receiver	were	also	provided	to	the	model	on	a	real-time	basis	beyond	current	time	step.		

4.3. Additional	implementation	details		
The	number	of	filters	used	in	the	convolution	layer	was	32,	and	a	fixed	hidden	state	dimension	of	32	
was	used	for	all	the	LSTM	models.	We	used	an	embedding	layer	with	ReLU	(Rectified	Linear	Units)	
non-linearity	 on	 top	 of	 the	 pooled	 convolution	 features.	 An	 adaptive	 learning	 rate	 optimization	
algorithm	(Adam)	optimizer	was	used,	and	MSE	selected	as	the	loss	function.	The	model	was	trained	
on	on	a	single	GPU	with	a	Keras	implementation.	
	
The	model	was	trained	to	predict	up	to	ten	timesteps	out	(t	+	1	to	t	+	10)	during	initial	development	
phase	and	 to	predict	up	 to	15	 timesteps	 (t	+	15)	when	 implemented	 into	production.	Majority	of	
passing	plays	were	up	to	10	timesteps	long,	and	plays	longer	than	10-	or	15-time	steps	were	“tiled”	
in	a	sequential	manner	to	generate	long	sequences.	Fixing	the	sequences	between	10-15-time	steps	
enabled	us	to	sufficiently	augment	the	dataset	by	creating	multiple	training	sequences	out	of	a	single	
long	 sequence,	 as	 there	 was	 insufficient	 data	 to	 adequately	 train	 a	 direct	 sequence-to-sequence	
model.	We	trained	and	predicted	the	spatial	positions	x	and	y	separately.	It	is	possible	to	train	a	single	
model	to	predict	both	(x,	y),	with	the	single-model	performing	slightly	worse	than	two	independent	
models.	

For	the	social-pooled	Defender	CNN-LSTM	model,	there	were	at	most	five	neighbors	at	any	time.	We	
padded	 neighbor	 inputs	 into	 fixed	 shape	 (𝑏𝑎𝑡𝑐ℎ	𝑠𝑖𝑧𝑒, 𝑡𝑖𝑚𝑒	𝑠𝑡𝑒𝑝𝑠, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒	𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠, 5)	 and	
applied	a	convolutional	2D	layer	with	kernel	size	(1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑑𝑖𝑚)	for	computational	speed.	This	is	
mathematically	 equivalent	 to	 applying	 a	 1D-CNN	 for	 each	neighbor	 independently	 followed	with	
social	pooling.		

4.4.	Results	
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Table	1	summarizes	the	prediction	errors	using	root	mean	squared	error	(RMSE).	All	the	errors	were	
calculated	using	the	test	dataset,	which	was	previously	unseen	by	the	model	during	training.	The	
Defender	CNN-LSTM	model	outperformed	other	models	on	most	of	the	time	steps	except	for	the	first-
time	step.	We	believe	the	Defender	CNN-LSTM	model	outperformed	other	models	in	the	later	time	
steps	because	it	was	able	to	account	for	its	own	previous	actions	and	the	actions	of	others	(in	the	
form	of	the	hidden	state).	The	XGBoost	model,	which	is	not	a	sequence	model,	was	trained	directly	
against	the	target	for	that	specific	time	step.	It	is	not	surprising	that	XGBoost	initially	performs	better	
but	is	vastly	outperformed	by	neural	networks	for	subsequent	time	steps,	as	the	loss	function	in	the	
sequence	models	were	applied	against	all	time	steps	(single	overall	loss).	

For	additional	validation,	we	deployed	the	Defender	CNN-LSTM	model	into	production	and	tested	on	
a	separate	internal	test	dataset	with	a	different	distribution	compared	to	our	training	data.	In	this	
case,	 we	 predicted	 the	 trajectories	 of	 all	 defenders	 for	 15-time	 steps	 on	 two	 categories:	 (1)	 the	
defender	closest	to	the	targeted	receiver	and	(2)	defenders	whose	closest	offensive	player	was	a	non-
targeted	receiver.	As	we	do	not	have	recorded	trajectories	of	defenders	when	the	ball	is	passed	to	the	
non-targeted	receiver	(i.e.,	a	hypothetical	play),	we	instead	calculated	the	distances	between	receiver	
location	and	predicted	location	nearest	defender	in	each	time	step.		

The	results	are	in	yards,	and	tabulated	in	Table	2.	The	percentile	in	the	table	represents	the	air	time:	
number	of	seconds	the	ball	 travels	 in	the	air.	All	plays	are	sorted	by	air	 time.	For	 instance,	25pct	
means	first	25%	plays	with	shortest	air	time.		For	all	air	time	percentiles,	the	predicted	trajectories	
of	 the	 nearest	 defender	 from	 the	 Defender	 CNN-LSTM	 model	 are	 closer	 to	 the	 receivers	 than	
trajectories	from	NFL	baseline	model	(a	simple	LSTM	model).	This	approach	of	quantifying	model	
performance	and	trajectories	in	hypothetical	situations	is	at	best	comparative,	and	is	not	possible	to	
evaluate	 the	 quality	 of	 predicted	 trajectories.	 Independent	 metrics	 for	 evaluating	 predicted	
trajectories	are	proposed	and	elaborated	in	Section	5.2.	

	

Table	1:	Quantitative	results	of	all	the	methods	on	the	NFL	dataset	to	predict	10	time	steps.	The	
XGBoost	model	was	trained	with	the	Amazon	SageMaker	built-in	algorithm.	The	LSTM	model	is	a	

simple	sequence	model	without	CNN	layer.	
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Table	2:	Quantitative	performances	on	NFL	internal	test	data.	Evaluated	by	average	distances	

between	the	ball	receiver	and	the	nearest	defender	over	15-time	steps.	

5.	Analysis	of	predicted	trajectories	
We	analyzed	the	actual	and	predicted	trajectories	to	gain	further	intuition	and	insights	into	model	
behavior.	The	optimal	behavior	of	a	defensive	back	is	defined	here	as	moving	as	quickly	as	possible	
towards	the	targeted	receiver,	who	is	expecting	to	catch	the	ball.	Desired	but	less	common	behaviors	
such	as	 interceptions	and	“jumping	the	route”	are	not	considered	in	this	paper	as	these	 incidents	
account	for	relatively	few	trajectories	within	the	collected	dataset,	and	require	additional	labeling	
and	information	not	currently	available	to	us.	By	this	definition,	a	correctly	trained	model	is	expected	
to	predict	markedly	different	defender	trajectories	when	the	targeted	receiver	is	changed,	with	the	
defender	moving	towards	the	targeted	receiver	to	stop	him.		

Sample	trajectories	for	visual	evaluation	are	provided	in	Section	5.1,	and	are	from	the	Defender	CNN-
LSTM	model	without	social	pooling	(which	was	developed	initially	and	currently	in	deployment).	We	
then	present	newly-developed	metrics	capable	of	quantifying	these	trajectories	in	Section	5.2.	These	
metrics	enable	efficient	evaluation	of	trajectories,	plays	and	overall	model	performance.	

5.1.	Qualitative	evaluation	of	defender	trajectories	
A	pair	of	sample	scenes	is	shown	in	Figure	7,	with	different	targeted	receivers	in	the	same	play	and	a	
focus	 on	 Defender	 #3’s	 predicted	 trajectory.	 Offensive	 players	 are	 colored	 in	 blue	 circles,	 while	
defensive	players	are	in	red.	The	predicted	trajectories	are	denoted	in	dashed	lines,	while	previous	
trajectories	(just	prior	to	the	quarterback	making	a	forward	pass	to	the	targeted	receiver)	are	in	solid	
lines.		

In	the	left	play,	the	targeted	receiver	is	#6,	and	defender	#3	moves	to	the	left	to	stop	the	player.	When	
the	targeted	receiver	is	changed	to	#7,	the	model	correspondingly	adjusts	the	trajectory	to	the	right.	
The	turn	by	defender	#3	is	necessary	as	the	player’s	orientation	and	current	movements	are	also	
taken	into	consideration	by	the	model.	

Additional	examples	on	two	other	plays	are	shown	in	Figure	8	(defender	#0)	and	Figure	9	(defender	
#7).	
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Figure	7.	Example	of	changing	target	ball	receiver.	Defender	#3	moves	towards	different	directions	
based	on	who	is	the	perceived	targeted	receiver,	as	predicted	by	the	Defender	CNN-LSTM	model.		

	 	



	

	 11	

Figure	8.	Defender	#0	moves	towards	different	directions	based	on	who	is	the	targeted	receiver.	

	 	

Figure	9.	Defender	#7	moves	towards	different	directions	based	on	who	is	the	targeted	receiver.	

5.2.	Quantitative	evaluation	of	predicted	trajectories	
We	presented	RMSE	results	in	Table	2	on	the	NFL	private	test	dataset	using	the	Defender	CNN-LSTM	
by	 comparing	 distances	 between	 the	 nearest	 defender	 and	 the	 receiver,	 which	 is	 an	 incomplete	
picture.	The	evaluation	of	performance	via	RMSE	metric	in	Table	1	was	made	possible	by	comparing	
against	 actual	 defender	 trajectories,	 but	 actual	 trajectories	 are	not	 available	 in	what-if	 situations	
shown	in	the	right	of	Figures	7,	8,	and	9.	Metrics	capable	of	independently	evaluating	trajectories	are	
needed,	and	three	new	metrics	are	introduced	to	enable	us	to	assess	overall	model	performance:	

1. a	trajectory	score	(TS)	to	evaluate	a	single	trajectory,	
2. a	play	score	that	aggregates	multiple	defenders’	TS	scores,	and		
3. an	overall	model	performance	score	based	on	a	set	of	play	scores.		

5.2.1	Scoring	a	single	trajectory	
The	 trajectory	 score	 is	 an	 aggregate	 score	 composed	 of	 three	 different	 evaluations:	 positional	
convergence	(PS),	distance	ratio	(DR)	and	superhuman	(S).	With	optimal	defensive	back	behavior	as	
defined	at	the	start	of	Section	5,	we	now	introduce	the	concept	of	positional	convergence	(PS)	metric	
defined	 as	 the	weighted	 average	 of	 the	 rate	 of	 change	 of	 distance	 between	 the	 two	players	 over	
multiple	time	steps.	As	shown	in	Figure	10,	using	the	rate	of	change	enables	fair	evaluation	between	
the	defender	and	receiver	regardless	of	actual	distance.	When	equally	weighted	across	all	time	steps,	
the	 sign	 of	 the	 PS	 metric	 indicates	 whether	 the	 two	 players	 are:	 1/	 spatially	 converging	 when	
negative,	2/	running	in	parallel	when	zero,	or	3/	spatially	diverging	(moving	away	from	each	other)	
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when	positive.	There	are	multiple	options	for	weighting	the	rate	of	change	across	multiple	time	steps,	
and	the	choice	is	application-dependent.	If	the	entire	trajectory	is	needed	for	a	use	case,	then	equal	
weights	should	be	applied	to	every	time	step.	If	parts	of	the	trajectory	are	more	important,	i.e.,	using	
final	location	as	inputs	into	other	systems,	then	the	final	time	step	should	be	more	heavily	weighted	
relative	to	other	time	steps.	

	

	

Figure	 10:	 Schematic	 depicting	 concept	 of	 positional	 convergence:	 weighted	 average	 of	 rate	 of	
change	of	the	distance	between	the	defender	and	the	targeted	receiver.	We	show	the	positions	of	a	
targeted	receiver	and	predicted	defender	trajectory	at	four-time	steps.	The	distance	at	each	time	step	
is	denoted	in	arrows	dt,	and	we	use	the	average	rate	of	change	of	this	distance	to	compute	the	PS	
metric.	

	

	

	

Figure	11:	(top)	Histogram	of	weighted	PS	for	the	nearest	defender	to	targeted	receiver.	(bottom)	
Histogram	of	weighted	PS	for	all	defenders.	Note	the	increase	in	non-convergence	by	defenders	who	
are	far	away,	which	is	represented	by	the	right,	positive	half	of	the	figures.	
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Histograms	for	the	calculated	PS	metric	are	shown	in	Figure	11,	both	for	the	nearest	defender	to	the	
targeted	 receiver	 (top),	 and	 for	 all	 defenders	 (bottom).	 As	 expected,	 there	 are	 far	 less	 non-
convergence	cases	when	subset	to	nearest	defender,	and	the	majority	of	the	scores	are	between	-1	
and	1.	
	
The	PS	metric	alone	is	insufficient	to	evaluate	the	quality	of	a	play	as	a	defender	could	be	running	too	
slowly	towards	the	targeted	receiver,	i.e.,	insufficient	effort.	We	thus	compare	the	distance	covered	
by	the	defender,	against	the	“best-effort”	distance	that	could	be	covered	by	the	defender.	This	optimal	
distance	is	approximated	by	calculating	the	distance	between	the	defender’s	location	pass-forward	
and	the	position	of	the	receiver	at	pass-arrived,	and	is	shown	in	Figure	12.	The	maximum	possible	
distance	is	upper	bounded	by	the	maximum	distance	a	defender	can	humanly	cover	per	time	step.	
We	 note	 that	 it	 is	 possible	 to	 improve	 the	 accuracy	 of	 optimal	 trajectory	 by	 considering	 player	
orientation	 and	 current	 speed,	 at	 the	 cost	 of	 computational	 speed	 and	 complexity.	 This	 effort	
estimate,	 termed	 distance	 ratio	 (DR),	 is	 used	 to	 modulate	 the	 PS	 metric.	 The	 defender’s	 actual	
distance	covered	is	compared	against	the	approximate	optimal	distance,	and	a	score	that	rewards	
trajectories	 that	 indicate	 that	 the	 defender	 has	 covered	 close	 to	 optimal	 or	 humanly	 possible	
distances	is	assigned.	The	DR	equation	is	as	follows:	
	

𝐷𝑅 =
|	𝑜𝑝𝑡𝑖𝑚𝑎𝑙	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑎𝑐𝑡𝑢𝑎𝑙	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒|
𝑜𝑝𝑡𝑖𝑚𝑎𝑙	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑎𝑐𝑡𝑢𝑎𝑙	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

	

The	DR	metric	returns	a	score	between	zero	and	1,	with	scores	closer	to	one	being	closest	to	optimal	
distances.	Examples	of	two	trajectories	scored	differently	are	shown	in	Figure	13.	
	

	
Figure	12:	Approximate	“best-effort”	approximate	distance	covered	by	a	defender,	and	the	actual	
distance	 covered	 by	 the	 defender.	 The	 maximum	 possible	 distance	 is	 upper	 bounded	 by	 the	
maximum	distance	a	defender	can	humanly	cover	per	time	step.	We	note	that	it	is	possible	to	improve	
the	accuracy	of	optimal	trajectory	by	considering	player	orientation	and	current	speed,	at	the	cost	of	
computational	speed	and	complexity.	
	
	
	
	
	

Score=0.15525	Score=0.99991	
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Figure	13:	(left)	example	of	a	trajectory	that	was	scored	highly	by	the	DR	metric,	and	(right)	example	
of	a	trajectory	that	was	scored	poorly	as	the	defender	could’ve	covered	more	distance	towards	the	
targeted	receiver.	

We	 also	 heavily	 penalized	 predicted	 trajectories	 that	 contain	 movements	 that	 are	 humanly	
impossible,	which	we	termed	“superhuman”	(SP)	behavior.	This	is	achieved	by	counting	the	number	
of	instances	whereby	the	total	distance	covered	in	a	single	time	step	is	beyond	a	cutoff	value.	Taking	
into	account	signs	changes,	each	trajectory	score	can	be	computed	as	follows:	

𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦	𝑆𝑐𝑜𝑟𝑒	 = M𝑃𝑆 ∗
(1 + 𝐷𝑅) + 𝑆𝑃, 𝑃𝑆 < 0

𝑃𝑆 ∗ (2 − 𝐷𝑅) + 𝑆𝑃, 𝑃𝑆 ≥ 0	

The	resultant	trajectory	score	(TS),	maintains	similar	intuitive	meaning	to	PS.	A	more	negative	score	
indicates	a	better	overall	trajectory	and	typically	falls	in	the	range	between	-2	and	2.	

	

5.2.2	Scoring	multiple	defender	trajectories	within	a	play	
To	aggregate	multiple	trajectory	scores	into	a	single	play	score	that	reflects	the	effective	quality	of	
defensive	play,	players	are	exponentially	weighted	based	on	their	distance	to	the	targeted	receiver.	
Players	in	a	net	effective	radius	contribute	the	most	to	the	aggregated	score.	A	highly-scored	play	is	
shown	 below	 in	 Figure	 14,	 with	 defenders	 (in	 black)	 actively	 converging	 towards	 the	 targeted	
receiver	(in	blue).	

	

Figure	14:	Example	of	a	highly	scored	play	with	an	aggregated	score	of	-1.175.	
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5.2.3	Scoring	model	performance	 	
The	 quality	 of	 all	 the	 predicted	 trajectories	 can	 be	 compared	 either	 via	 averaging	 the	 distance-
weighted	play	scores	or	via	averaging	all	defender	trajectories.	Comparisons	can	be	made	between	
actual	trajectories	and	model-predicted	trajectories,	or	when	actual	trajectories	are	not	present	in	
what-if	situations.	We	also	sanity	checked	the	scores	by	replacing	a	fraction	of	all	trajectories	with	
bad	 trajectories	 (randomized	 initial	 direction	 and	 speed	 so	 one	 in	 four	 defenders	 moves	 non-
optimally),	and	the	scores	deteriorated	as	expected	by	becoming	more	positive.		

Trajectories		 Average	Trajectory	Score	(TS)	

Actual,	real	trajectories		 -0.1036	

Traditional	LSTM-CNN	model	(Predicted	trajectories)	 -0.0825	

Bad	model	(25%	bad	trajectories)	 0.0452	
	

5. Discussion	and	Conclusion	
	
In	this	paper,	we	designed	and	trained	CNN-LSTM	based	models	to	predict	defender	trajectories	from	
pass	forward	to	pass	arrived.	This	resulted	in	a	20%	improvement	compared	to	the	baseline	LSTM	
model.		The	1D-CNN	with	multiple	kernel	sizes	extracted	relevant	features	from	multiple	inputs	over	
several	time	steps,	while	pooling	layers	enabled	us	to	limit	model	size	and	reduce	overfitting.	We	
additionally	presented	a	new	social	pooling	CNN-LSTM	model	 that	accounted	 for	ball	movement,	
targeted	receiver,	and	nearby	players’	movements.	The	approach	of	combining	of	player	movements	
and	known	important	features	via	modified	social	pooling	is	one	that	we	have	not	seen	reported	in	
existing	literature,	and	outperforms	state-of-the-art	methods	applied	to	time-series	sensor	data	(ball	
and	 players’	 data)	 collected	 from	 NFL	 games.	 Both	 performant	 models	 are	 simple	 and	 shallow	
compared	to	modern	vision-based	or	natural-language-based	models,	and	were	specifically	designed	
as	an	effective	tradeoff	between	complexity	and	data	availability	(2-season	long	real	sensor	data).	

As	shown	in	the	sample	plays	 in	Figures	7-9,	 the	model	 is	not	simply	 intuiting	 future	trajectories	
based	on	current	movements	of	the	defender,	but	is	able	to	adjust	and	produce	realistic	trajectories	
when	the	targeted	receiver	is	changed.	In	short,	the	model	successfully	understands	and	captures	the	
defensive	responsibility	of	chasing	and	stopping	the	targeted	receiver.	All	plays	in	the	dataset	were	
also	reviewed	by	a	football	expert	within	NFL,	and	the	expert	determined	that	the	majority	of	the	
predicted	 trajectories	 were	 sound.	 As	 expected,	 performance	 suffers	 slightly	 on	 very	 long	 plays	
compared	 to	 plays	 of	 normal	 duration.	 A	 few	 predicted	 trajectories	 were	 flagged	 as	 potentially	
problematic,	and	presented	as	 less	than	ideal	convergence	towards	the	targeted	receiver.	Further	
investigation	 indicated	 that	 the	 non-optimal	 orientation	 and	 speed	 of	 the	 defender	 limited	 the	
defender’s	ability	to	respond.	

We	also	presented	metrics	capable	of	evaluating	defender	trajectories,	independent	of	a	reference	
‘golden’	trajectory.	This	enabled	us	to	quantitatively	evaluate	large	numbers	of	trajectories	and	plays,	
as	well	as	evaluate	what-if	 trajectories’	performance.	The	metrics	are	also	useful	 in	automatically	
flagging	and	identifying	plays	and	trajectories	that	are	noisy	and	problematic.		
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