
	

	 1	

Baseball	Predictions	and	Strategies		
Using	Explainable	AI	

	
Joshua	Silver	(Singlearity,	joshua.silver@singlearity.com)	

Tate	Huffman	(Harvard	University,	thuffman@college.harvard.edu)	
	
1. Abstract	
	
Over	the	last	decade,	Major	League	Baseball	has	dramatically	increased	the	amount	of	data	it	
captures	and	makes	available	to	the	public.	Meanwhile,	there	is	a	growing	technology	trend	that	
applies	AI	to	analyze	massive	amounts	of	data	to	build	complex	models	that	find	relationships	and	
meaning	in	the	data.	By	marrying	these	two	concepts	together,	we	built	a	neural-network-based	AI	
model	called	Singlearity-PA	(pronounced	single-arity-P-A)	to	solve	one	of	the	most	fundamental	
questions	in	baseball:	How	can	we	predict	the	outcome	of	a	batter	vs.	pitcher	plate	appearance	(PA)?		
	
We	show	how	our	model	learned	even	the	most	subtle	rules	and	strategies	of	the	game,	and	is	able	
to	answer	our	batter	vs.	pitcher	question	with	accurate	and	precise	predictions.	We	demonstrate	
how	to	apply	techniques	to	interpret	and	visualize	Singlearity-PA's	predictions	to	make	the	model’s	
rationale	understandable,	and	sharable	for	humans.		
	
Finally,	we	provide	open-source	tools	that	allow	for	the	readers’	own	experimentation	and	
analyses.	
	

2. Introduction	and	Motivation	
	
Recently,	new	technologies	and	databases	have	rapidly	increased	the	amount	of	available	data	in	
baseball.	We	now	have	many	new	statistics	at	our	disposal.	For	instance,	a	single	pitch	at	the	major	
league	level	contains	measurements	for	approximately	90	different	parameters,	with	such	varied	
data	points	as	pitch	information	(including	velocity,	spin	rates,	and	ball	movement),	batted-ball	
information	(including	exit	velocity	and	launch	angle)	and	fielder-position	information.	Baseball	
domain	experts	wishing	to	improve	their	abilities	to	forecast	outcomes	have	pored	over	this	data,	
looking	to	answer	questions	such	as	“How	does	a	pitched	ball	spin	rate	affect	pitcher	performance	
[1]?”,	or	“How	can	a	batter’s	exit	velocity	predict	the	batter’s	future	offensive	output	[2]?”	

Now,	there’s	a	better	way	to	put	the	data	to	work.	In	this	paper,	we	show	a	methodology	for	
effectively	incorporating	large	amounts	of	data	such	that		it	yields	improvements	in	accuracy	
compared	to	previous,	more	simplistic	approaches.	We	demonstrate	our	model	by	predicting	the	
outcome	of	a	batter	vs.	pitcher	matchup	(although	our	methodology	is	generalizable	and	scalable	
for	other	types	of	predictions).	We	focus	on	this	relationship	as	it	drives	a	large	portion	of	baseball	
strategy,	affecting	decisions	on	batting	orders,	pinch	hitters,	relief	pitchers,	base	running,	sacrifice	
bunting,	intentional	walks	and	much	more.	We	also	show	how	to	use	a	technique	called	SHAP	
(Shapley	Additive	exPlanations)	to	produce	easy-to-comprehend	explanations	and	visualizations	
for	how	and	why	our	model	produced	its	results.	
	

	

	 2	

Armed	with	an	accurate	and	precise	model	that	understands	the	strategies	and	structure	of	the	
game,	we	show	how	we	can	more	precisely	model	additional	baseball	outcomes	and	strategies	that	
previously	have	relied	on	simplistic	assumptions.	To	demonstrate	one	such	improvement,	we’ve	
built	a	Markov	chain	model	that	can	better	predict	the	effects	of	lineups	on	scoring	probabilities	
compared	to	previous	methods	like	RE24	that	make	batter	and	pitcher	agnostic	predictions.		
	
3. Previous	Techniques	
	

One	of	the	most	popular	models	for	head-to-head	predictions	is	log5.	log5,	created	by	sabermetrics	
pioneer	Bill	James,	uses	a	formula	that	incorporates	the	winning	percentage	of	two	competing	
teams	to	predict	the	winner	of	the	matchup.	James	later	extended	log5	to	predict	a	hit	vs.	no-hit	
result	between	a	batter	and	a	pitcher.	Matt	Haechrel	then	generalized	James’	work	to	predict	the	
probability	of	seven	types	of	PA	outcomes	for	each	PA.	Haechrel’s	equation	uses	365-day	average	
rate-per-plate-appearance	of	each	of	seven	possible	outcomes:	out,	single,	double,	triple,	home	run,	
walk,	and	hit-by-pitch	[3].	Haechrel’s	equation	is:	

	

	

𝑃!" =

"!∗""
"#

("!∗"")
"#

+ (&'"!)∗(&'"")
&'"#

	

𝑤ℎ𝑒𝑟𝑒:	
P() = Probability	of	an	event	for	a	specific	batter	vs. pitcher	PA	
P(= Probability	of	an	event	for	the	specific	batter	
P) = Probability	of	an	event	for	the	specific	pitcher	
P* = League	average	probability	of	an	event	

	

(1)	

Haechrel’s	version	of	log5	suffers	from	the	following	limitations:	

• It	performs	accurately	only	on	matchups	between	every	day	players.	Haechrel	only	
showed	results	for	batters	and	pitchers	who	had	at	least	502	plate	appearances	in	the	
previous	year.	This	limited	its	applicability	since	most	PAs	from	2011–2020	(82.1%)	
featured	matchups	where	at	least	one	of	the	players	did	not	have	at	least	502	PAs.	The	
current	trends	toward	shorter	outings	for	starting	pitchers,	and	increased	usage	of	role	
players	mean	that	more	PAs	will	feature	players	with	reduced	historical	data.	

• It	ignores	many	important	factors	shown	to	be	critical	in	affecting	outcomes,	
including:	

• Left-handed	vs.	right-handed	pitcher	and	batter	matchups,(i.e.,	platoon	effects)	
• Ballpark	factors	(e.g.	in	the	last	five	years,	Coors	Field,	home	to	the	Colorado	

Rockies,	has	seen	40%	more	hits	(on	average)	than	the	New	York	Mets’	Citi	Field	
in	the	same	period,	even	after	adjusting	for	different	teams	and	players.)1	

• Weather	factors	including	temperature,	wind	direction,	and	humidity	

	
1	See	http://www.espn.com/mlb/stats/parkfactor	

	

	 3	

• Game	context,	such	as	number	of	outs	and	runners-on-base	
• Its	predictions	are	not	precise	(e.g.	it	can	predict	an	out,	but	does	not	distinguish	

between	a	strikeout,	a	double	play,	or	a	sacrifice	bunt).	
	

4. Singlearity-PA	Technique	
	
To	address	the	limitations	of	log5,	and	to	discover	and	reason	about	the	complex	relationship	
between	the	different	variables	that	affect	plate	appearances,	we	turn	to	artificial	neural	networks.		

4.1	Neural	Network	Introduction	
An	artificial	neural	network	is	a	modelling	technique	that	builds	an	internal	representation	that	
mimics	the	computation	done	in	the	human	brain.	Neural	networks	have	been	successfully	used	in	
a	variety	of	applications,	including	image	recognition,	automated	game	playing,	and	natural	
language	processing.	The	goal	of	a	neural	network	is	to	predict	output	values	based	on	input	values.	
As	a	simple	example,	the	input	values	of	a	consumer’s	income,	marital	status,	and	outstanding	loans	
could	produce	the	output	predicting	the	probability	that	the	consumer	will	default	on	a	loan.	A	
neural	network	trained	on	large	amounts	of	data	can	build	an	internal	representation	that	can	
predict	default	rates	of	new	customers.	Unlike	more	simplistic	models	like	linear	regression,	neural	
networks	can	discover	nuanced	and	complex	relationships.		

In	our	model,	our	inputs/features	are	the	a	priori	statistics	on	a	particular	batter	vs.	pitcher	plate	
appearance	.	We	use	87	floating	point	inputs	(details	below).	We	have	21	outputs,	where	each	
output	represents	the	probability	of	a	distinct	PA	outcome	as	defined	by	MLB2	(e.g.,	single,	home	
run,	fielder's	choice,	error,	and	hit-by-pitch,	to	name	just	a	few).	
	

Figure	1:	Typical	Architecture	of	a	Neural	Network	

	
	
	
	
4.2	Feature	Selection	
Feature	selection	is	the	process	of	selecting	the	inputs	to	the	model.	We	chose	our	input	features	by	
reviewing	baseball	research,	and	by	trial	and	error.	We	then	grouped	our	inputs	as	shown	in	Table	
1	into	commonly	used	baseball	categories.	Details	on	input	features	can	be	found	in	the	Appendix	in	
Table	5.		

	
2	See	https://baseballsavant.mlb.com/statcast_search	

	

	 4	

	
	

Table	1:	Inputs	used	by	Singlearity-PA	

	

Note	that	in	this	approach,	we	can	incrementally	decide	to	add	additional	features,	such	as	minor	
league	statistics,	humidity	and	wind	direction,	fielding	quality,	or	batter	speed.	Note	also	that	an	
input	such	as	“Batter	Position	in	Field”	could	potentially	be	used	by	a	well-trained	network	as	a	
proxy	for	the	batter’s	speed,	and,	in	fact,	results	indicate	Singlearity-PA	used	this	input	to	determine	
the	probability	that	the	batter’s	plate	appearance	would	result	in	a	double	play	or	a	triple	(see	
Figures	9	and	10).	

4.3	Training	
Supervised	Learning	is	the	process	of	teaching	the	neural	network	to	predict	outcomes	based	on	
known	“correct	answers.”	We	taught	our	network	using	Statcast’s	pitch-by-pitch	data	from	regular	
season	games	from	2011-2020.	This	consisted	of	1.72	million	plate	appearances	played	in	22,740	
games	over	1,694	different	dates.	Using	best	practices,	we	split	the	1,694	calendar	days	so	that	60%	
of	the	dates	were	used	for	training	data,	20%	for	validation	data,	and	20%	for	test	data.	The	
architecture	of	the	network	was	adjusted	and	finalized	by	analyzing	the	network’s	performance	on	
the	validation	data,	and	then	measured	by	using	the	test	data.3	
	
5. Results	
	
We	begin	to	review	results	with	a	simple	subjective	review–	a	gut	check–	of	Singlearity-PA’s	
predictions.	Figure	2	shows	the	expected	results	when	the	Yankee’s	Aaron	Judge	faced	Houston’s	

	
3	We	used	categorical	cross-entropy	as	our	loss	function	and	used	Tensorflow	for	our	machine	
learning	platform.		We	used	2	hidden	layers	of	80	nodes	each,	and	validated	that	the	model	was	not	
overfitting	the	training	data	by	observing	and	plotting	the	training	loss	vs.	the	validation	loss.	
	

Feature Group # of Inputs Details
Batter Historical 14 Batter last 365 days stats
Pitcher Historical 14 Pitcher last 365 days stats

Batter Recent 9 Batter last 21 days stats
Pitcher Recent 9 Pitcher last 21 days stats

Batter/Pitcher head-to-head 8 Batter-pitcher 3-year head-to-head stats
Park Factor 4 Offensive stats for games at this venue
Base State 4 Outs and occupied bases

Batter Position in Field 10 One-hot encoded value of fielding position of the batter (P, 1B, …, DH)
Platoon Statistics 5 Batter’s and pitcher’s 3-year platoon statistics

Exit Velocity 2 Batter’s 3-year max and average exit velocity
Inning 1 Inning

Home or Away 1 Home or Away
Net Score 1 Batting score – Fielding score

Pitch Count 1 Pitcher’s pitch count at the start of the PA
Weather 1 Game time temperature at the start of the game

Batter GB/FB Ratio 1 Batter’s 3-year ratio of ground balls to fly balls
Pitcher GB/FB Ratio 1 Pitcher’s 3-year ratio of ground balls to fly balls

Game Year 1 Game year
Game Day 1 Day of the season

Total 87

	

	 5	

Wade	Miley	with	the	game	tied	2-2	in	the	6th	inning	on	a	79°(F)	evening	on	June	22,	2019	at	Yankee	
Stadium.	Wade	Miley	had	thrown	75	pitches	at	the	beginning	of	Judge’s	plate	appearance.	Judge’s	
aggregated	statistics	seem	reasonable,	but	it	is	important	to	note	that	our	model	has	also	predicted	
probabilities	for	outcomes	such	as	double	play	and	fielder’s	choice.	It	has	learned	when	a	double	
play	or	fielder’s	choice	is	likely	to	occur	despite	having	never	been	taught	the	rules!	
	
Note:		You	can	create	your	own	matchups	and	view	the	predicted	outcomes	using	an	online	version	of		
Singlelarity-PA.	
	

Figure	2:	Singlearity-PA	predicted	outputs	for	Aaron	Judge	vs.	Wade	Miley	

	
	
We	now	do	an	evaluation	in	which	we	compare	Singlearity-PA’s	predictions	to	those	of	log5.	We	
also	compare	Singlearity-PA	to	another	extremely	simple	model	(LeagueAverage)	where	we	
assume	probabilities	for	PA	outcomes	correspond	to	the	league’s	average	expected	outcomes	for	
the	year.	To	determine	whether	Singlearity-PA’s	advantage	was	due	to	game	context	information	
(outs,	baserunners,	pitch	count,	inning),	we	created	a	new	model,	Singlearity-NoState,	in	which	this	
context	information	was	excluded	from	the	inputs.	For	an	aggregated	statistic	(like	wOBA),	we	
allowed	the	models	to	make	the	prediction	of	the	precise	PA	outcome	and	then	calculated	the	
aggregated	statistic	for	that	plate	appearance.	We	use	RMSE	to	measure	the	quality	of	the	different	
predictor’s	weighted	on-base	average	(wOBA)	stats	and	Categorical	X-Entropy	loss	to	evaluate	the	
quality	of	HR	and	BB	predictions.			
	
Because	log5	was	designed	only	to	work	for	plate	appearances	in	which	there	were	substantial	
statistical	history	for	both	the	batter	and	the	pitcher,	we	also	examined	how	well	different	models	
performed	when	broken	down	for	plate	appearances	with	varied	amounts	of	historical	data	
available.	We	slotted	each	plate	appearance	into	one	of	the	following	categories:	

	

	 6	

• Everyday	players:	Both	batter	and	pitcher	had	>=502	PAs	in	the	last	365	days		
• Infrequent	players:	Either	the	batter	or	pitcher	had	<100	PAs	in	the	last	365	days	
• Occasional	players:	All	other	PAs	

	
Table	2:	Singlearity-PA	error	rate	in	predictive	accuracy	for	PAs	involving	players	with	varying	

historical	statistics	(lower	is	better)	

	
	
	
We	observe	from	Table	2	that	Singlearity-PA	performs	better	than	both	log5	and	LeagueAverage	for	
all	types	of	predictions	(wOBA,	HR,	BB)	and	all	different	types	of	plate	appearances	(everyday	
players,	occasional	players	and		infrequent	players).	Singlearity-NoState,	while	less	accurate	than	
Singlearity-PA,	still	generates	significantly	better	predictive	data	than	log5	and	LeagueAverage	for	
wOBA,	and	HR,	but	has	lost	some	of	its	advantage	over	log5	in	predicting	BBs	for	all	players	except	
for	infrequent	players.	
	
6. Explaining	the	Results	using	Shapley	Values	
	
Now	that	we’ve	developed	an	accurate	model,	we’re	challenged	with	making	the	rationale	for	its	
predictions	understandable	to	human	beings.	This	process	is	referred	to	as	making	the	model	
explainable.		Only	in	this	way	can	team	managers	and	baseball	analysts	have	the	confidence	to	
explain	and	defend	their	decisions	to	management,	fans,	players	and	the	press.	Explainability		
provides:	
	

• Trust	Ultimately,	it	is	humans	that	make	decisions	based	on	the	predictions	of	the	model.	
These	people	need	to	understand	the	model’s	decision	process	in	order	to	believe	its	
outcomes.		

• Insight	and	Learning	Humans	often	have	an	intuition	or	rules-of-thumb	about	how	things	
work.	An	explainable	model	can	help	us	update	our	mental	model.	

• Ability	to	debug	Occasionally,	a	model	may	produce	a	result	that	is	clearly	wrong.	By	being	
able	to	explain	why	the	model	predicted	a	result,	we	can	understand	and	evaluate	
improvements	or	potential	additions	to	our	input	features.	

Type of PA
Matchup Model Name wOBA HR BB

All
Singlearity-PA 0.5091 0.05439 0.1149

Singlearity-NoState 0.5096 0.05507 0.1156
log5 0.5151 0.05867 0.1208

LeagueAverage 0.5111 0.05627 0.1184

“Everyday
Players”

(18% of all PAs)

Singlearity-PA 0.5269 0.06100 0.1135
Singlearity-NoState 0.5279 0.06189 0.1138

log5 0.5287 0.06240 0.1139
LeagueAverage 0.5280 0.06250 0.1170

“Occasional
Players”

(61% of all PAs)

Singlearity-PA 0.5098 0.05440 0.1155
Singlearity-NoState 0.5098 0.05490 0.1168

log5 0.5120 0.05638 0.1163
LeagueAverage 0.5111 0.05990 0.1185

”Infrequent
Players”

(21% of all PAs)

Singlearity-PA 0.4925 0.04911 0.1145
Singlearity-NoState 0.4933 0.04970 0.1138

log5 0.5120 0.06176 0.1383
LeagueAverage 0.4968 0.05180 0.1192

	

	 7	

	
To	make	our	model	explainable,	we	use	the	SHAP	method	and	Shapley	values.	Shapley	values	have	
a	deep	history	in	economics	and	game-theory,	but	have	only	rarely	been	applied	to	baseball[4].	
Lloyd	Shapley	invented	the	concept	in	1953,	which	led	to	a	Nobel	Prize	in	Economics	in	1992.	
Shapley	values	were	later	applied	to	complex	AI	models	to	make	them	explainable[5].	The	method	
gives	us	a	mechanism	to	provide	a	set	of	simple	metrics	and	visualizations.	These	show	how	each	
input	feature	contributed	to	the	model’s	prediction,	making	it	easy	for	non-AI	experts	to	
understand	the	basis	for	the	predictions.	The	importance	of	an	input	feature	may	not	be	uniform	
across	all	data	points,	so	Shapley	values	provide	for	both	local	feature	importance	(a	ranking	of	the	
features	that	affect	a	single	prediction)	and	global	feature	importance	(a	single	ranking	of	how	
important	the	input	feature	is	to	all	of	the	predictions).			
	
6.1	Local	Feature	Importance	
When	making	a	single	prediction,	Shapley	values	explain	why	the	prediction	veered	from	an	
average	predicted	value.	Let’s	look	again	at	Aaron	Judge’s	plate	appearance	against	Wade	Miley	in	
Figure	3.	

		

Figure	3:	Shapley	decision	plot	for	predicted	wOBA	of	Aaron	Judge	vs.	Wade	Miley	

	

Reading	the	graph	from	the	bottom	up,	we	see	how	Aaron	Judge’s	wOBA	varies	from	the	league	
average	wOBA	of	just	over	0.310.	As	we	read	up	the	graph,	we	see	which	groups	of	features	had	the	
largest	effect	on	Judge’s	predicted	wOBA.	Let’s	examine	some	interesting	features	(from	bottom	to	
top):	

Least
important

Most
important

wOBA output value

June 22, 2019
Yankee Stadium (79℉)

	

	 8	

• Pitcher_historical:	Note	that	Wade	Miley’s	historical	stats	do	not	cause	a	big	change	to	the	
predicted	wOBA	of	this	PA.	This	doesn’t	mean	that	his	stats	are	unimportant	but	that	Miley’s	
historical	stats	are	fairly	typical.	

• Batter_exit_velo:	Judge	has	historically	hit	the	ball	very	hard.	This	causes	Singlearity-PA	to	
increase	his	projected	wOBA	relative	to	someone	with	similar	offensive	stats.		

• Batter_recent:	This	is	Judge’s	second	game	after	returning	from	a	2-month	stint	on	the	IL.	
The	fact	that	he	has	few	recent	PAs	drives	his	predicted	wOBA	down.	

• Platoon:	Judge	gets	a	big	boost	for	the	combination	of	the	righty/lefty	matchup,	together	
with	both	Judge’s	and	Miley’s	stats	against	opposite-handed	opponents.	

6.2	Global	Feature	Importance	
Global	feature	importance	refers	to	how	important	(on	average)	a	feature	is	to	make	an	accurate	
prediction.	One	way	to	visualize	feature	importance	is	to	plot	the	Shapley	values	for	a	sample	of	
predictions.	Figure	4	shows	the	most	important	features	impacting	wOBA.	From	Figure	4,	we	can	
observe	that,	as	expected,	batter	and	pitcher	historical	stats	have	the	largest	impact	on	wOBA,	
followed	by	platoon	effects	and	park	factors.	We	also	see	that	the	“batter	position	in	the	field”	row	
is	important.		The	dots	on	the	far	left	of	that	row	represent	players,	likely	pitchers,		where	the	
model	decreases	their	expected	wOBA	based	on	its	knowledge	that	pitchers	are	poor	hitters.		
Figures	5-10	in	the	appendix	show	graphs	of	global	feature	importance	for	HR,	SO,	BB,	HBP,	DP.	And	
triples.	

Figure	4:	Shapley	global	feature	importance	for	wOBA	prediction	

	

	 	

Least
important

Most
important

	

	 9	

7. Integrating	Singlearity-PA	with	Markov	Chains	
	
Using	Singlearity-PA’s	ability	to	generate	precise	outcomes,	we	now	have	the	ability	to	predict	more	
complex	outcomes	than	that	of	a	single	plate	appearance.	For	example,	we	can	now	predict	results	
of	a	half-inning,	allowing	us	to	optimize	lineups,	or	to	choose	a	situation-appropriate	relief	pitcher,	
among	other	important	decisions.	
		
7.1	Previous	work	using	RE24	
Previous	work	for	simulating	runs	scored	in	half-innings	has	focused	on	RE24,	a	methodology	
which	uses	historical	statistics	to	calculate	run	expectancy	from	the	start	of	a	plate	appearance	to	
the	end	of	a	half-inning.	For	example,	from	2010-2015,	on	average	0.481	runs	scored	with	the	bases	
empty	and	no	one	out,	while	1.130	runs	scored	on	average	with	1	out	and	runners	on	first	and	
third[6].	RE24	contains	scoring	expectancy	for	each	of	the	24	states	(3	outs	x	23	baserunners).	
However,	RE24	does	not	take	into	account	the	batter,	pitcher,	lineup	or	other	variables	that	can	
impact	the	expected	offensive	output	-	RE24	makes	the	same	run	expectancy	prediction	regardless	
of	whether	a	pitcher	is	facing	Murderer's	Row	or	a	lineup	of	"has-beens".	There	have	been	attempts	
to	improve	RE24	by	introducing	park	factors[7]	or	current	batter[8],	but	there	has	not	been	a	
holistic	effort.	
	
7.2	Markov	Chains	
To	build	a	better	run	prediction,	we	coupled	Singlearity-PA	with	Markov	chains	(we	refer	to	the	
combined	method	as	Singlearity-Markov).		Markov	chains	are	a	method	of	constructing	multi-state	
sequences	using	the	transitions	between	unique	states.	In	order	to	implement	a	Markov	chain,	we	
need	to	calculate	a	transition	matrix	that	gives	the	transition	probabilities	from	any	state	to	every	
other	state.		
	
Extending	this	into	baseball,	we	can	think	of	state	i	as	the	starting	base-out	state	before	the	PA,	
state	j	as	the	base-out	state	afterwards,	and	the	probabilities	in	the	transition	matrix	as	the	
probabilities	of	transitioning	from	i	to	j	for	all	i	and	j	[9].	For	instance,	to	compute	the	probability	of	
going	from	a	state	with	0	outs	and	a	runner	on	first	base	to	2	outs	and	no	runners	on	base,	we	
would	need	to	know	the	probability	of	a	double	play	for	that	PA.4		We	rely	on	Singlearity-PA’s	
prediction	to	create	these	transition	matrices.	Because	the	outputs	of	plate	appearances	do	not	
completely	describe	the	movement	of	baserunners,	we	make	some	simplifying	assumptions	about	
how	baserunners	advance.	For	instance,	we	use	historical	stats	to	predict	that	a	runner	on	1B	will	
go	to	2B	or	3B	either	70%	or	30%	of	time,	respectively,	on	a	single.	A	complete	list	of	assumptions	
can	be	found	in	our	Markov	chain	open	source	code.	
	
By	building	up	the	transition	matrix	for	each	player	in	the	starting	lineup,	we	can	calculate	the	
expected	run	distribution	for	the	entire	half-inning.		We	rely	on	the	algorithm	described	by	Pankin	
[10]	and	Bukiet,	et	al.	[11]	to	fully	implement	the	Markov	chain.	

	
4	Singlearity-PA	makes	probability	predictions	for	each	of	the	different	types	of	double	plays	such	
as	grounded_into_double_play,	sac_fly_double_play,	and	strikeout_double_play.		These	are	all	
included	when	calculating	the	transition	matrix.	

	

	 10	

	
While	Markov	chains	have	previously	been	explored	in	baseball,	they	were	of	limited	practical	use	
due	to	the	lack	of	“data...	available	to	set	up	a	transition	matrix	for	all	possible	occasions	[11].”	By	
incorporating	Singlearity-PA,	we	hope	to	alleviate	some	of	these	problems.	Not	only	can	we	use	as	
inputs	a	richer	set	of	variables	beyond	specific	batter,	pitcher,	and	state	information	(themselves	
already	an	improvement	on	the	default	league-average	probabilities),	but	we	can	go	beyond	
standard	hits	and	walks	that	typically	populate	these	matrices,	bringing	events	like	sacrifice	flies	
and	errors	into	possible	outcomes.	
	
7.3.	Methodology	
We	evaluate	our	approach	by	measuring	our	ability	to	predict	the	runs	scored	in	the	first	inning	of	
regular	season	games	from	2017-2020.		We	use	the	first	inning	for	these	calculations	because	it	
avoids	the	complications	of	pinch-hitters,	relief	pitchers,	or	shortened	games	that	may	arise	when	
using	later	innings.	As	a	baseline	to	compare	our	results	to,	we	use	the	RE24	value	from	that	same	
state	in	all	first	innings	of	the	prior	season.		As	an	example,	the	first	inning	RE24	matrix	for	2019	
can	be	viewed	in	the	appendix	in	Table	6.	
	
7.4.	Experimental	Results	
Our	first	attempt	at	measuring	Singlearity-Markov’s	ability	to	predict	run	expectation	revealed	that	
our	predictions	were	consistently	undershooting	actual	runs	by	12-15%.		This	is	consistent	with	
Bukiet	et	al.	who	found	that	their	predictions	were	7%	below	actual	runs	scored	[11].		Looking	
anecdotally	at	typical	innings,	we	believe	this	underprediction	comes	in	two	primary	forms:	

1. Baserunner	advancement:	Singlearity-Markov	does	not	account	for	some	events	which	
tend	to	favor	the	offense.	This	includes	stolen	bases,	wild	pitches,	and	advancing	to	second	
on	a	play	at	home.	

2. Multiple	events:	We	can	only	predict	one	outcome	per	plate	appearance,	so	whereas	real-
life	averages	can	incorporate	these	occurrences	(e.g.,	a	double	and	a	throwing	error	
resulting	in	the	batter	reaching	third),	we	can	not.	

	
To	counter	this	systemic	underprediction,	we	scaled	up	Singlearity-Markov’s	predictions	based	on	
its	undershoot	in	the	previous	year.		For	instance	in	2016,	actual	run	production	was	on	average	
15.3%	higher	than	Singlearity-Markov.		Therefore,	in	2017,	we	increased	each	prediction	from	
Singlearity-Markov	by	15.3%	to	create	the	run	expectancy	in	Singlearity-MarkovAdjusted.		
	
Calculating	the	RMSE	of	our	predictions	vs.	actual	runs	scored	for	each	of	the	last	five	MLB	seasons,	
we	get	the	following	results	(the	lower,	the	better):	
	

	

	 11	

Table	3:	Singlearity	vs.	RE24	RMSE	error	rate	(lower	is	better)	

	
	
We	observe	that	using	RE24	from	the	previous	season	is	superior	to	Singlearity-Markov	without	
the	adjustment	to	output.		Once	we	adjust	our	output,	Singlearity-MarkovAdjusted	outperforms	
RE24.		This	indicates	that	we	have	a	methodology	capable	of	effectively	accounting	for	batters	and	
pitchers,	as	well	as	factors	like	park	factors	and	weather,	to	improve	upon	RE24.	
	
7.5	In-Game	Example	
One	straightforward	application	of	Singlearity-Markov	is	lineup	optimization.	In	the	sabermetric	
bible	The	Book,	a	perfect	batting	order	may	be	worth	up	to	50	runs	per	season	[12],	and	while	the	
actual	effect	may	not	be	quite	that	high,	even	half	that	could	lead	to	an	extra	two	or	three	wins	each	
season.	Using	Singlearity-MarkovAdjusted,	we	are	able	to	iterate	over	all	9-factorial	permutations	
of	a	lineup	to	compute	expected	runs	scored	for	the	first	inning	in	just	over	an	hour	on	a	modern	lap	
top.	
	
Let’s	use	the	example	of	the	National	League	in	the	2019	All-Star	Game.	Singlearity-PAs	wOBA	
predictions	for	the	NL	starters	vs.	AL	starting	pitcher	Justin	Verlander	are	shown	in	Figure	11	in	the	
appendix.	NL	manager	Dave	Roberts	chose	a	lineup	which	projected	for	0.51101	runs	in	the	first	
inning	according	to	Singlearity-MarkovAdjusted.	However,	when	iterating	over	all	the	permutations	
of	this	lineup,	we	find	an	optimal	lineup:		
	

Table	4:	2019	NL	All-Star	lineup	

	

Year RE24 Singlearity-Markov Singlearity-
MarkovAdjusted

2017 1.01307 1.01735 1.01199

2018 0.95021 0.94880 0.94593

2019 1.00832 1.01322 1.00684

2020 0.92545 0.92456 0.92357

Overall 0.98412 0.98644 0.98192

Order Actual Lineup Optimal Lineup

1 Christian Yelich Ronald Acuña Jr.

2 Javier Báez Christian Yelich

3 Freddie Freeman Cody Bellinger

4 Cody Bellinger Josh Bell

5 Nolan Arenado Nolan Arenado

6 Josh Bell Ketel Marte

7 Willson Contreras Freddie Freeman

8 Ketel Marte Willson Contreras

9 Ronald Acuña Jr. Javier Báez

Expected 1st

inning runs 0.51101 0.54493

	

	 12	

	
This	lineup	projects	for	0.54493	runs	in	the	inning,	an	increase	of	6.7%.	Some	of	the	bigger	changes	
in	this	lineup	make	intuitive	sense:	Ronald	Acuña	Jr.,	superstar	in	the	making,	leading	off;	Josh	Bell	
batting	cleanup	after	a	first	half	with	27	home	runs;	and	Javier	Báez	ninth	with	a	.324	OBP	and	29%	
strikeout	rate	to	that	point	in	the	season.		
	
8. Open	Source	Code	and	Demos		
	
We’ve	provided	a	set	of	open	source	software	(under	the	MIT	license)	as	well	as	additional	tools	
and	demos	to	aid	in	exploring,	validating,	and	building	upon	our	results.		This	includes:	

• Extensive	open	source	code	in	R	with	the	following	functionality:	
o Markov	chain	library	for	run	expectations.		This	code	is	capable	of	using	either	

Singlearity-PA	predictions	or	other	user-supplied	PA	predictions.			
o Command	line	tools	and	libraries	for	optimizing	a	batting	order	based	on	PA	

predictions	and	Markov	chains.	
o Source	code	for	replicating	our	Markov	chain	results	including	fetching	historical	

lineups,	generating	run	expectancy	predictions,	and	calculating	the	accuracy	of	the	
results.	

• Graphical	online	demo	allowing	you	to	access	Singlearity-PA’s	predictions	for	plate	
appearances.	

• Open	source	libraries	in	R	and	Python	for	programmatically	accessing	Singlearity-PA’s	
predictions.	(an	API	key	is	required).	

	
	
	
	 	

	

	 13	

	
9. Future	Work	
	
	
There	are	several	areas	for	improvement	and	ongoing	work:		

• Singlearity-PA	is	still	missing	some	input	features	that	would	undoubtedly	yield	additional	
accuracy	predictions.	This	includes:	

o Minor	league	or	international	league	stats:	This	would	yield	better	predictions	on	
players	who	are	recent	arrivals	to	the	MLB.	

o Fielding	quality:	This	would	allow	for	more	accurate	PA	predictions	and	allow	
building	more	strategies	around	defensive	substitutions.	

• There	are	also	opportunities	to	leverage	Singlearity-PA’s	predictions	to	do	more	than	what	
was	done	for	our	first	inning	Markov.	

o Singlearity	and	our	Markov	model	only	accounted	for	the	scorekeeping	events	
associated	with	a	batter’s	plate	appearance.		This	meant	that	our	Markov	model	was	
missing	significant	portions	of	offense	such	as	wild	pitches	and	stolen	bases.		We	
could	build	additional	transitions	into	our	Markov	chain	based	on	the	players	and	
the	environment	and	thus	have	a	more	complete	picture	of	a	game.	

o We	did	not	attempt	to	model	how	a	game	would	evolve	beyond	the	half-inning.	If	we	
could	create	the	ability	to	incorporate	bench	players	and	likely	substitutions,	we	
could	better	model	entire	games,	and	eventually	build	out	more	complete	strategies	
for	player	substitutions	and	ideal	roster	composition.	

	
	
10. Conclusion	
	

AI-based	computing	models	have	shown	the	ability	to	utilize	massive	amounts	of	data	to	improve	
our	understanding	and	decision-making	abilities.	As	the	amount	of	readily	available	baseball	data	
has	skyrocketed,	we	introduce	Singlearity-PA.	This	neural-network	can	successfully	predict	the	
outcome	of	plate	appearances	by	using		the	data	in	a	holistic	manner.	It	can	also	serve	as	the	
building	block	to	more	complicated	strategies,	like	those	using	Markov	chains	to	build	optimal	
lineups	or	to	decide	on	pinch	hitters	and	relief	pitchers.	Singlearity-PA	provides	a	method	to	
harness	the	power	of	AI	to	make	baseball	predictions	that	are	easy	to	understand	and	share.	
	
	 	

	

	 14	

	
11. References	
	
[1]	Sawchik,	Travis_.	“Baseball's	Top	Staffs	Have	Come	Around	On	The	High-Spin	Fastball.”	
FiveThirtyEight,	FiveThirtyEight,	5	Oct.	2018,	fivethirtyeight.com/features/baseballs-top-staffs-
have-come-around-on-the-high-spin-fastball/.	
	
[2]	Arthur,	Rob.	“Want	to	Predict	a	Hitter’s	Future?	Sometimes	It	Takes	Just	a	Single	Batted	Ball.”	
The	Athletic,	20	Apr.	2018,	theathletic.com/321270/2018/04/19/want-to-predict-a-hitters-future-
sometimes-it-takes-just-a-single-batted-ball.		
	
[3]	Haechral,	Matt.	“Matchup	Probabilities	in	Major	League	Baseball.”	Sabr.Org,	2014,	
sabr.org/journal/article/matchup-probabilities-in-major-league-baseball.	
	
[4]	McBride,	Michael.	“Introducing	SRC	and	OSWC:	Using	Game	Theory	to	Assign	Credit	for	
Offensive	Outcomes.”	2020	SABR	Analytics	Conference,	2020,	sabr.org/latest/2020-sabr-analytics-
conference-research-presentations.	
	
[5]	Lundberg,	Scott,	and	Su-In	Lee.	“A	Unified	Approach	to	Interpreting	Model	Predictions.”	
ArXiv:1705.07874	[Cs,	Stat],	Nov.	2017.	arXiv.org,	http://arxiv.org/abs/1705.07874	
	
[6]	Tango,	Tom.	Run	Expectancy	Matrix,	1950-2015.	http://tangotiger.net/re24.html.	Accessed	14	
Dec.	2020.	
	
[7]	Exceeding	Expectations:	RE24	Leaders	|.	http://www.highheatstats.com/2020/04/exceeding-
expectations-re24-leaders/.		
	
[8]	Pemstein,	Jonah.	“Introducing	the	Batter-Specific	Run-Expectancy	Tool.”	FanGraphs.	12	May	
2016,	blogs.fangraphs.com/introducing-the-batter-specific-run-expectancy-tool.	
	
[9]	“Markov	Chains.”	Introduction	to	Probability,	Joseph	K.	Blitzstein	and	Jessica	Hwang,	CRC	
Press/Taylor	&	Francis	Group,	2015,	pp.	459.	
	
[10]	Pankin,	Mark	D.	“Markov	Models/Batting	Order	Optimization.”	Markov	Baseball	Models,	1987,	
www.pankin.com/markov/index.html.	
	
[11]	Bukiet,	Bruce,	et	al.	“A	Markov	Chain	Approach	to	Baseball.”	Operations	Research,	vol.	45,	no.	1,	
Jan.-Feb.	1997,	pp.	14-23,	doi:10.1287/opre.45.1.14.		
	
[12]	“Batting	(Dis)Order.”	The	Book:	Playing	the	Percentages	in	Baseball,	by	Tom	Tango	et	al.,	TMA	
Press,	2006,	pp.	153.	
	
	
	 	

	

	 15	

12. Appendix	
	
	

Table	5:	Detailed	list	of	input	features	for	Singlearity-PA	

Feature	Group	Name	 #of		
Inputs	

Details	
Batter	Historical	 14	 Batter	365	day	moving	average	rates	per	PA:	

(1)#	of	PA	
(11)Rates	per	PA	for:	1B,	2B,	3B,	HR,	BB,	IBB,	HBP,	GDP,	SO,	SF,	SH,	wOBA	
(1)	Average	park	factor	of	PAs5	
(1)	Imputed6	

Pitcher	Historical	 14	 Pitcher	365	day	moving	average	rates	per	PA	against	batters:		
(1)#	of	PA	
(11)Rates	per	PA	for:	1B,	2B,	3B,	HR,	BB,	IBB,	HBP,	GDP,	SO,	SF,	SH	
(1)	Average	park	factor	of	PAs	
(1)	Imputed	

Batter	Recent	 9	 Batter	21	day	moving	average	rates	per	PA:	
(1)	#	of	PA		
(6)	Rates	per	PA	for:	1B,	2B,	HR,	BB,	SO,	wOBA	
(1)	Average	park	factor	of	PAs	
(1)	Imputed	

Pitcher	Recent	 9	 Pitcher	21	day	moving	average	rates	per	PA	against	batters:	
(1)	#	of	PA	
(6)	Rates	per	PA	for:	1B,	2B,	HR,	BB,	SO,	wOBA	
(1)	Average	park	factor	of	PAs	
(1)	Imputed		

Batter/Pitcher	
	head-to-head	

8	 Head-to-head	over	the	last	3	years:		
(1)	#	of	PA	
(6)	Rates	per	PA	for:	1B,	2B,	HR,	BB,	SO,	wOBA	
(1)	Imputed	

Park	Factor	 4	 (4)	Previous	3	year	average	ballpark	factors	of	singles,	doubles,	triples,	
HR7	

Base	State	 4	 (1)	Outs	
(3)	1B	occupied,	2B	occupied,	3B	occupied	

Position	 10	 (10)	One-hot	encoded	value	of	batter’s	main	position	(9	positions	+	DH)	
Platoon	Statistics	 5	 (1)	Lefty/Righty	matchup	

(1)	#	of	batter	PA	against	this	handed	pitcher	
(1)	Batter's	wOBA	against	this	handed	pitcher	

	
5	To	account	for	batter	and	pitcher	stats	being	inflated	or	depressed	due	to	playing	previous	games	
at	offensive	or	defensive	ballparks,	respectively,	we	include	the	average	ESPN	park	factor	rating	of	
the	stadium	where	the	batter	or	pitcher	PAs	occurred.	
6	In	several	categories,	we	include	an	imputed”	input	(of	type	Boolean)	which	indicates	whether	the	
number	of	PAs	in	this	category	met	the	minimum	required	value.		The	minimum	values	are	40	PAs	
for	batter	and	pitcher	historical	data,		20	PAs	for	batter	and	pitcher	recent	data,	and	10	PAs	for	
batter	and	pitcher	head-to-head	data.		If	the	minimum	number	of	PAs	are	not	met	for	a	category,	we	
impute	all	values	in	the	category	using	league	averages.		
7	http://www.espn.com/mlb/stats/parkfactor	

	

	 16	

(1)	#	of	pitcher	PA	against	this	handed	batter	
(1)	Pitcher’s	wOBA	against	this	handed	batter	

Exit	Velocity	 2	 Batter’s	3	year	exit	velocity:	
(1)	Max	exit	velocity	of	batter’s	PAs	
(1)	Average	exit	velocity	of	batter’s	balls	in	play		

Inning	 1	 (1)	Inning	

	
	

	

	 17	

Figure	5:	Shapley	global	feature	importance	for	HR	prediction	

	

Figure	6:	Shapley	global	feature	importance	for	SO	prediction	

	
	

	

	 18	

Figure	7:	Shapley	global	feature	importance	for	BB	prediction	

	

Figure	8:	Shapley	global	feature	importance	for	HBP	
prediction	

	

	

	 19	

Figure	9:	Shapley	global	feature	importance	for	DP	prediction	

	

Figure	10:	Shapley	global	feature	importance	for	triple	
prediction	

	
	

	

Table	6:	2019	1st	inning	RE24	matrix	

	

Base Runners Outs
1B 2B 3B 0 outs 1 out 2 outs

- - - 0.544 0.298 0.115

1B - - 0.935 0.564 0.242

- 2B - 1.147 0.713 0.339

1B 2B - 1.537 0.979 0.467

- - 3B 1.369 0.953 0.391

1B - 3B 1.759 1.219 0.518

- 2B 3B 1.971 1.368 0.615

1B 2B 3B 2.361 1.634 0.743

	

	 20	

Figure	11:	Projected	wOBA	for	NL	starters	vs.	Justin	Verlander	in	the	2019	All-Star	game	

	
	

