
	

	

1	

Sharpstack:		
Cholesky	Correlations	for	Building	Better	Lineups	

	
Andy	Sherman-Ash	

andy@numberfire.com	
Keith	Goldner	

keith@numberfire.com	
numberFire1	

	
	
1. Introduction	
	
It’s	Sunday	at	noon	and	you	are	trying	to	figure	out	the	best	lineup	you	can	possibly	play.	You	know	
that	the	Patriots	are	going	to	do	well,	but	who	should	you	start?	Cam	Newton	is	going	to	post	huge	
numbers	against	a	porous	Miami	secondary,	but	do	you	pair	him	with	James	White,	Sony	Michel,	or	
neither?	A	quick	look	at	the	data:	when	Cam	Newton	has	performed	well,	James	White	has	too—he	
is	one	of	Newton’s	favorite	targets.	Sony,	on	the	other	hand,	seems	to	perform	better	when	Newton	
does	not	since	he	rarely	catches	the	ball.	It	is	hard	for	them	both	to	have	a	good	fantasy	
performance	when	the	Patriots	cannot	run	and	throw	the	ball	on	the	same	play.	You	lock	in	Newton	
and	White,	sit	back,	and	wait	for	the	double-digit	New	England	win.	
	
In	Daily	Fantasy	Sports	(DFS),	users	draft	a	lineup	of	real-life	players	for	that	day	(or	week),	and	
accrue	points	based	on	each	player's	performance.	Users	compete	against	other	individuals	or	in	
large	tournaments	where	the	goal	is	to	finish	with	the	maximum	possible	points.	When	building	a	
lineup,	each	player	has	an	associated	salary	and	position.	Users	are	required	to	fill	specific	position	
slots	and	keep	the	total	team	salary	under	a	salary	cap.		
	
The	most	common	way	to	optimize	lineups	for	DFS	is	a	combinatorial	optimization	problem	known	
as	the	knapsack	problem.	Users	feed	projections	and	constraints	for	player	salaries	and	positions	
into	an	algorithm	which	spits	out	the	lineup	with	the	highest	projected	points.	These	lineups	work	
great	for	head-to-head	matchups,	but	they	break	down	when	used	in	the	most	popular	form	of	DFS	
contests—the	large	tournaments	or	guaranteed	prize	pools	(GPP).	In	these	larger	tournaments,	we	
want	users	to	better	understand	player-to-player	correlations.	By	picking	correlated	players,	DFS	
users	can	increase	their	chances	of	a	high-score	lineup	at	the	expense	of	a	higher	average	score.	
Some	optimizers	solve	for	this	by	imposing	additional	"stacking"	constraints	(e.g.	always	draft	a	
quarterback	with	a	wide	receiver	on	the	same	team,	don't	play	a	quarterback	versus	an	opposing	
defense),	but	building	out	these	rules	can	be	extremely	arbitrary	and	time	consuming.		
	
At	numberFire,	we	have	created	a	new	solution	for	helping	sports	fans	create	tournament	lineups	
using	Cholesky	decomposition.	Cholesky	decomposition	generates	correlated	simulations	and	
allows	users	to	create	lineups	which	naturally	take	into	account	properties	of	stacking,	without	
adding	manual	constraints.	Sharpstack	is	a	tool	available	for	all	DFS	users;	it	begins	with	
customized	correlations	between	every	player	in	a	game	(e.g.	how	is	James	White's	performance,	a	

1	numberFire	is	a	FanDuel	Group	company	

	

	

2	

pass-catching	running	back,	correlated	with	Cam	Newton	versus	Sony	Michel,	a	traditional	ground-
and-pound	running	back)—taking	into	account	previous	team	tendencies	and	general	historical	
trends.	Using	these	correlated	simulations	along	with	any	user-selected	preferences,	Sharpstack	
allows	our	customers	to	better	understand	and	build	potentially	high-scoring	lineups	for	any	given	
slate	or	set	of	games.	We	will	show	via	back	testing	how	lineups	generated	by	Sharpstack	would	
have	performed	in	real-money	GPPs	on	FanDuel.		
	
1.1. 	Classical	Linear	Optimizer	
	
The	“classic”	way	to	make	a	lineup	formulates	the	problem	as	a	knapsack	problem	and	solves	it	
using	a	linear	optimizer	with	constraints.	In	their	2018	Sloan	paper,	“How	to	Play	Strategically	in	
Fantasy	Sports	(and	Win)”,	Haugh	and	Singal	[1]	formulate	the	problem	as	follows:	

We	assume	there	are	a	total	of	P	players	whose	performance,	 d	∈	ℝP,	in	a	given	round	of	
games	is	random.	We	will	assume	that	
	

d		~	𝑁% µd	,Sd	',	
	
so	that	d		is	multivariate	normally	distributed	with	mean	vector	µd	and	variance-covariance	
matrix	Sd	.	Our	goal	in	the	fantasy	sports	competition	is	to	choose	a	portfolio	w	∈	{0,1}P	of	
athletes.	Typically,	there	are	many	constraints	on	w.	For	example,	in	a	typical	NFL	fantasy	
sports	contest,	we	will	only	be	allowed	to	select	C	=	9	players	out	of	a	total	of	P	≈	100	to	300	
NFL	players.	Each	player	also	has	a	certain	“cost”	and	our	portfolio	cannot	exceed	a	given	
budget	B.	These	constraints	on	w	can	then	be	formulated	as	

(𝑤! = 𝐶
"

!#$

	

	

(𝑐!𝑤! ≤ 𝐵
"

!#$

	

	
𝑤! 	 ∈ 	 {0,1}, 𝑝 = 1,… , 𝑃,	

	
where	cp	denotes	the	cost	of	the	pth	player.	Other	constraints	are	also	typically	imposed	by	
the	context	organizers.	These	constraints	include	positional	constraints,	e.g.	exactly	one	
quarterback	can	be	chosen,	diversity	constraints,	e.g.	you	cannot	select	more	than	4	players	
from	any	single	NFL	team,	etc.	These	constraints	can	generally	be	modeled	as	linear	
constraints	and	we	use W	to	denote	the	set	of	binary	vectors	w	∈	{0,1}P	that	satisfy	these	
constraints.	

An	example	of	this	would	be	our	existing	linear	optimizer	on	numberFire.com	[2].	While	this	
method	is	effective	as	long	as	the	projection	inputs	are	accurate,	it	does	not	natively	understand	the	
correlations	of	the	players	or	that	stacking	is	effective	because	it	does	not	model	what	we	are	after	
in	GPPs.	We	want	to	maximize	our	odds	of	winning	the	tournament	and	these	optimizers	maximize	
our	average	final	score,	as	we	would	want	in	a	head-to-head	contest.	

	

	

3	

1.2	Linear	Optimizer	+	Stacking	Constraints	

Perhaps	the	most	common	way	around	this	issue	is	to	add	rigid	stacking	constraints	to	the	problem.	
This	is	how	many	optimizers	in	the	industry	currently	work—the	most	notable	being	ones	from	
FantasyCruncher,	RotoGrinders,	and	DailyRoto	[3].	These	optimizers	allow	users	to	specify	
additional	constraints	to	the	linear	problem,	such	as	“always	pair	a	quarterback	with	a	wide	
receiver”,	or	“don’t	play	a	running	back	against	the	defense	he	is	facing.”	The	problem	with	this	
approach	is	that	sometimes	users	should	stack	a	quarterback	with	a	running	back,	just	not	always—
it	depends	on	how	that	specific	running	back’s	performance	is	correlated	with	the	quarterback.		

To	get	around	these	limitations,	some	of	these	programs	allow	the	user	to	go	even	further,	
specifying	exactly	who	to	stack	with	whom—such	as,	“pair	Aaron	Rodgers	with	Aaron	Jones,	but	not	
Jamaal	Williams.”	The	advantage	of	this	method	is	it	gives	the	user	full	control	over	exactly	how	
they	want	their	stacks	set	up.	The	disadvantage	is	that	it	becomes	incredibly	cumbersome	and	time	
consuming	to	set	up	each	potential	stack	in	this	manner;	and,	the	rigidity	of	the	constraints	can	
never	be	dynamic	enough	to	capture	all	of	the	possible	correlations.	For	example,	receivers	in	the	
same	game	are	typically	correlated	with	each	other,	so	it	can	make	sense	to	play	two	receivers	from	
opposing	teams	together.	But,	if	one	team	is	favored	by	a	lot	and	facing	a	team	that	does	not	have	a	
highly	projected	receiver,	it	might	not	make	sense	to	stack	receivers	from	both	teams	in	that	game.	
For	a	beginner	user	who	does	not	know	the	best	way	to	set	up	a	lineup,	this	approach	has	a	very	
steep	learning	curve.	Some	of	these	tools	also	allow	the	user	to	wiggle	their	input	projections	via	
“randomness”;	but,	randomness	for	the	sake	of	randomness	is	not	useful—it	only	degrades	the	
quality	of	the	projections.	So,	we	set	out	to	build	a	tool	that	utilizes	“smart	randomness”.	

1.3 	Building	Lineups	by	Hand	
	

A	final	approach	to	building	lineups	which	bears	mentioning	is	the	“old	fashioned”	way,	done	purely	
by	hand.	For	an	expert	user	who	knows	who	they	want	to	play	and	how	to	construct	proper	
stacking	strategies	in	their	lineup,	this	is	still	one	of	the	best	ways	to	build	lineups.	The	problem	is	
that	for	large	multi-entry	tournaments,	building	150	lineups	by	hand	(even	if	each	lineup	only	takes	
2-4	minutes)	can	take	6-10	hours.	For	single-entry	contests	by	experts,	building	lineups	by	hand	is	
an	excellent	option,	but	for	multi-entry	contests	or	beginner	to	intermediate	players,	it	is	a	
suboptimal	process.	We	will	see	that	for	players	who	prefer	to	build	lineups	by	hand,	Sharpstack	
can	serve	as	a	starting	point,	providing	numerous	viable	lineups	and	stacks,	which	can	then	be	
tweaked	by	the	expert	user,	rather	than	starting	from	scratch.		
	

2. Sharpstack	
	
We	set	out	to	build	Sharpstack	to	combine	the	best	of	all	of	the	aforementioned	lineup	building	
approaches.	We	wanted	to	create	a	lineup	building	tool	which	knew	how	to	stack	players,	
understood	the	correlations	present	in	sporting	events,	but	was	also	easy	enough	for	a	beginner	to	
spend	a	few	minutes	and	immediately	have	competitive	lineups	with	a	reasonable	chance	to	win.		

There	is	a	four-step	process	to	generating	Sharpstack	lineups:		

1. Generate	a	custom	correlation	matrix	for	all	player-to-player	combinations	on	the	slate	

	

	

4	

2. Simulate	the	slate	of	games	10,000	times	using	each	player’s	projection	for	that	slate,	their	
projected	standard	deviation,	and	the	custom	correlation	matrix	from	Step	1	

3. Walk	through	each	simulation	with	a	standard	linear	optimizer,	creating	the	optimal	lineup	
observed	from	that	simulation—this	results	in	up	to	10,000	“candidate”	lineups	to	be	
considered	

4. Race	each	“candidate”	lineup	across	every	simulation	to	see	which	lineups	performed	the	
best	over	the	entire	set	of	simulations	
	

2.1 	Data	
	

The	dataset	used	consists	of	game-by-game	stat	lines	and	projections	for	all	fantasy-eligible	
positions	going	back	to	2006.	Using	this	data,	we	can	build	a	baseline	positional-rank	correlation	
matrix	(Figure	1).	This	matrix	shows	the	high	levels	of	correlation	between	a	quarterback	and	his	
offensive	teammates,	as	well	as	the	high	negative	correlation	between	a	defense	and	players	on	the	
opposing	team:		
	

Figure	1:	Positional-Rank	Correlation	matrix	

	
For	the	purposes	of	drawing	simulations,	the	ranking	of	each	player	is	determined	by	their	pregame	
projection	(e.g.	WR1	would	be	the	wide	receiver	on	a	team	projected	for	the	most	fantasy	points).	In	
red,	we	see	there	is	a	48%	correlation	between	a	quarterback	and	their	second-best	wide	receiver;	
in	blue,	there	is	a	40%	correlation	between	a	quarterback	and	their	top	tight	end.		
	
This	matrix	alone	is	enough	to	generate	our	correlated	simulations;	however,	we	know	that	not	all	
teams	and	styles	correlate	in	the	same	way.	Due	to	play-calling	tendencies,	on	some	teams	the	QB1	
and	RB1	are	highly	correlated,	but	on	other	teams	they	are	not.	Further,	on	some	teams	the	RB1	
and	defense	are	highly	correlated	because	when	the	defense	plays	well	and	gets	a	lead,	the	RB1	will	
pound	away	at	the	clock	until	the	game	ends.	An	example	of	this	would	be	Derrick	Henry	and	the	
Titans	defense—estimated	at	a	+19%	correlation	as	opposed	to	the	baseline	+9%.	On	other	teams,	
the	RB1	might	be	a	pass-catching	back	who	gets	taken	out	in	favor	of	a	“closer”—such	as	Devin	
Singletary	in	2019	(only	+4%	correlated	with	the	Bills	D,	as	Frank	Gore	was	the	closer).	
Unfortunately,	we	cannot	just	use	a	custom	correlation	matrix	between	every	player	in	a	specific	
game—the	sample	size	is	just	too	small	as	there	are	only	16	games	per	season	in	the	NFL.	In	
addition,	with	injuries,	trades,	and	player	movement,	even	long-time	teammates	can	have	a	small	

	

	

5	

sample	of	games	played	together.	We	handle	this	is	by	creating	recency-weighted	player-to-player	
rolling	correlations—we	pair	up	the	game	stat	lines	of	each	player	and	generate	the	correlations	
between	them	using	an	exponentially	weighted	moving	correlation	from	the	Pandas	python	library	
[4].	We	take	a	Bayesian	approach	where,	based	on	the	size	of	the	sample	and	our	confidence	in	the	
recency-weighted	correlations,	we	determine	the	weight	of	the	custom	correlations	versus	our	
league-average	baseline	correlations.	This	way,	we	use	the	base	correlation	as	a	prior	for	players	
who	have	little	or	no	sample,	while	we	use	the	specific	correlations	for	those	players	with	a	long	
history	playing	together.	
	
2.2 	Projected	distributions	

	
In	order	to	simulate	effectively,	we	need	to	estimate	the	entire	distribution	of	potential	fantasy	
point	outcomes.	To	derive	this,	we	begin	with	their	current	projected	fantasy	points	for	the	
upcoming	week.	Projecting	fantasy	points	is	beyond	the	scope	of	this	paper,	but	it	is	important	to	
note	that	regardless	of	the	optimization	strategy,	projected	fantasy	points	will	always	be	a	key	
input.	The	better	the	projections	are,	the	better	the	lineups	will	perform.	Previous	independent	
research	has	shown	that	numberFire	projections	are	on	par	with	the	best	in	the	industry	[5].	
	
Fantasy	points	roughly	follow	a	Gamma	distribution,	according	to	work	from	Nathan	Braun	at	
fantasyMath	[6].	Using	empirical	data	from	our	historical	game	stat	lines	(seen	in	Figure	2),	we	
estimate	standard	deviations	for	each	position	and	projected	fantasy	points	combination.	
	

Figure	2		

	

	

	

6	

Finally,	armed	with	our	custom	correlation	matrix	and	projected	fantasy	point	distributions,	we	are	
ready	to	generate	our	correlated	simulations.	
	
2.3 	Cholesky	Decomposition	
	
Cholesky	decomposition,	also	known	as	Cholesky	factorization,	is	a	method	of	decomposition	for	
any	Hermitian	(or	self-adjoint),	positive-definite	matrix.	Discovered	by	André-Louis	Cholesky	for	
real	matrices,	it	is	extremely	useful	for	Monte	Carlo	simulations	with	correlated	variables	[7].	
	
Given	any	Hermitian,	definite	positive	matrix	A,	then	A	can	be	decomposed	as:	
	

𝑨 = 𝑪𝑨𝑪𝑨∗ 	
	
where	CA	is	a	lower	triangular	matrix	with	strictly	positive	diagonal	entries,	and	C*	denotes	the	
conjugate	transpose	of	C.	Every	positive-definite	Hermitian	matrix	has	a	unique	Cholesky	
decomposition	[8].	If	matrix	A	has	only	real	entries,	CA	is	comprised	of	only	real	entries	and	𝑪𝑨∗ 	can	
be	replaced	by	𝑪𝑨𝑻 	(the	transpose)	in	the	decomposition	[9].	A	lower	triangular	matrix	is	a	square	
matrix	where	all	entries	above	the	diagonal	are	zero:	
	

9
𝑋(,(0 0
⋮ ⋱ 0
𝑋(,* ⋯ 𝑋*,*

>	

	
In	Monte	Carlo	simulations,	we	can	decompose	the	covariance	matrix,	resulting	in	the	lower	
triangular	matrix	CA.	We	can	then	apply	this	to	a	vector	of	uncorrelated	samples	𝒗,	generating	
vector	W,	which	models	the	covariance	properties	of	our	initial	system.	
	
For	our	NFL	simulations,	we	start	with	the	j	x	j	correlation	matrix	X.	To	generate	the	covariance	
matrix,	which	we	will	call b	,	we	use	the	following	formula,	where	S	is	a	vector	of	length	j	containing	
the	standard	deviations	of	each	sampled	entry:	
	

b = 𝑺×	𝑿×	𝑺	
	
Here,	j	represents	the	number	of	players	we	are	sampling	and	S	is	a	vector	with	each	player’s	
standard	deviation.	We	then	calculate	our	final	correlated	simulations,	W,	as	the	dot	product	of	the	
decomposed	covariance	matrix	and	vector	𝒗—an	uncorrelated	normally	distributed	vector	of	
random	variables	of	size	j:	
	

W = 𝑪𝑨×	𝒗		
	

	

	

7	

With	our	matrix	of	normally	distributed	correlated	samples,	W,	we	then	translate	our	output	to	
gamma	distributions	to	more	accurately	model	the	properties	of	fantasy	points	(e.g.	nonzero,	right-
tail	skewed).	An	example	distribution	from	Week	14	in	2019	can	be	seen	in	Figure	3:	

	
The	output	distributions	retain	the	properties	of	the	inputs—the	mean	of	each	player’s	simulated	
distribution	matches	their	numberFire	projection	and	the	correlation	observed	in	the	simulations	
of	each	player	to	each	other	player	in	their	game	matches	their	custom	correlation	matrix	(Figure	
4).	

Figure	3:	(Left)	Tom	Brady	simulated	fantasy	points	versus	his	actual	results	since	2001.	(Right)	Three	
different	Patriots	simulated	fantasy	point	distribution.	

	

	

8	

Figure	4:	Josh	Allen’s	Week	14,	2019	simulated	output	correlations	with	John	Brown	and	Frank	Gore.	

	
We	can	see	a	very	strong	correlation	between	Josh	Allen	and	John	Brown’s	simulated	performance	
compared	to	a	weak	correlation	between	Frank	Gore	and	John	Brown	(a	wide	receiver	and	running	
back	who	we	would	not	expect	to	both	perform	well	together).	We	will	discuss	additional	
applications	for	these	correlated	simulations	beyond	daily	fantasy	in	section	4.2.	
	
2.4	The	Race	
	
To	turn	these	correlations	into	actionable	DFS	lineups,	we	first	loop	through	each	simulation,	and	
create	the	optimal	lineup	for	that	simulation—the	combination	of	players	who	scored	the	most	
points	in	each	simulation,	taking	into	account	constraints	(e.g.	salary,	position,	MVP	multipliers	for	
single	game	contests).	Once	each	of	these	“candidate”	lineups	has	been	selected,	we	race	all	of	them	
in	every	simulation	to	determine	the	distribution	of	finishing	positions	for	each	lineup.	This	results	
in	a	final	list	of	lineups	outputted	to	the	user	(Figures	5	&	6):	

	

	

9	

	

	

	

	
	
	
In	Figure	5,	from	the	2019	Week	14	NFL	Main	Slate	on	FanDuel,	we	see	a	QB-WR-WR	stack	of	
Jameis	Winston,	Chris	Godwin,	and	Mike	Evans,	as	well	as	Zach	Pascal	from	that	same	game—all	
positively	correlated	with	each	other.	Additionally,	Aaron	Jones	is	paired	with	his	defense.		
	
The	second	lineup	(Figure	6)	shows	a	stack	between	Deshaun	Watson	and	his	receiving	back—
Duke	Johnson	(Sharpstack	chose	Johnson,	the	receiving	back,	rather	than	Carlos	Hyde	who	is	more	
of	a	ground-and-pound	player)—as	well	as	Alvin	Kamara,	George	Kittle,	and	Michael	Thomas,	who	
are	all	playing	in	the	same	game	and	positively	correlated	with	each	other.	These	correlated	lineups	
are	exactly	the	types	of	lineups	top	DFS	players	make	when	they	create	lineups	by	hand,	while	
Sharpstack	creates	them	dynamically	with	the	press	of	a	button.		
	
	
3. Back	testing	
	
To	show	the	efficacy	of	the	solution	and	prove	these	lineups	perform	well	in	GPPs,	we	ran	a	series	
of	back	tests	using	historical	FanDuel	data.	We	compared	the	top	150	lineups,	across	39	single	game	
NFL	slates	from	2019	(5850	lineups	each)	from	Sharpstack,	the	traditional	knapsack	method,	as	
well	as	the	top	150	lineups	sorted	by	salary,	to	give	some	reasonable	benchmarks.	

Figure	6:	Deshaun	Watson	is	stacked	with	his	
receiving	running	back,	Duke	Johnson,	while	
New	Orleans	and	San	Francisco	high-target	

players	are	stacked	in	their	matchup.	

Figure	5:	Sharpstack	output	with	a	Tampa	
Bay	passing	stack	and	Green	Bay	defense	
plus	running	back	stack.	

	

	

10	

Figure	7:	Normalized	Lineup	Scores,	Single	Game	GPPs	Weeks	1-14	2019	

Figure	7	compares	the	z-score	of	total	FanDuel	points	scored	by	lineups	in	different	groups.	We	use	
the	z-score	so	that	we	can	accurately	compare	results	across	slates,	since	some	slates	are	
significantly	higher	or	lower	scoring	than	other	slates	depending	on	how	many	points	are	scored	
during	the	NFL	game	being	contested.	The	curves	show	the	distribution	of	z-scores	for	each	of	the	
four	groups.	Lineups	sorted	by	salary—the	simple	benchmark	which	does	not	account	for	
correlations	or	projections—performs	about	on	par	with	the	average	lineup	on	FanDuel.	The	
Knapsack	lineups—which	take	into	account	projections	but	not	correlations—perform	the	best	on	
average	with	the	highest	mean	z-score	(0.276).	This	indicates	the	average	knapsack	lineup	is	
beating	61.03%	of	scores	in	the	contest.	Despite	having	a	lower	mean	z-score	(0.134,	beating	55%	
of	scores),	the	Sharpstack	lineups	have	a	much	higher	z-score	standard	deviation	(.976	compared	to	
.878	for	knapsack),	which	leads	to	a	higher	percentage	of	entries	in	the	95th	and	98th	percentiles—
where	we	find	all	the	big	prizes	in	GPPs.	Put	another	way,	the	top	5%	of	Sharpstack	lineups	are	
defeating	95.99%	of	scores	in	the	contest,	while	the	top	5%	of	Knapsack	lineups	are	better	than	
95.90%	of	scores.	Similarly—and	more	consequentially—the	top	2%	of	Sharpstack	lineups	
outperform	98.46%	of	real	lineups,	while	the	top	2%	of	Knapsack	lineups	outperform	only	97.67%.	
We	can	see	this	in	the	plot	in	the	bottom	right	where	the	green	Sharpstack	curve	overtakes	the	
Knapsack	curve.	These	findings	validate	our	assumption	that	using	a	Knapsack	solver	is	the	optimal	
strategy	for	maximizing	mean	score,	but	not	for	maximizing	odds	of	a	high,	tournament-winning	
score.	
	

	

	

11	

In	GPPs,	however,	we	care	about	return	on	investments	(ROI)	rather	than	score.	To	test	this,	we	
simulated	the	three	strategies	modeled	above.	From	each	of	the	39	slates	tested,	we	chose	a	$1,	
150-max	entry	GPP	contest	on	FanDuel.	The	ROI	each	strategy	would	have	achieved	had	they	
entered	the	top	150	lineups	in	each	slate	is	shown	in	Figure	8.		

Figure	8:	Simulated	ROI	in	single	game	slates	

Sharpstack	finished	with	an	ROI	of	40.6%,	Knapsack	finished	with	an	ROI	of	25.2%,	and	Top	Salary	
finished	with	an	ROI	of	-13.5%.	These	results	are	consistent	with	what	we	would	expect—the	Top	
Salary	strategy,	our	control,	should	be	unable	to	overcome	the	site	fees.	We	can	see	from	the	z-score	
distribution	that	it	mirrors	the	average	lineup,	which	would	return	an	ROI	exactly	inverse	to	the	
site	fees.	We	also	expect	the	Knapsack	to	be	a	positive	ROI	strategy,	because	at	the	lowest	stakes	on	
FanDuel,	using	quality,	timely	projections	and	Knapsack	is	still	likely	to	outperform	the	average	
entry.	Sharpstack	performed	best	despite	its	lineups	finishing	lower	on	average	than	the	Knapsack	
strategy.	This	is	thanks	to	its	aforementioned	higher	variance	(higher	ceiling,	lower	floor)	of	
outcomes	based	on	smart	positive	correlations.	
	

4. Future	Work	
	
4.1	Potential	Improvements	
	
There	are	a	series	of	future	improvements	which	could	be	made	to	increase	the	effectiveness	and	
power	of	Sharpstack.	First,	because	the	correlated	simulations	are	essentially	a	shortcut	to	a	full	
game	simulation,	if	one	has	a	full	sport	simulator	down	to	the	play-by-play	level,	such	as	
NFLGameSim.com	[10],	Sabersim.com	[11]	or	a	Markov	model	[12],	the	game	simulation	results	can	

40.60%

25.20%

-13.50%
-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

Sharpstack Knapsack Top	Salary

NFL	Single	Game	Simulated	ROI,	Weeks	1-14,	2019

	

	

12	

replace	the	correlated	simulations,	with	the	same	end-to-end	functionality	(e.g.	looping	through	
each	simulation,	finding	the	optimal	lineup,	and	racing	them	against	each	other).	

Another	useful	iteration	would	be	to	have	player-specific	standard	deviations.	Currently,	we	have	
player-specific	mean	projections	and	positional-specific	standard	deviations.	For	example,	Jarvis	
Landry	and	John	Brown	might	be	projected	for	the	same	amount	of	fantasy	points,	in	which	case	we	
would	assign	each	of	them	the	same	standard	deviation,	but	as	football	fans	we	know	that	John	
Brown	mostly	runs	deep	routes,	while	Jarvis	Landry	mostly	plays	underneath2.	Because	Brown	
catches	the	ball	deeper	on	average,	with	fewer	receptions	per	game,	John	Brown’s	true	results	
should	have	a	higher	standard	deviation	than	Landry’s,	who	will	be	much	more	predictable.	
Keeping	small	sample	size	in	mind,	a	likely	improvement	here	would	be	to	use	a	Hierarchical	
Bayesian	model,	taking	into	account	historical	positional	standard	deviations	as	a	prior	and	
adjusting	those	based	on	the	observed	player’s	game	logs	and	sample	size.	We	did	some	research	
into	whether	this	would	improve	the	predictability	of	a	wide	receiver’s	range	of	outcomes,	but	
found	that	for	the	vast	majority	of	receivers,	it	did	not.	There	are,	however,	a	small	minority	of	
receivers	who	specialize	in	the	deep	pass,	such	as	John	Brown,	that	do	consistently	have	standard	
deviations	higher	than	league	average,	improving	the	predictability	of	their	distribution.		
	
The	Sharpstack	process	is	computationally	intensive,	so	there	are	large	potential	gains	in	terms	of	
speed,	memory,	and	processing	power	through	parallelization.	In	an	ideal	world,	users	would	be	
able	to	modify	the	projection	of	any	player	and	run	the	process	end-to-end	on-demand.	To	save	the	
user	time,	we	cache	the	top	set	of	lineups	from	a	constantly	running	thread	and	serve	a	subset	to	
the	user.	This	has	the	advantage	of	displaying	up	to	150	lineups	instantly	to	the	user—something	
no	other	optimizer	currently	does—while	also	allowing	the	user	to	lock	and	exclude	any	number	of	
players	before	re-running	the	program.	

We	are	also	in	the	process	of	developing	new	methods	for	optimizing	the	correlated	simulations,	
aside	from	the	traditional	knapsack	linear	programming	solution.	One	approach	we	have	developed	
uses	a	genetic	algorithm	to	learn	the	optimal	multi-lineup	strategy,	maximizing	cross-lineup	
performance.	

4.2	Additional	Use	Cases	
	
The	usefulness	of	correlated	simulations	is	not	limited	to	NFL	DFS.	We	have	extended	Sharpstack	to	
work	with	MLB	contests—using	a	correlation	matrix	based	on	batting	order	for	hitters.	We	are	in	
the	process	of	developing	an	NHL	version	of	Sharpstack,	given	that	correlations	in	hockey	are	
crucially	important	when	building	lineups.	Since	stacking	is	not	as	important	in	NBA	DFS	(the	
correlations	between	players	and	teammates	are	fairly	weak),	there	is	not	much	of	a	demand	to	
extend	the	methodology	to	basketball.	This	framework	can	also	be	easily	modified	to	support	other	
DFS	sites	and	contests,	such	as	DraftKings	or	Yahoo,	by	adjusting	the	projections	and	constraints	to	
fit	those	sites.	
	
Beyond	DFS,	the	simulations	can	be	used	in	season-long	fantasy	formats	for	sit-start	decisions.	The	
goal	of	season-long	fantasy	in	head-to-head	leagues	(the	most	common	format)	is	not	to	score	the	

2	In	2019	Brown’s	average	numberFire	projection	was	7.969	and	Landry’s	was	7.929.	John	Brown’s	
Air	Yards,	however,	were	1,667,	while	Landry’s	were	1,338	[13].	

	

	

13	

most	points,	but	rather	create	the	lineup	which	maximizes	your	win	probability,	taking	into	account	
both	your	players	and	your	opponent’s	players.	We	have	developed	a	tool	to	optimize	a	season-long	
lineup	based	on	these	correlations	and	the	current	weekly	matchup	to	maximize	win	probability.	
This	can	result	in	some	counterintuitive	decisions	where	the	optimal	choice	is	not	to	start	the	
highest	projected	players.	A	favored	team	will	want	to	reduce	its	inter-lineup	correlation,	whereas	
an	underdog	team	would	like	to	increase	it.	
	
These	simulations	are	also	being	used	to	help	generate	probabilities	to	exceedingly	difficult	
questions	due	to	the	nature	of	same-game	correlations.	We	can	answer	questions	like:	What	are	the	
odds	Cam	Newton	scores	20	fantasy	points?	What	are	the	odds	Cam	Newton	scores	20	or	more	
fantasy	points	AND	Julian	Edelman	scores	10	or	more?	What	are	the	odds	that	Julian	Edelman	is	the	
highest	scoring	player	in	the	Patriots	game?	
	
	
5.	Discussion	
	
Using	Cholesky	decomposition,	we	built	a	framework	for	generating	correlated	simulations	
between	all	players	in	an	NFL	game.	These	simulations	can	be	used	to	create	competitive	daily	
fantasy	lineups	which	organically	exhibit	stacking	properties,	previously	only	accomplished	by	
time-consuming	manual	processes	and	adding	rigid	constraints.	Our	back	tests	show	the	
effectiveness	of	these	generated	lineups	compared	with	other	submitted	FanDuel	lineups,	as	well	as	
the	existing	industry	standard	linear	optimizer,	in	large	tournaments	or	GPPs.	Sharpstack	is	
currently	live	on	numberFire.com	for	any	user	to	better	understand	and	build	potentially	high-
scoring	lineups	for	any	given	slate	or	set	of	games.		
	 	

	

	

14	

	
References	

[1]	Haugh,	Martin	B.,	and	Raghav	Singal.	“How	to	Play	Strategically	in	Fantasy	Sports	(and	Win).”	
MIT	Sloan	Sports	Analytics	Conference,	2018,	www.sloansportsconference.com/wp-
content/uploads/2018/02/1001.pdf.	

[2]	Zachariason,	JJ.	“Introducing	Our	Brand	New	Daily	Fantasy	Football	Tools.”	numberFire,	6	Sept.	
2016,	www.numberfire.com/nfl/news/10348/introducing-our-brand-new-daily-fantasy-
football-tools.	

[3]	“Tools	–	Lineup	Optimizers	&	Projections.”	Daily	Fantasy	Sports	101,	2019,	
www.dailyfantasysports101.com/tools/.	

[4]	McKinney,	W.,	&	others.	(2010).	Data	structures	for	statistical	computing	in	python.	
In	Proceedings	of	the	9th	Python	in	Science	Conference	(Vol.	445,	pp.	51–56),	
https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.core.window.EWM.corr.html	

[5]	Reda,	Greg.	“Which	Site	Has	the	Best	Fantasy	Football	Projections?”	Datascope	Analytics,	18	Dec.	
2014,	datascopeanalytics.com/blog/which-site-has-the-best-fantasy-football-projections/.		

[6]	Braun,	Nathan.	“Fantasy	Math	--	Fantasy	Football	Start	Sit	Advice.”	Fantasy	Math	--	Fantasy	
Football	Start	Sit	Advice,	2017,	fantasymath.com/.	

[7]	O'Connor,	J	J,	and	E	F	Robertson.	“Andre-Louis	Cholesky.”	School	of	Mathematics	and	Statistics,	
University	of	St	Andrews,	Scotland	,	Aug.	2005,	mathshistory.st-
andrews.ac.uk/Biographies/Cholesky.html.	

[8]	Golub,	Gene	H.;	Van	Loan,	Charles	F.	(1996).	Matrix	Computations	(3rd	ed.).	Baltimore:	Johns	
Hopkins.	ISBN	978-0-8018-5414-9.	

[9]	Horn,	Roger	A.;	Johnson,	Charles	R.	(1985).	Matrix	Analysis.	Cambridge	University	Press.	ISBN	0-
521-38632-2.		

[10]	“About	Game	Sim.”	NFL	Game	Simulator,	2019,	www.nflgamesim.com/About.asp.	

[11]	“Learn	More.”	Sabersim,	2019,	www.sabersim.com/dfs/tools.	

[12]	Goldner,	Keith.	“A	Markov	Model	of	Football:	Using	Stochastic	Processes	to	Model	a	Football	
Drive.”	Journal	of	Quantitative	Analysis	in	Sports,	vol.	8,	no.	1,	2012,	doi:10.1515/1559-
0410.1400.	

[13]	Hermsmeyer,	Josh.	“Air	Yards	Sortable	Data.”	Air	Yards,	2018,	airyards.com/tables.html.	

	

	

15	

	
Appendix	A	

This	table	shows	the	highest	estimated	correlated	players	for	Week	14,	2019.	The	majority	of	the	
top	pairs	are	quarterbacks	and	receivers.	

Highest	Estimated	Correlated	Players	Week	14,	2019	
Rank	 Player	1	 Player	2	 Correlation	
1	 Russell	Wilson	 Tyler	Lockett	 64.33%	
2	 Josh	Allen	 John	Brown	 63.27%	
3	 Carson	Wentz	 Alshon	Jeffery	 62.41%	
4	 Ryan	Fitzpatrick	 Michael	Gesicki	 61.98%	
5	 Kyler	Murray	 Larry	Fitzgerald	 58.52%	
6	 Ryan	Fitzpatrick	 DeVante	Parker	 58.01%	
7	 Ryan	Tannehill	 A.J.	Brown	 55.05%	
8	 Mitchell	Trubisky	 Allen	Robinson	 55.01%	
9	 Lamar	Jackson	 Seth	Roberts	 53.23%	
10	 Mitchell	Trubisky	 Anthony	Miller	 52.63%	
11	 Aaron	Rodgers	 Davante	Adams	 52.51%	
12	 Eli	Manning	 Sterling	Shepard	 52.44%	
13	 Jared	Goff	 Cooper	Kupp	 52.40%	
14	 Russell	Wilson	 D.K.	Metcalf	 51.49%	
15	 Gardner	Minshew	 D.J.	Chark	 51.36%	
16	 Gardner	Minshew	 Josh	Lambo	 51.28%	
17	 Lamar	Jackson	 Justice	Hill	 51.14%	
18	 Lamar	Jackson	 Marquise	Brown	 50.94%	
19	 Baker	Mayfield	 Odell	Beckham	 50.66%	
20	 Carson	Wentz	 Jake	Elliott	 50.59%	
21	 Drew	Brees	 Michael	Thomas	 49.60%	
22	 Gardner	Minshew	 Chris	Conley	 48.90%	
23	 Jimmy	Garoppolo	 George	Kittle	 48.84%	
24	 Kirk	Cousins	 Kyle	Rudolph	 48.26%	
25	 Kyle	Allen	 D.J.	Moore	 47.24%	

	

