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1. Introduction	
	
In	2010,	the	SportVU	optical	player	and	ball	tracking	system	was	first	deployed	in	select	NBA	arenas	
by	teams	wanting	to	obtain	an	edge	in	player	and	team	analysis.	Due	to	the	value	of	the	tracking	data,	
the	 NBA	 then	 adopted	 SportVU	 league-wide	 prior	 to	 the	 2013-14	 season.	 Since	 then,	 nearly	 all	
analysis	 and	 decision-making	 for	 NBA	 teams	 has	 been	 data-driven,	 utilizing	 not	 only	 the	 raw	
positional	data,	but	tactical	insights	derived	from	the	markings	detected	automatically	by	machine	
learning	algorithms	(e.g.,	screens,	isolations,	drives,	etc.).		
	
However,	when	it	comes	to	analyzing	NCAA	players	for	an	upcoming	draft,	NBA	teams	are	severely	
limited	in	their	decision-making	ability	as	they	do	not	have	the	same	detailed	tracking	data	of	NCAA	
players.	In-venue	hardware	solutions	are	impractical	for	the	NCAA,	with	over	300	Division	I	schools	
alone	in	addition	to	the	numerous	exhibition/tournament	and	post-season	games	not	played	at	NCAA	
venues.		Additionally,	for	an	NBA	front	office	to	model	a	college	player’s	future	potential	output,	they	
will	 need	 historical	 tracking	 data	 of	 current	 NBA	 players	 to	 build	 a	 training	 set	 for	 modeling	 -	
something	that	in-venue	solutions	cannot	achieve.			
	
To	circumvent	 this	 issue,	we	have	utilized	state	of	 the-art	 computer	vision	 techniques	 to	capture	
player	and	ball	tracking	data	from	thousands	of	historical	NCAA	D-I	Men’s	basketball	games	directly	
from	 broadcast	 video	 (see	 Figure	 1).	 This	 volume	 of	 data	 equates	 to	 more	 than	 650,000	
possessions	 and	 over	 300	 million	 frames	 of	 broadcast	 video.	 	 From	 the	 tracking	 data,	 we	
automatically	 detect	 events	 such	 as	 ball-screens,	 drives,	 isolations,	 post-ups,	 off-ball	 screens	 and	
defensive	match-ups	using	our	actor-action	attention	neural	network	system	achieving	recall	and	
precision	rates	of	0.8	and	0.7	respectively.			
	
Even	 though	 the	 generation	 of	 tracking	 data	 from	 broadcast	 for	 college	 basketball	 is	 in	 itself	 a	
massive	breakthrough	in	the	field	of	basketball	analytics	–	it	is	not	enough.	To	showcase	the	value	of	
the	generated	data,	it	is	best	to	gauge	the	value	through	a	predictive	task.	In	this	paper,	we	focus	on	
the	task	of	predicting	the	talent	of	future	NBA	players.	We	do	this	by	predicting	the	probability	of	
a	player	making	the	NBA	directly	from	college	data.	We	show	using	tracking	data	enables	us	to	
obtain	more	accurate	forecasts	compared	to	current	data	sources	(tracking	log-loss:	0.30	vs	play-by-
play	log-loss:	0.40).	The	additional	benefit	of	our	approach	is	that	we	apply	“interpretable	machine	
learning“	techniques	(i.e.,	Shapley	values)	to	not	only	create	accurate	predictions	but	also	identify	the	
strengths	and	weaknesses	of	a	specific	player.			
	
The	rest	of	the	paper	is	as	follows:	in	Section	2	we	describe	the	steps	we	took	to	generate	tracking	
and	event	data	from	broadcast	video;	in	Section	3	highlight	the	contextual	features	such	as	defensive	
match-ups	and	coverage	types	as	well	as	creating	rich	features	to	describe	each	player;	and	then	in	
Section	4	we	describe	how	we	can	predict	NBA	talent	from	college	data.		



	

	 2	

	

	
	

Figure	1:	Example	of	broadcast	footage	frame	and	corresponding	player	identification	tracking	data.		

2. Creating	Tracking	Data	from	College	Broadcast	Video	
	
To	get	the	tracking	data	into	a	usable	form,	there	are	two	key	steps	that	are	required:	i)	Mapping	
pixels	to	dots	(e.g.,	Figure	1),	and	ii)	Transforming	the	dots	to	a	semantically	meaningful	event	layer	
which	can	be	used	to	describe	player	attributes	but	also	as	an	input	into	our	NBA	talent	prediction	
model.		
	
The	steps	involved	are:	

1. Ingest	broadcast	video	
2. Categorize	frames	into	trackable/non-trackable	clips	
3. Calibrate	moving	camera	(i.e.,	loc)	
4. Detect	players	using	skeleton	tracking	
5. Track	and	re-identify	players	over	time	
6. Ball	detection	and	tracking	
7. Optical	character	recognition	
8. Event	detection	
9. Merge	tracking	data	with	play-by-play	data	

	
These	steps	are	similar	to	those	described	in	[1].	However,	it	is	worth	emphasizing	the	key	difference	
between	an	in-venue	solution	like	SportVU	and	a	broadcast-based	tracking	solution	are	down	to	two	
key	breakthroughs:		a)	calibration	of	a	moving	camera	(step	3),	and	b)	body-pose	detection	(step	4)	
which	enables	player	re-identification	(step	5).	For	the	sake	of	brevity	and	to	retain	the	focus	on	the	
core	 contribution	 of	 the	 paper	 of	 predicting	NBA	 talent	 from	 college	 tracking	 data,	we	 point	 the	
reader	to	the	following	two	papers	which	describe	our	calibration	method	[2],	as	well	as	our	method	
used	to	estimate	body-pose	location	which	utilizes	the	Open-Pose	technology	[3].		
	
A	snapshot	of	the	generated	player	and	ball	positions	is	given	in	Figure	2a.		As	mentioned	previously,	
we	employ	this	data	capture	method	to	generate	tracking	data	across	over	650,000	college	basketball	
possessions,	which	is	over	300	million	broadcast	frames.	However,	generating	the	raw	tracking	data	
is	not	enough.	To	provide	both	descriptive	analysis,	as	well	as	a	useful	feature	representation	for	our	
prediction	task	we	next	have	to	map	the	tracking	data	to	a	semantic	layer	(i.e.,	events).	The	steps	
involved	of	transforming	the	tracking	data	to	the	semantic	layer	are	depicted	in	Figure	2b.			
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Figure	 2:	 (a)	 Single	 frame	 representation	 of	 the	 generated	 player	 and	 ball	 tracking	 data	 (blue	 is	
offensive	 team,	 red	 is	 defensive	 team	 and	 gray	 is	 the	 ball	 (b)	 From	 the	 tracking	 data,	 we	 then	
merge/align	to	the	play-by-play	(PBP)	feed	to	first	segment	data	into	possessions.	Once	segmented,	we	
then	conduct	the	following	three	steps:	(1)	We	use	the	PBP	data	to	refine	the	end	of	possession	event	
positions	(i.e.,	shot/rebound	location),	(2)	Detect	events	automatically	from	the	tracking	data,	and	(3)	
Enhance	the	events	with	defensive	contextual	information.		

Even	though	the	goal	of	computer	vision	technology	 is	 to	capture	all	data	directly	 from	the	video	
stream,	the	referee	is	the	ultimate	decision	maker	in	the	successful	outcome	of	an	event.	For	example,	
in	 basketball	whether	 a	 basket	was	 a	 2pt	 shot	 or	 3pt	 shot	 (or	 is	 valid	 –	 a	 travel	 did	 occur	 or	 a	
defensive/offensive	foul)	is	determined	by	the	referee.		As	such,	to	capture	these	data	points,	we	have	
to	rely	on	humans	to	manually	annotate	these	points	as	they	have	to	wait	for	the	referee’s	ultimate	
adjudication,	and	this	is	documented	via	the	play-by-play	(PBP)	feed.		
	
As	such,	a	necessary	step	to	automatically	detecting	events	is	to	first	merge/align	the	play-by-play	
with	the	raw	tracking	stream	which	also	contains	the	game	and	shot	clock.	To	do	this,	we	use	a	fuzzy	
matching	 algorithm	which	 combines	 PBP,	OCR	 and	player/ball	 positions	 to	 get	 the	 aligned	data-
source.			Once	segmented,	we	then	conduct	the	following	three	steps	(see	Figure	2(b)):	(1)	We	use	
the	 PBP	 data	 to	 refine	 the	 positions	 and	 precise	 frame	 of	 the	 end	 of	 possession	 events	 (i.e.,	
shot/rebound	location),	(2)	Detect	events	automatically	from	the	tracking	data,	and	(3)	Enhance	the	
events	with	defensive	contextual	information.		
	
For	the	automatic	event	detection,	we	first	use	an	actor-action	attention	neural	network	system	to	
detect/refine	the	basic	events	(i.e.,	shots,	rebounds,	passes,	dribbles	and	possessions)	in	a	sequential	
manner.	We	then	build	a	host	of	specialist	event	detectors	for	the	higher-level	events	such	as	postups,	
drives,	isolations,	ball-screens,	handoffs	and	off-ball-screens,	achieving	recall	and	precision	rates	of	
0.8	and	0.7	respectively,	using	a	neural	network	approach.	Again,	for	the	sake	of	brevity	and	to	retain	
focus	on	the	key	contribution	on	the	predictive	value	of	the	college	tracking	data,	we	will	have	a	full	
paper	describing	our	event	detection	process	in	a	subsequent	paper.	An	example	of	the	player	and	
ball	tracking	data,	with	the	event	detection	output	is	shown	in	Figure	3.		
	
In	the	next	section	we	will	describe	how	we	both	create	contextual	information	around	these	events,	
as	the	feature	representation	creation	process	for	our	NBA	talent	prediction	task.					
	
	
	

Possession Outcome:

(1) Event Refinement from PBP:

Foul

Turnover

Steal Error

Missed Shot
Shot (FT, 2PT, 3PT)

Def RebOff Reb Blocked

Made Shot

How? (Events)

Pass Dribble Possession

Postup Drives Isolation

Ball-Screen Handoff

Off-Ball Screen

(3) Event Context:
• Defensive matchups, 

defensive types, screen types 

(2) Event Detection:

(a) (b)
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Figure	3:	 (Left)	Single	 frame	representation	of	 the	generated	player	and	ball	 tracking	data	(blue	 is	
offensive	team,	red	is	defensive	team	and	gray	is	the	ball)	(Right)	Associated	event	detection	timeline	
for	the	frame	from	(a).		

3. Feature	Representation	and	Enrichment	
	
Mapping	 tracking	 data	 to	 events	 as	 highlighted	 in	 the	 previous	 section,	 enables	 a	 player	
representation	 to	 be	 captured,	 however	 it	 still	 does	 not	 contain	 all	 the	 necessary	 contextual	
information	to	build	out	the	best	possible	player	representation	(especially	for	the	task	of	predicting	
NBA	talent).	To	do	this,	we	need	to	add	in	more	contextual	information	such	as	defensive	matchup	
information	(i.e.,	who	is	guarding	who	at	each	frame),	as	well	as	other	defensive	information	such	as	
coverages	for	ball-screens.		
	
To	measure	defense,	we	utilized	a	measure	which	we	call	our	“influence	score”	which	captures	the	
influence	a	defender	has	on	each	offensive	player	on	a	scale	of	0-100.	The	value	for	the	score	was	
based	on	 common	basketball	 defensive	principles	 such	 as	proximity	 to	player,	 distance	 from	 the	
basket,	passing	lanes,	and	lanes	to	the	basket.	To	assign	such	
a	 score	 at	 every	 frame,	 we	 utilized	 a	 supervised	 learning	
approach,	 where	 we	 had	 basketball	 experts	 initially	 label	
each	 defensive	 match-up	 in	 a	 frame	 across	 thousands	 of	
frames.	These	examples	formed	our	initial	classifier	(which	
took	the	form	of	a	multi-layer	perceptron	(MLP))	which	we	
ran	across	a	multitude	of	historical	games.		
	
As	our	system	collected	more	tracking	data,	we	then	ran	our	
initial	influence	score	classifier	across	more	games	to	tweak	
the	parameters	of	the	classifier	until	we	were	happy	with	the	
output.	 The	 model	 produces	 influence	 scores	 for	 all	 25	
offensive/defensive	 matchups	 at	 every	 frame.	The	 results	
are	used	 to	determine	defensive	matchups,	ball	 screen/off	
ball	 screen	 player	 roles,	 ball	 screen/off	 ball	 screen	
coverages,	contested	shots,	and	other	features.	An	example	
frame	of	broadcast	footage	converted	to	tracking	data	with	
matchups	 derived	 from	 the	 influence	 scores	 is	 shown	 in	
Figure	4.	

Figure	4:	Example	showing	the	defensive	
matchup	using	our	influence	score.		
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In	addition	to	assigning	frame-level	defensive	matchups	using	our	influence	score	approach,	using	
the	influence	score	we	were	also	able	to	assign	defender	roles	for	the	ball-handler	and	screener	for	
on-ball	screens	and	the	cutter	and	screener	for	off-ball	screens.	Examples	are	shown	in	Figure	5	and	
6	respectively.		
	

	
Figure	 5:	 Shows	 the	 various	 stages	 of	 a	 ball-screen,	 and	 the	 ball-handler,	 screener,	 ball-handler	
defender	and	screener	defender	role	assignments.	Grey:	ball/ball	handler,	red:	offense,	blue:	defense,	
green	border:	ball	handler/ball	handler	defender,	black	border:	screener/screener	defender.	Game	is	
Florida	State	at	Virginia	Tech,	January	20th,	2018.	

	

Figure	6:	Shows	the	various	stages	of	an	off-ball-screen,	and	the	cutter,	screener,	cutter	defender	and	
screener	defender	role	assignments.	Grey:	ball,	red:	offense,	blue:	defense,	green	border:	cutter/cutter	
defender,	black	border:	screener/screener	defender.	Game	is	Kansas	at	TCU,	January	6th,	2018.	

One	of	the	profound	challenges	of	modeling	using	potentially	only	20-30	games	of	NCAA	data	per	
player	 is	 the	 high	 variance	 of	 low	 frequency	 events	 seen	 in	 tracking	 data.	 For	 example,	 a	 highly	
talented	one	and	done	player	might	only	attempt	50	isolation	shots	in	a	career;	this	is	not	enough	
samples	 to	 get	 a	 robust	mean	value	 for	 their	 isolation	 shooting	 efficiency.	 Therefore,	 in	 order	 to	
improve	model	performance,	we	 create	new	player	 representations	by	using	mean-regression	 to	
reduce	random	noise	 in	the	 features.	Our	main	mode	of	doing	this	 is	by	using	what	 is	sometimes	
known	as	the	“padding”	method	(Eq.	1),	or	a	simplified	version	of	a	beta	prior.	The	method	uses	a	

(a) 
Start of Ball Screen

(b) 
When Ball-Handler/Screener are closest

(c) 
End of Screen

(d) 
End of Ball-Handler Touch

(a) 
Start of Off-Ball Screen

(b) 
When Cutter/Screener are closest

(c) 
End of Off-Ball Screen

(d) 
1.5 secs after Off-Ball Screen
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weighted	average	between	the	observed	values	and	sample	mean.	We	solve	for	the	optimal	weighting	
constant	C	which	best	predicts	the	next	game	of	a	player’s	career.	Since	we	can	apply	this	to	any	game-
level	statistics,	every	 feature	 in	both	box-score	and	AutoStats	data	was	padded,	excluding	certain	
player	level	statistics	such	as	height,	weight,	and	minutes/possessions	played.		
	
Eq	1.	Padding	Equations	Example	for	3P%	
	

3𝑃%!"#$ =	 (3𝑃%%#&%'( ∗ 𝑊) + 3𝑃%)#&*+#	&-* ∗ 	 (1 −𝑊)	
	

𝑊 =	3𝑃𝐴%#&%'(/(3𝑃𝐴%#&%'( + 𝐶)	
	
	

Using	an	NCAA	career	weighting	system	developed	by	Kevin	Pelton,	we	then	weight	each	season	of	a	
player’s	career	and	combine	into	one	representation	of	a	player	[4].	Therefore,	we	have	two	datasets	
at	this	point,	a	raw	dataset	and	a	padded	dataset,	both	weighted	on	a	player	career	level	in	the	same	
manner.		
	
4. Using	Tracking	Data	
	
4.1. Will	You	Make	the	NBA?	

	
One	of	the	challenges	associated	with	draft	modeling	is	the	determination	of	the	population	of	‘NBA	
possible’	players	within	a	given	year.	Training	a	model	using	hundreds	of	games	of	low	DI	or	DIII	
information	is	not	likely	to	provide	useful	modeling	results	when	in	reality	the	players	covered	by	
those	games	have	nearly	impossible	odds	to	make	the	NBA.	Therefore,	our	first	modeling	exercise	
was	 to	 predict	 the	 chance	 that	 player	 would	make	 the	 NBA,	 defined	 as	 a)	 getting	 drafted	 or	 b)	
receiving	 any	 NBA	minutes	 in	 the	 first	 three	 years	 of	 their	 career.	 However,	 we	 also	wanted	 to	
demonstrate	the	value	of	AutoStats	data	compared	to	traditional	sources,	and	built	both	an	AutoStats	
and	a	box	score	only	model	to	compare	against	each	other.		
	

4.1.1. Feature	Space	
	
One	of	the	key	discoveries	of	this	model	was	that	instead	of	using	simply	the	padded	data,	we	should	
create	 models	 using	 the	 raw	 data	 and	 the	 padded	 data	 and	 then	 ensemble	 the	 results	 (these	
ensembles	outperformed	the	separate	constituents	across	the	board).	For	both	datasets,	the	same	
process	 was	 used	 to	 prepare	 the	 data	 for	 modeling.	With	 the	 high	 dimensionality	 and	 relative	
similarity	between	many	of	 the	 features,	we	 iteratively	halved	pairs	 of	 features	 that	were	highly	
collinear,	starting	with	the	most	highly	correlated.	Whichever	of	each	pair	was	more	correlated	with	
remaining	features	was	removed,	until	no	two	features	had	an	R2	of	0.95	or	higher.	
	
Given	that	the	colinear	features	for	the	raw	and	padded	datasets	were	different,	Table	1	shows	the	
number	of	features	and	size	of	the	training	and	test	sets	for	the	two	models.	The	data	was	split	using	
a	random	80%	for	training	and	20%	for	testing.	
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Table	1:	Feature	space	and	training	split	size	for	raw	and	padded	dataset	’make	NBA’	models	

Data	Type	 Total	
Features	

Retained	
Features	 Training	Size	 Testing	Size	

Raw	 104	 101	 2,183	 485	
Padded	 109	 50	 2,183	 485	

	
	

4.1.2. Model	Architecture	
4.1.2.1. Raw	and	Padded	

	
Both	 the	 raw	 and	 padded	 models	 used	 a	 LightGBM	 classifier,	 an	 open	 source	 gradient	 boosted	
decision	tree	developed	by	Microsoft	[5].		The	model’s	hyperparameters	were	tuned	using	five-fold	
cross	validation	on	a	random	search	across	a	parameter	grid	[6,	7].	By	using	a	classifier,	each	model’s	
predictions	are	a	probability	of	the	player	making	the	NBA	per	our	previous	definition.	The	box	score	
only	models	were	also	built	with	 this	 architecture,	 although	with	a	 substantially	 reduced	 feature	
space	due	to	the	limited	amount	of	information	present	in	box	score	data.		
	

4.1.2.2. Ensemble	
	
The	 ensembling	 of	 both	 the	 raw	 and	 padded	 models	 works	 to	 include	 predictive	 information	
contained	separately	in	both	datasets.	The	feature	space	for	the	ensemble,	a	random	forest	classifier,	
was	the	raw	prediction,	the	padded	prediction,	and	chances	per	game,	an	AutoStats	derived	feature	
that	is	analogous	to	possessions	per	game.	Again,	as	a	classifier,	the	results	from	the	ensemble	were	
a	probability	of	making	the	NBA.		
	

4.1.3. Results	
	
Due	to	the	imbalanced	nature	of	the	dataset	(few	players	make	the	NBA	in	total),	logloss	was	used	as	
the	metric	 of	 choice	 as	 opposed	 to	 a	more	 basic	 strict	 accuracy.	 The	 AutoStats	model	 averaged	
approximately	10-20%	less	error	than	the	box	score	model	depending	on	the	test	split,	roughly	0.30	
and	0.40	respectively.	However,	while	the	model	must	be	accurate	to	be	useful,	the	pure	predictions	
from	the	ensemble	were	not	the	only	product	of	the	model.	
	

4.1.3.1. Shapley	Values	
	
In	order	to	properly	understand	why	the	raw	and	padded	models	made	their	predictions,	we	used	
Shapley	Values,	a	game	theory	approach	 to	 interpret	 results	of	machine	 learning	models	 [8].	The	
Shapley	 values	 provide	 on	 a	 per-prediction	 basis	 the	 direction	 and	magnitude	 of	 each	 feature’s	
contribution	 to	 the	 overall	 prediction.	 By	 combining	 the	 Shapley	 values	 for	 each	 of	 the	 raw	 and	
padded	models	we	can	use	the	result	to	understand	the	interplay	between	the	two	types	of	data,	and	
the	 differing	 information	 they	 provide.	 For	 example,	 the	 combination	 Shapley	 plot	 for	 James	
Wiseman	is	presented	in	Figure	7.		Only	the	ten	largest	magnitude	features	for	each	model	are	shown.	
Wiseman	is	a	particularly	interesting	case	because	he	only	played	a	total	of	three	games	(69	minutes)	
in	 his	 college	 career.	 Looking	 at	 the	 raw	 data	 model	 (orange),	 features	 such	 as	 PTS/Poss,	 and	
BLK/Poss	show	very	strongly	as	positive	indicators	of	making	the	NBA,	but	without	their	regressed	
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versions	 (green)	 which	 would	 show	 up	 as	 a	 stacked	 bar.	 Unsurprisingly,	 the	 padded	 data	 has	
regressed	a	three-game	sample	very	heavily	and	reduced	the	‘quality’	of	his	raw	scoring	and	block	
output.		Non-regressed	features	such	as	Rim	Gravity,	and	Midrange	Gravity	(both	metrics	of	spatially	
weighted	offensive	efficiency	and	usage)	show	strongly	positive	in	both	the	raw	and	padded	datasets.	
He	is	also	a	good	example	of	not	blindly	adhering	to	model	output.	The	model	does	not	“know”	why	
he	only	played	three	games,	but	when	the	padded	and	strongly	regressed	data	are	ensembled,	the	
prediction	is	a	lower	probability	of	making	the	NBA	compared	to	what	would	be	expected	based	on	
known	contextual	information	about	his	career.	
	

	
Figure	7:	Combination	Shapley	values	for	James	Wiseman	using	raw	data	and	padded	data	showing	
only	a	selection	of	large	magnitude	features		

	
These	charts	cannot	be	use	in	a	manner	analogous	to	a	linear	regression.	“If	he	increased	______	then	
he	would	have	a	higher	percentage	of	making	the	NBA”	is	not	a	valid	use	case	for	the	Shapley	values,	
and	in	general	we	propose	using	these	charts	as	a	high-level	overview,	not	a	standalone	analytical	
product.	Additionally,	these	can	also	be	rolled	up	into	a	chart	that	groups	features	into	categories,	
allowing	for	an	easier	visual	inspection	as	seen	in	Figure	8	for	Anthony	Edwards.	It	is	important	to	
note	again	that	these	are	not	outputs	(except	the	make	NBA	probability)	from	the	final	ensemble,	but	
are	the	two	primary	sub-models	of	the	ensemble.		
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Figure	8:		Combination	Shapley	values	for	Anthony	Edwards	using	raw	data	and	padded	data	with	
features	rolled	up	into	pre-defined	categories	
While	these	graphics	are	not	a	particularly	detailed	tool	for	quantitative	investigation,	they	can	be	
used	to	understand	how	the	models	 function	as	well	as	assist	with	model	 interpretation	 for	non-
technical	stakeholders.	With	a	reasonable	estimate	for	a	player’s	probability	to	make	the	NBA,	we	
can	now	use	the	probabilities	to	trim	the	dataset	to	plausible	NBA	players	and	begin	the	actual	draft	
modeling.	
	

4.2. What	Kind	of	Draft	Pick	Are	You?	
	
In	lieu	of	immediately	building	a	model	that	attempts	to	directly	predict	NBA	RAPM	or	NBA	SPM	from	
college	data,	we	elected	to	build	an	intermediary	model	that	characterizes	a	player’s	talent	profile	in	
comparison	to	previous	draft	picks	by	attempting	to	predict	a	player’s	actual	draft	pick	from	1-61	(61	
being	undrafted).	One	of	the	primary	challenges	with	a	direct	quality	model	is	properly	accounting	
for	the	context	of	the	drafted	player’s	NBA	situation.	Therefore,	our	talent	profile	model	explicitly	
does	not	take	NBA	context	into	account	and	serves	as	an	NCAA	scouting	model	for	talent	evaluation.	
	

4.2.1. Feature	Space	
	
The	predicted	probabilities	to	make	the	NBA	from	the	prior	model	were	used	to	trim	the	number	of	
players	used	in	the	models	from	all	players	(n	=	2,911)	to	any	player	with	greater	than	40%	chance	
to	make	the	NBA	(n	=	393).	The	inclusion	threshold	was	chosen	somewhat	casually	based	on	a	review	
of	the	prediction	results	and	could	be	tuned	more	rigorously	in	future	implementations.	Similar	to	
the	make	NBA	model,	 a	 variety	 of	model	 outputs	will	 be	 ensembled	 together	 to	 create	 the	 final	
predictions.		
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4.2.2. Target	

	
When	predicting	the	draft	pick	for	a	given	player,	there	is	an	inherent	non-linearity	in	draft	pick	value	
that	must	be	accounted	for.	Figure	9	shows	an	approximate	curve	of	value	over	replacement	(VORP)	
for	picks	1-60	that	highlights	the	enormous	difference	between	value	for	#1	vs.	#5	whereas	#40	vs.	
#45	has	minimal	difference,	despite	both	ranges	being	five	picks.		
	

	
	
Figure	9:	(a)	Smoothed	VORP	by	draft	pick	with	pick	61	corresponding	to	undrafted	(b)	
corresponding	Jenks	natural	breaks	classifier	bins	and	pick	ranges	

Therefore,	to	ensure	that	the	VORP	curve	is	modeled	correctly,	we	binned	the	VORP	values	using	a	
Jenks	 natural	 breaks	 classifier	with	 nine	 bins.	 The	 bins	 can	 now	 be	 used	 as	model	 classification	
targets	that	take	into	account	the	value	variation	across	classes.		
	

4.2.3. Model	Architecture	
	
The	talent	bin	ensemble	model	was	composed	of	results	from	six	constituent	models,	three	based	on	
the	make	NBA	model,	and	three	new	models	specifically	 for	 this	application.	The	six	constituents	
were	then	ensembled	using	a	LightGBM	classifier	with	the	bins	from	Figure	3b	as	the	target.		
	

4.2.3.1. Existing	Components	
	
The	raw	dataset	make	NBA	prediction,	padded	make	NBA	prediction,	and	the	ensembled	make	NBA	
prediction	in	probability	form	were	used	as	three	of	the	six	constituents	for	the	ensembled	talent	bin	
model.	
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4.2.3.2. New	Components	
	
The	 new	 components	 for	 the	 talent	 bin	 ensemble	model	 reused	 the	 framework	where	 both	 the	
decorrelated	raw	and	decorrelated	padded	data	will	be	used	in	separate	models	and	then	ensembled	
to	create	three	sets	of	predictions	that	will	be	carried	forwards.	Each	of	the	raw	and	padded	models	
were	random	forest	regressors	using	the	VORP	pick	value	at	each	draft	pick	as	target.	The	predictions	
from	 these	were	 then	 ensembled	with	 additional	 information	 from	 the	make	NBA	models	 using	
NGBoost	to	create	regression	predictions	with	independently	modeled	means	and	variances	(Duan	
et	 al.	 2019).	 Lastly,	 the	 outputs	 from	 all	 existing	 and	 new	 components	were	 ensembled	 using	 a	
random	forest	multiclass	classifier	(bins	1-9).		
	

4.2.4. Results	
	
An	example	of	the	graphical	output	for	Aaron	Nesmith	(created	pre-draft)	is	provided	in	Figure	10.	
The	model	gave	him	an	approximately	62%	chance	of	having	the	statistical	profile	of	a	player	picked	
in	the	18-26	range	historically.	As	this	does	not	include	any	NBA	or	pre-draft	rankings,	it	is	explicitly	
not	predicting	where	a	player	will	be	taken,	only	what	range	of	player	they	are	like.		
	

	
Figure	10:	Talent	bin	predictions	for	Aaron	Nesmith	

The	model	captures	a	fair	amount	of	uncertainty	in	some	players	like	Shabazz	Muhammad	(Figure	
11)	and	is	extremely	confident	in	others	such	as	Jayson	Tatum	(Figure	12).	And	while	this	model	does	
not	actually	attempt	to	answer	the	“how	good	will	Player	X	be”	question,	there	is	some	semblance	of	
a	quality	gradient	under	the	assumption	that	early	picks	are	usually	better	NBA	players	than	later	
picks.	
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Figure	11:	Talent	bin	predictions	for	Shabazz	Muhammad	

	
Figure	12:	Talent	bin	predictions	for	Jayson	Tatum	
	
We	believe	that	one	of	the	primary	use	cases	for	this	model	is	draft	decision	making.	If	a	team	knows	
the	players	they	want,	they	can	trade	up	or	down	to	enter	a	pick	range	that	player	is	representative	
of,	or	they	can	perform	additional	scouting	and	due	diligence	if	the	player	they	target	with	their	first-
round	pick	profiles	far	below	expectations.		
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5. Conclusion	
	
The	process	of	creating	NCAA	to	NBA	projections	from	AutoStats	data	is	predominantly	broken	into	
three	parts.	The	first	is	the	acquisition	of	the	raw	tracking	data	based	on	coordinates	of	players	and	
the	ball	 as	well	 as	 timestamps	 for	 all	 frames.	The	 second	 is	 the	 enrichment	of	 the	data	 to	 create	
features	 that	 are	meaningful	 for	 analysis	 such	 as	 number	 of	 transition	 chances,	 influence	 scores,	
points	per	post	up,	etc.	These	intermediate	features	(based	on	raw	coordinates)	are	limited	in	scope	
only	by	the	use	case	for	the	data.	There	are	certainly	potentially	useful	metrics	that	have	not	yet	been	
created,	and	there	are	many	currently	under	development.	The	third	step	is	the	actual	modeling	itself.	
We	provided	two	example	models	that	were	developed	and	found	to	have	a	high	degree	of	utility	for	
characterizing	a	player	into	the	NBA	Draft.	Models	that	are	currently	in	progress	include	projecting	
individual	 component	 skills	 (TS%,	 Contested	Rebound	Rate,	 Block	%,	 etc.)	 based	 on	padded	 and	
filtered	NBA	skill	targets,	identification	of	NCAA	player	roles	and	corresponding	prediction	into	NBA	
player	roles,	and	many	others.	The	universe	of	possible	predictive	tasks	with	this	data	is	essentially	
limited	by	creativity	and	technical	ability.		
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