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Decoding	MLB	Pitch	Sequencing	Strategies	
via	Directed	Graph	Embeddings	

	

	
	

	Abstract	
This	paper	presents	a	novel	analysis	of	pitch	sequencing	in	Major	League	Baseball	(MLB).	By	
leveraging	high-resolution	pitch	tracking	data	from	~3.6	million	pitches	across	the	2015-2019	
seasons,	this	work	introduces	directed	graph	(network)	embeddings	that	successfully	map	short-	
and	long-term	patterns	in	pitch	sequences.	This	quantitative	approach	to	pitch	sequencing	captures	
the	intuition	that	pitchers	exhibit	a	sense	of	long-term	memory	when	on	the	mound	that	is	not	
adequately	represented	by	individual	pitch	selection	or	simple	pitch-to-pitch	correlation.	By	
interpreting	the	graph	embeddings	as	forward	dependencies,	there	is	compelling	evidence	that	
pitchers	construct	their	sequences	via	strategic	components,	denoted	“setup”	and	“knockout”	
pitches.	Model-based	clustering	on	the	graph	embeddings	suggest	that	MLB	pitch	sequences	can	be	
grouped	into	a	finite	collection	of	universal	patterns	with	respect	to	both	pitch-type	and	zone	
selection.	Exploratory	data	analysis	of	these	sequence	clusters	indicate	that	a	pitcher’s	sequencing	
strategies	are	distinct—though	not	inseparable—from	their	available	pitch	arsenal;	that	is,	in	
addition	to	pitch	selection,	pitch	ordering	is	a	significant	component	of	pitcher	decision-making.	
Moreover,	pitchers	exhibit	patterns	or	styles	in	how	they	sequence	their	pitches	over	the	course	of	
a	single	matchup,	game,	season,	and	career.	Ultimately,	this	paper	introduces	an	analytical	
framework	to	study	and	visualize	MLB	pitch	sequences	with	potential	applications	in	matchup	
preparation,	player	evaluation,	and	player	development.	
	
1. Introduction	
Each	moment	in	a	baseball	game	is	an	extension	of	the	battle	between	pitcher	and	batter.	This	
conflict	perhaps	most	closely	resembles	that	of	a	high-performance	mixed	martial	arts	fight,	where	
there	is	immense	pressure—and	corresponding	incentive—for	pitchers	to	optimize	their	approach	
against	each	batter	they	face.	In	this	matchup,	a	pitcher’s	arsenal	can	be	imagined	as	a	set	of	
techniques	that	each	pitcher	has	at	their	disposal	to	defeat	their	opponent.	However,	a	pitcher’s	
pitch	arsenal	alone	(i.e.,	the	moves	they	have	available)	is	an	incomplete	representation	of	a	
pitcher’s	aggregate	style.	By	treating	both	the	selection	and	ordering	of	baseball	pitches,	pitch	
sequencing	is	much	more	informative	of	pitcher	decision-making	by	taking	into	account	how	
pitchers	learn,	build	upon,	and	order	their	pitches.	

A	major	analytics	challenge	in	sabermetrics	is	capturing	differences	between	pitchers	with	respect	
to	not	only	their	performance	on	the	field	but	also	the	styles	they	exhibit	and	the	strategies	they	
deploy.	Although	each	at-bat	between	a	pitcher	and	batter	is	ultimately	either	won	or	lost	using	an	
approximately	unique	collection	of	pitches,	patterns	may	emerge	wherein	sets	of	pitch	sequences	
recur	across	various	in-game	settings.	If	pitchers	share	pitch	arsenals	or	face	similar	batter-
matchup	situations,	it	is	also	expected	that	sets	of	pitch	sequences	manifest	across	many	
individuals	and	across	seasons.	Conversely,	pitchers	can	also	distinguish	themselves	from	others	in	
their	role	that	share	their	pitch	arsenal	through	differences	in	their	pitch	sequencing.	This	is	
advantageous	to	the	pitcher	since	it	separates	them	from	their	peers	and	is	critical	for	teams	to	
diversify	talent	in	their	roster.	
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However,	preexisting	analytical	research	in	pitch	sequencing	currently	limit	sequence	analysis	to	
pitch	pairs	via	pitch-to-pitch	correlation;	that	is,	a	pitch	sequence	is	defined	exclusively	in	terms	of	
consecutive	pitches	[3].	This	memoryless	approach	is	likely	not	reflective	of	how	pitchers	pursue	
decision-making	since	it	constrains	pitchers	to	very	short-term	learning.	These	early	methods	gloss	
over	some	of	the	crucial	qualities	that	make	pitch	sequencing	as	captivating	as	it	is	and	generally	
fail	to	provide	insights	as	to	the	strategic	motivations	behind	pitch	sequence	selection.	

This	paper	introduces	a	graph-based	solution	to	capture	the	complexity	of	patterns	that	are	latent	
in	pitch	sequences.	Unlike	prior	statistical	approaches	that	focus	primarily	on	pitch-level	
predictability	or	pitch	pairings,	this	method	successfully	embeds	short-	and	long-term	patterns	in	
pitch	sequences	in	a	finite-dimensional	feature	space.	Each	graph	embedding,	given	its	
interpretation	as	a	forward	dependency	between	two	pitches,	also	preserves	the	directed	(i.e.,	
ordered)	nature	of	baseball	pitch	sequences.	From	this	property	of	the	embeddings,	this	paper	
presents	a	suite	of	tools	that	can	be	valuable	in	a	strategic	setting	within	a	team	front-office	or	
player	development	unit.	In	order	to	more	closely	analyze	how	pitchers	construct	their	sequences,	
the	analysis	in	this	paper	separately	considers	pitch	sequences	based	on	pitch-type	constitution	
and	zones.	Through	model-based	clustering,	this	paper	identifies	a	collection	of	pitch	sequencing	
strategies	that	are	common	throughout	the	MLB	and	vary	in	their	constitution,	ordering,	and	
entropy.	Comparative	analysis	between	sequence	clusters	provide	insight	into	core	structural	
elements	of	pitch	sequencing	strategy.	In	particular,	this	work	finds	evidence	for	“setup”	and	
“knockout”	pitches	by	drawing	from	the	concept	of	sinks	in	graph	theory.	With	respect	to	how	
players	select	pitch	sequences,	it	is	clear	from	these	clusters	that	pitchers	who	share	pitch	arsenals	
can	also	differ	drastically	in	how	they	order	those	pitches	in	game	situations.	Applications	of	this	
work	to	baseball	operations,	analytics,	and	scouting	are	suggested	and	explored	throughout	the	
paper.	

2. Methodology	
The	following	sections	will	describe	the	data	and	statistical	methodology	that	underlies	the	
findings.	Section	2.1	provides	an	overview	of	the	paper’s	primary	dataset(s)	and	discusses	the	
model-specific	implications	of	data	quality.	Section	2.2.1	introduces	Sequence	Graph	Transform	
(SGT),	the	graph	embedding	algorithm	that	encodes	each	pitch	sequence	into	a	feature	space.	
Furthermore,	Section	2.2.2	details	the	specific	mathematical	properties	of	SGT	that	make	it	
attractive	for	practical	application	to	this	problem.	Finally,	Section	2.3	specifies	the	clustering	
technique	that	is	applied	to	determine	optimal	groupings	of	pitch	sequences	without	relying	on	pre-
existing	labels	or	assumptions.		

2.1 Data	
It	is	no	secret	that	baseball	has	experienced	a	technological	revolution,	largely	thanks	to	an	
explosion	of	reliable	high-resolution	data.	All	in-game	data—including	all	measurements	on	pitches,	
id	tracking,	and	catcher	data	that	are	included	in	this	paper—are	publicly	available	through	the	
MLB	Statcast	API	[2].	The	pitching	data	includes	3,595,944	pitches	from	the	2015-2019	MLB	
seasons	that	are	provided	alongside	40	features	that	describe	pitch-level	characteristics	and	
information	that	contextualizes	when	each	pitch	was	thrown.	In	aggregate,	1523	distinct	pitchers	
and	1894	distinct	batters	are	represented	in	the	data.	This	dataset—or	a	shortened	form	of	it—has	
been	used	extensively	in	recently	published	baseball	analytics	research	[4].	
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Since	this	paper	is	primarily	concerned	with	sequential	data,	it	is	necessary	to	rely	on	discrete	
pitch-classification	labels.	The	unique	pitch-type	and	zone	labels	in	the	MLB	dataset	serve	as	the	
alphabet	that	the	embedding	algorithm	will	learn	from.	The	accuracy	and	precision	of	the	pitch-
classification	labels	in	this	dataset	is	thus	critical	to	the	success	of	this	research.	This	methodology	
assumes	homogeneity	within	pitch-types	with	respect	to	pitch-level	characteristics,	though	it	is	
clear	in	Figure	1	that	this	assumption	has	shortcomings.	It	is	important	to	note	that	pitch	
classification	itself	is	a	non-trivial	problem.	Currently,	in-house	MLB	models	perform	real-time	
pitch-classification	for	nearly	750,000	pitches	each	season	using	patented	neural	networks	[2].	
Irrespective	of	the	pitch-classification	labels	that	are	utilized	in	this	analysis,	independent	
researchers	can	easily	adapt	this	work	using	their	own	pitch	classification	systems	or	datasets.	
	

Figure	1:	Pitch	Characteristic	Pairplot	

	
Several	adjustments	to	the	dataset	are	made	to	improve	the	quality	of	modeling.	At-bats	with	
incomplete	measurement/label	data	are	discarded	from	the	dataset	to	minimize	the	inadvertent	
effects	of	noise	or	calibration	issues.	Several	features	are	also	added	to	the	raw	dataset.	To	avoid	
look-ahead	bias	in	predictive	modeling,	rolling	statistics	are	used	to	report	pitcher	and	batter	
performances	and	track	changes	in	player	outcomes	overtime	[4].	Additionally,	to	compare	the	
sequencing	tendencies	of	pitchers	in	various	roles	and	contexts,	“starter”	designations	for	each	
pitcher	are	inferred	from	the	information	available	in	the	first	at-bat	in	top	of	the	first	inning	and	
the	first	at-bat	in	the	bottom	of	the	first	inning	[4].		
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2.2.1	Sequence	Graph	Transform	–	Overview	and	Intuition		
This	paper	applies	a	graph-based	feature	extraction	method	to	encode	for	patterns	in	MLB	pitch	
sequences.	This	method—Sequence	Graph	Transform—achieves	the	goal	of	representing	the	
complexity	of	pitch	sequencing	in	terms	of	both	pitch	constitution	and	ordering.			

A	sequence	can	be	defined	as	a	set	of	discrete	items	that	are	structured	in	an	ordered	series	[5].	
Sequences	are	one	of	the	most	common	data	types	in	natural,	physical,	and	computational	settings.	
For	example,	sequencing	mining	techniques	have	found	value	bioinformatics	and	computational	
genomics.	Pitch	sequences	naturally	follow	this	sequential	structure;	both	the	order	and	
constitution	of	a	pitch	sequencing	are	important	in	disrupting	a	batter’s	calibration	to	the	pitcher’s	
strategies.	However,	since	pitch	sequences	represent	unstructured	data—	defined	by	arbitrarily	
placed	alphabets	of	an	arbitrary	length—their	mapping	into	a	Euclidean	space	is	non-trivial.	
Moreover,	since	pitch	sequences	generally	extend	beyond	two-pitches,	this	analysis	requires	a	
feature	extraction	method	that	specifies	long-term	dependencies	(i.e.,	the	effect	of	distant	elements	
in	a	sequence	on	each	other)	in	addition	to	short-term	dependencies	(i.e.,	the	effect	of	elements	in	a	
sequence	that	occur	in	short	succession	of	each	other).		

This	paper	utilizes	Sequence	Graph	Transform	(SGT),	an	embedding	function	that	extracts	patterns	
in	sequences	and	maps	them	into	a	finite-dimensional	Euclidean	space.	There	are	multiple	
advantages	that	are	implied	in	the	function	and	make	SGT	particularly	attractive	to	the	problem	of	
pitch	sequencing.	SGT	operates	by	quantifying	the	observable	patterns	in	a	sequence	by	scanning	
the	positions	of	each	item	relative	to	other	items.	The	outputted	embeddings	can	be	interpreted	as	
a	directed	graph,	where	each	alphabet	(e.g.,	pitch-type)	becomes	a	node	and	a	directed	connection	
between	two	nodes	explains	their	association.	In	order	to	maximize	the	utility	of	sequencing	mining	
in	baseball	pitch	sequence	analysis,	it	is	important	to	have	a	sequence-level	measure	of	
(dis)similarity	between	various	sequences.	Similarity	is	given	explicitly	by	the	dot-product	between	
two	separate	embeddings	where	higher	results	indicate	higher	similarity.	Additionally,	SGT	
provides	a	solution	to	extract	length-insensitive	patterns	in	pitches.	As	a	feature	embedding	tool,	
SGT	is	particularly	valuable	because	it	provides	a	machine-interpretable	representation	of		a	
complex	data-type.	The	graph	interpretation	of	each	embedding	allows	for	pitch-types	to	form	
nodes	and	the	directed	connection	between	nodes	as	a	signal	of	the	strength	of	their	association.	
Graph	embeddings	also	enable	unsupervised	learning	and	clustering	for	pattern	analysis.	Moreover,	
each	graph	embedding	provided	by	SGT	is	directed;	that	is,	both	the	constitution	and	the	ordering	
dynamics	of	each	pitch	sequence	are	maintained.	[5]		

Figure	2:	SGT	Application	to	Pitch	Sequences	

	

Although	there	are	embedding	alternatives	to	SGT,	these	existing	methods	either	fail	to	account	for	
long-term	patterns,	produce	false	positives,	or	substantially	increase	computation.	For	example,	if	
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each	sequence	is	transformed	into	a	string,	there	are	several	metrics	which	define	the	distance	
between	two	unique	patterns	(e.g.,	edit	distance,	hamming	distance).	However,	these	metrics	
improperly	account	for	the	complexities	of	pitch	sequences	and	do	not	offer	the	advantage	of	
representing	pitch	sequences	in	terms	of	forward	dependencies.	Measures	drawn	from	information	
theory	such	as	Shannon	entropy,	though	informative	of	the	level	of	“uncertainty”	or	“randomness”	
in	a	sequence,	also	do	not	provide	enough	granularity	to	explain	sequence	characteristics,	namely	
pitch	constitution	and	ordering	[6].		

If	pitch	sequences	do	not	correspond	in	terms	of	both	short	and	long	patterns,	SGT	embeddings	will	
not	produce	a	high	similarity	match.	While	the	pitch	sequences	FF-CU-FF,	FF-CU-FF-FF-CU-FF,	and	
FF-SL-FF-CU-FF-SL-FF-SL-SL	all	share	a	subsequence	in	FF-CU-FF,	SGT	distinguishes	the	first	two	
examples	from	third	given	the	overall,	long-term	differences	in	the	sequence	pattern.	Conversely,	
traditional	subsequence	matching	methods	would	produce	a	similarity	match	between	all	three	
sub-strings	[5].	Given	the	application	setting,	SGT	is	preferable	since	traditional	subsequencing	
matching	methods	would	produce	a	false	positive.	Finally,	SGT	is	widely	applicable	across	multiple	
domains	and	does	not	exhibit	setting	bias.	The	SGT	algorithm	is	publicly	available,	and	its	low	
computational	requirements	allow	it	to	be	run	in	local	environments	[5].		
	
2.2.2	Sequence	Graph	Transform	–	Definition	
Suppose	a	set	of	sequences	𝑆	is	contained	in	a	dataset.	Any	individual	sequence	in	the	dataset	can	
be	represented	by	𝑠 ∈ 𝑆,	where	s	is	constituted	by	an	alphabet	𝒱.	For	the	purposes	of	pitch	
sequencing,	alphabet	𝒱	either	contains	a	collection	of	pitch-type	labels	or	discrete	zone-location	
labels.	Each	sequence	𝑠	has	at	least	one	instance	of	one	element	from	the	alphabet	𝒱,	though	it	is	
not	necessary	for	every	element	in	alphabet	𝒱	to	be	represented	in	each	set	𝑠.	In	baseball	terms,	a	
pitch	sequence	is	defined	by	at	least	one	pitch	that	is	thrown	in	an	at-bat;	moreover,	due	to	pitch	
arsenal	constraints,	strategic	decision-making	motivations,	and	in-game	feasibility,	it	is	not	
expected	that	a	pitcher	throws	every	pitch-type	in	a	single	sequence.	The	length	of	a	specific	
sequence	𝑠	is	denoted	by	𝐿(").	For	each	sequence,	𝑠$ 	will	represent	the	element	that	occurs	at	
position	𝑙	where	𝑙 = 1,… , 𝐿(")	and	𝑠$ ∈ 𝒱.	𝜑%(𝑑)	is	a	function	that	takes	a	distance	as	input	and	𝜅	as	
a	tuning	hyper-parameter.	The	features	for	sequence	𝑠	are	extracted	in	the	form	of	associations	
between	alphabet	instances.	Each	association	is	denoted	as	𝜓&'

(")	,	where	𝑢, 𝑣 ∈ 𝒱	correspond	to	
specific	alphabet	instances	and	𝜓	corresponds	to	a	helper	function	of	𝜑.		

Since	SGT	considers	the	relative	positions	of	instances	to	form	each	feature,	𝜑3𝑑(𝑙,𝑚)5	quantifies	
the	information	that	is	extracted	from	the	relative	positions	of	two	instances,	where	𝑙, 𝑚	are	the	
positions	of	two	distinct	instances	and	𝑑(𝑙,𝑚)	is	a	corresponding	distance	output.	Specifically,	
𝜑3𝑑(𝑙,𝑚)5	denotes	the	effect	of	the	first	instance	on	the	later	instance.	

To	apply	SGT	on	a	set	of	sequences	𝑆,	the	following	conditions	must	hold	on	𝜑:	(1)	The	function	
output	is	strictly	greater	than	0	such	that	𝜑%(𝑑) > 0; ∀𝜅 > 0, 𝑑 > 0;	(2)	The	function	strictly	
decreases	with	𝑑	such	that		 (

()
𝜑%(𝑑) < 0;	and	(3)	the	function	strictly	decreases	with	𝜅	such	that	

(
(*
𝜑%(𝑑) < 0.	The	first	condition	is	designed	to	maintain	the	interpretability	of	each	SGT	

embedding,	whereas	the	second	condition	maintains	that	closer	neighbors	have	higher	
corresponding	dependencies,	and	the	last	condition	maintains	that	the	effect	of	distant	neighbors	
can	be	effectively	tuned.		
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SGT	uses	an	exponential	function	for	𝜑	since	it	satisfies	all	three	conditions.	Using	this	approach,	
the	distance	between	two	distances	can	be	taken	simply	as	𝑑(𝑙,𝑚) = |𝑚 − 𝑙|.		

	 𝜑*3𝑑(𝑙,𝑚)5 = 𝑒+%(,+$), ∀𝜅 > 0, 𝑑 > 0		 	 	 	 (1)	

Since	pitchers	throw	multiple	pitches	in	a	sequence,	there	are	likely	to	be	several	instances	of	
alphabet	pairs	(𝑢, 𝑣).	The	SGT	algorithm	is	initially	concerned	with	determining	how	many	of	each	
alphabet	pair	exists	in	the	sample.	Each	alphabet	pair	is	ultimately	stored	in	a	|𝒱| 	× |𝒱|	asymmetric	
matrix	Λ.	Λ&'	will	contain	every	alphabet	pair	(𝑢, 𝑣)	that	is	contained	a	specific	sequence	𝑠	such	that	
the	𝑣’s	position	can	always	be	inferred	to	be	after	𝑢	in	each	instance	pair.		

After	computing	𝜑	for	each	(𝑢, 𝑣)	pair	instance	that	is	contained	in	a	sequence,	the	association	
feature		𝜓&'

(")	is	defined	as	the	normalized	aggregation	of	all	instances.	Since	all	analysis	conducted	
in	this	paper	is	concerned	with	length-insensitive	problems,	the	effect	of	length	is	controlled	for	by	
normalizing	|Λ&'|,	the	size	of	the	set	Λ&'	or	the	number	of	unique	(𝑢, 𝑣)	pairs,	with	the	sequence	
length	𝐿(")as	shown	in	Eq.	2.		 	

							𝜑&'(𝑠) = 	
∑ .!"($!%)
∀(%,$))*+(,)

|0*+(")|/2(,)
		 	 	 	 	 (2)	

The	SGT	feature	representation	of	an	entire	sequence	can	be	represented	as	the	aggregation	of	
Ψ(𝑠) = [𝜓&'(𝑠)], 𝑢, 𝑣 ∈ 𝒱.	The	features	Ψ(")can	be	interpreted	as	a	directed	graph	with	edge	
weights	𝜓	and	nodes	in	𝒱	for	each	sequence	𝑠	in	the	dataset.		

SGT	contains	a	single	tuning	parameter	𝜅.	𝜅	modulates	the	extent	to	which	long-term	dependencies	
are	captured	in	each	embedding.	A	small	value	of	𝜅	preserves	longer-term	dependencies.	Since	the	
average	pitch	sequence	is	approximately	5	pitches	at	the	at-bat	level,	a	small	𝜅 = 1	(default	value)	
is	selected.	[5]	

2.3	Model-Based	Clustering	–	Gaussian	Mixture	Models	
Unsupervised	learning	via	model-based	clustering	can	be	used	to	discover	patterns	in	at-bat	pitch	
sequences.	This	paper	relies	on	Gaussian	Mixture	Models	(GMMs),	a	model-based	clustering	
technique	that	uses	an	expectation-maximization	(EM)	algorithm,	to	find	clusters	that	capture	the	
common	patterns	that	manifest	and	recur	in	pitch	sequences.	Given	there	is	no	set	of	intuition	that	
informs	how	number	of	these	clusters	or	patterns	exists,	this	analysis	requires	an	approach	that	
self-determines	an	optimal	number	of	target	clusters	K	from	the	graph	embeddings.	

Other	popular	algorithms,	such	as	hierarchical	clustering,	are	also	able	to	produce	K	without	user	
labels,	using	measures	of	in-cluster	and	out-of-cluster	distance	and	variance	[6].	However,	current	
hierarchical	clustering	algorithms	scale	in	O(𝑛3)	time	and	often	produce	unstable	results	[6].	This	
computational	hurdle	is	especially	relevant	when	dealing	with	a	high	volume	of	data	across	
multiple	seasons.		

To	assess	the	potential	instability	of	any	results,	it	is	desirable	to	obtain	a	probability	estimate	that	
a	sequence	belongs	to	their	assigned	cluster.	Additionally,	GMMs	can	frame	K-selection	as	a	model-
selection	problem	using	likelihood-based	measures	such	as	Bayesian	Information	Criterion	(BIC),	
which	benefits	interpretability	[7].		
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A	Gaussian	Mixture	is	a	function	that	treats	several	Gaussians,	each	identified	by	𝑘 ∈ {1,… , 𝐾}.	Each	
Gaussian	k	includes	a	mean	𝜇	that	defines	its	center,	a	covariance	Σ	that	defines	its	width,	and	a	
mixing	probability	𝜋	that	defines	the	size	of	the	Gaussian	function,	as	shown	by	Figure	2	[8].	

Eq.	3	explicitly	defines	the	Gaussian	Mixture	Model	Likelihood	Function	used	in	this	approach.	The	
Gaussian	Mixture	Model	Likelihood-Function	computes	a	Maximum-Likelihood	Estimate	(MLE)	to	
find	the	optimal	distribution	that	underlies	the	dataset.		

																																																										𝐿(𝜃|𝑋4, … , 𝑋5) = 	∏ ∑ 𝜋%𝑁(𝑥6; 𝜇% , 𝜎7)8
%94

5
694 		 	 	 								(3)	

All	modeling	and	associated	data	analysis	were	conducted	in	Python	in	a	Jupyter	Notebook	
environment.	The	Gaussian	Mixture	Models	and	Expectation	Maximization	algorithm	were	built	
and	implemented	from	scratch.	
	
3 Pitch-Type	&	Zone	Sequencing	Strategies	
During	MLB	gameplay,	pitchers	engage	in	advanced	decision-making.	Pitchers	are	incentivized	not	
only	to	promote	unpredictability	in	their	sequencing	decisions	but	also	adapt	to	the	strengths	and	
weaknesses	of	the	batter	they	matchup	with.	In	each	of	these	subsequent	analyses,	it	is	assumed	that	
a	pitcher	is	capable	of	“calling	their	own	pitches;”	that	is,	pitchers	are	largely	responsible	for	what	
pitches	they	throw.	The	intuition	to	support	this	assumption	is	strong—pitchers	do	not	completely	
redesign	their	pitching	styles	whenever	their	catcher	or	umpire	changes,	for	example.		
	
Generally,	pitch	sequencing	can	be	distilled	into	two	distinct	components:	Pitch-type	selection	and	
zone	 (location)	 selection.	 In	order	 to	 fit	MLB	pitching	data	 to	 the	 required	 input	 structure	of	 the	
Sequence	Graph	Transform	algorithm,	pitch	sequences	are	represented	as	ordered	lists	of	pitch-type	
labels	and	discrete	zone-location	 labels,	 respectively	 (See	Section	2.2.1).	From	these	embeddings,	
unsupervised	learning	(Gaussian	Mixture	Models)	is	used	to	cluster	pitch-type	and	zone	sequences	
independently	 (See	 Section	 2.3).	 Then,	 each	 at-bat	 sequence	 is	 assigned	 with	 two	 cluster	 labels	
(pitch-type	and	zone)	and	is	paired	with	relevant	in-game	information	(e.g.,	score,	inning,	result	of	
the	sequence).	
	
This	 analytical	 design	 has	 multiple	 advantages:	 (1)	 It	 is	 possible	 to	 discern	 which	 sequencing	
strategies	are	common	in	a	variety	of	in-game	contexts;	(2)	The	covariance	of	pitch-type	and	zone-
labels	can	be	analyzed,	and	the	complexity	between	pitch-type	selection	strategies	and	zone	selection	
strategies	 can	 be	 compared;	 and	 (3)	 Sequencing	 styles	 across	 players	 and	 time	 periods	 can	 be	
systematically	evaluated.		
	
3.1.1	Pitch-Type	Sequence	Clusters	
Modeling	 results	 from	 pitch-type	 sequences	 show	 that	 there	 are	 many	 diverse	 groups	 of	 pitch	
sequences	at	 the	at-bat	 level	 that	are	 thrown	in	 the	MLB.	Since	the	optimal	number	of	clusters	 is	
selected	 on	 Bayesian	 Information	 Criterion	 (BIC),	 the	 number	 of	 pitch-type	 sequence	 clusters	 is	
informative	of	the	aggregate	complexity	of	pitch-type	sequencing	strategies.	Each	sequence	cluster	
varies	in	their	pitch-type	constitution	and	ordering	(See	Table	1;	Note	that	only	the	top	three	pitch-
types	by	relative	frequency	are	displayed	in	Table	1	for	each	cluster	for	the	sake	of	clarity).		
	
The	 fitted	 Gaussian	 Mixture	 Model	 supplies	 a	 probabilistic	 distribution	 for	 each	 sequence’s	
assignment	 to	 a	 pattern	 cluster.	 The	 overwhelming	 majority	 of	 at-bat	 sequences	 (99.87%)	 are	
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assigned	to	clusters	with	a	high	probability	(greater	than	or	equal	to	99%	assignment	probability).	
The	0.13%	of	at-bats	that	are	assigned	to	a	cluster	with	less	than	an	associated	99%	probability	all	
have	 an	 assignment	 probability	 greater	 than	 50%	 and	 have	 a	 mean	 assignment	 probability	 of	
86.37%.		Within	this	0.13%	of	at-bats,	it	is	important	to	note	there	is	no	explicit	pattern	as	to	which	
sequences	seem	difficult	to	assign	to	a	cluster.	Given	this	distribution,	it	is	clear	that	most	sequences	
map	very	strongly	 to	a	 single	cluster	and	 that	 the	model-results	 can	be	 interpreted	 in	 terms	of	a	
primary	cluster	assignment.	
	
From	Table	1,	 it	 is	clear	that	pitchers	rely	on	a	variety	of	pitch	sequences	across	matchups.	Since	
clustering	takes	into	account	all	pitch	sequences	for	pitchers	that	meet	an	at-bat	minimum,	the	model	
results	are	expectedly	correlated	with	which	arsenals	are	most	popular	in	the	MLB	(See	Figure	3,	
Table	1).	For	example,	cluster	3	contains	pitch	sequences	that	include	three	of	the	most	popular	pitch-
types	in	the	MLB,	so	it	is	expected	that	this	cluster	is	also	relatively	popular	among	pitchers.	
	

Figure	3:	Pitch-Type	Sequence	Cluster	by	Relative	Frequency/Density	

	
Within	each	pitch	sequence,	it	is	observable	that	there	is	a	split	between	fastball	types	and	off-speed	
pitches	that	are	thrown;	in	other	words,	every	sequence	pattern	involves	both	fastball	pitches	and	
off-speed	 pitches,	 though	 in	 varying	 frequencies.	 These	 results	 present	 significant	 evidence	 that	
pitch-type	mixing	is	a	critical	aspect	of	all	sequencing	strategies	across	a	diverse	set	of	arsenals.	Note	
that	sequence	clusters	 that	share	pitch-types	at	high	 frequencies	also	differ	 in	 their	ordering	and	
entropy	(See	Appendix:	Table	2,	Table	3).		
	
While	 it	 is	 more	 difficult	 to	 summarize	 ordering	 in	 a	 table	 or	 visualization,	 Table	 2	 (Appendix)	
presents	a	side-by-side	example-based	comparison	of	cluster	3,	cluster	7,	and	cluster	10.	Each	at-bat	
example	yields	an	estimated	99%	probability	of	membership	or	greater,	which	 implies	that	these	
sequences	are	exemplary	of	the	identified	sequence	cluster.	It	is	observable	that	sequence	clusters	
with	similar	frequencies	of	pitch-types	also	differ	in	ordering.		
	
The	ordering	component	 is	highlighted	further	by	which	pitch-types	tend	to	be	thrown	early	 in	a	
sequence	 versus	 later	 in	 the	 sequence	 (Table	 2;	 colored	 by	 beginning,	 middle,	 and	 end	 of	 the	
sequence).	Finally,	it	is	evident	that	each	cluster	is	approximately	the	same	length,	which	is	expected	
since	the	graph	embeddings	learn	length-insensitive	patterns	in	pitch	sequences.	
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Table	1:	Pitch-Type	Cluster	Membership	

	
	
3.1.2	Defining	Setup	and	Knockout	Pitches	with	Graph	Sinks	
By	 interpreting	 the	 graph	 embeddings	 as	 forward	 dependencies,	 this	 analysis	 finds	 evidence	 for	
“setup”	and	“knockout”	pitches	in	various	pitch-type	sequence	clusters.	Drawing	from	the	concept	of	
a	“sink”	in	graph	theory,	it	is	possible	to	dissect	each	pitch	sequence	cluster	in	terms	of	its	strategic	
components.		
	
In	operations	research	and	graph	theory,	a	sink	is	formally	defined	as	a	node	which	only	has	incoming	
flow;	that	is,	multiple	nodes	direct	to	the	sink	but	the	sink	does	not	direct	itself	to	any	other	nodes	in	
the	system	[9].	This	definition	can	be	strictly	maintained	for	certain	applications	and	contexts,	such	
as	 when	 modeling	 fluids	 in	 a	 pipe	 system,	 currents	 in	 an	 electrical	 circuit,	 or	 even	 when	
approximating	web	page	 importance	such	as	 in	the	PageRank	algorithm	[10].	However,	given	the	
nature	of	baseball	pitching,	it	is	unlikely	that	pitchers	reserve	the	use	of	a	certain	pitches	only	for	the	
end	or	beginning	of	a	sequence.	This	is	counterintuitive	to	the	incentive	each	pitcher	has	to	minimize	
their	predictability	[3].	Instead,	by	loosening	this	formal	definition	of	graph	sinks	to	allow	for	limited	
non-zero	outflow	from	sink	nodes,	it	is	possible	to	identify	setup	and	knockout	pitches	in	the	context	
of	pitch	sequencing.	Without	loss	of	generality,	each	graph	embedding	(A,	B),	for	a	pitch-type	A	and	
pitch-type	B,	provides	information	on	the	preferred	ordering	between	two	pitches.	A	high	value	in	
the	feature	(A,	B)	indicates	that	A	is	followed	by	a	significant	number	of	Bs	in	the	sequence.	However,	
it	is	not	guaranteed	that	this	relationship	holds	for	(B,	A).	It	is	possible	that	B	is	not	followed	by	a	
significant	number	of	As,	even	if	the	converse	is	true.	Specifically,	the	frequency	of	pitch-type	A	may	
not	be	dependent	on	pitch-type	B	to	the	extent	that	the	frequency	of	pitch-type	B	is	on	pitch-type	A.		
	
In	 particular,	 a	 setup	 pitch	 is	 defined	 within	 each	 sequence	 cluster	 as	 a	 pitch	 whose	 forward	
dependencies	 are	 generally	 similar	 across	 all	 associated	 pitch-pairings	 and	 order	 permutations.	
Given	this	definition,	setup	pitches	are	thus	more	common	relative	to	knockout	pitches	in	sequence	
construction	by	design	(See	Table	4).	A	knockout	pitch	is	defined	within	each	sequence	cluster	as	a	
pitch	that	follows	many	pitches	but	has	limited	corresponding	outflow.	Additionally,	a	knockout	pitch	
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could	function	as	a	 local	or	universal	sink	within	each	sequence	cluster	graph;	that	 is,	a	knockout	
pitch	could	have	a	large	positive	difference	between	its	inflow	and	outflow	for	a	single	specific	pitch	
(See	Appendix:	Table	4	–	“Greatest	Diff.”)	or	have	positive	differences	between	inflow	and	outflow	
for	multiple	setup	pitches.	Within	each	cluster,	both	the	setup	and	knockout	pitches	needed	to	meet	
a	frequency	threshold		to	be	identified	as	such—this	prevents	pitches	that	rarely	manifest	within	a	
sequence	from	being	designated	as	either	a	setup	or	knockout	pitch	for	the	sequence.	Given	general	
definitional	constraints,	it	is	expected	that	there	are	far	more	setup	pitches	and	far	fewer	knockout	
pitches.	The	nomenclature	here	is	not	intended	to	suggest	that	setup	pitches	are	not	thrown	with	the	
goal	of	achieving	a	favorable	outcome	(e.g.,	striking	the	batter	out,	recording	an	out)	at	that	specific	
moment.	Likewise,	a	knockout	or	terminal	pitch	is	not	an	interpretation	of	a	player’s	most	effective	
pitches	with	respect	to	achieving	those	similarly	favorable	outcomes.		
	
Table	4	displays	 the	primary	setup	and	knockout	pitches	 that	were	 identified	upon	 inspection	of	
forward	dependencies.	It	is	important	to	note	that	not	all	clusters	have	knockout	pitches.	Specifically,	
using	 the	definition	above,	 for	 these	 few	clusters,	 there	were	no	pitches	 that	had	a	 large	enough	
positive	difference	between	its	inflow	and	outflow	for	a	specific	pitch	or	had	consistently	positive	
differences	between	 inflow	and	outflow	for	multiple	setup	pitches.	 Instead,	 for	clusters	without	a	
knockout	 pitch,	 the	 forward	 dependencies	 between	 pitch-types	 were	 approximately	 equal	 in	
magnitude	irrespective	of	the	exact	direction	between	the	two	comparison	features	(A,	B)	and	(B,	A).	
	

Table	4:	Setup	and	Knockout	Pitches	

	
Note:	“Val.	of	Diff.”	reports	the	difference	in	the	sum	of	forward	dependencies	for	(A,	B)	and	the	sum	of	the	
forward	dependencies	for	(B,	A)	within	each	cluster.	Pitch	B	is	considered	a	knockout	pitch	(i.e.,	local	sink)	
given	a	relatively	large	positive	difference	between	these	values.	Additionally,	a	pitch	B	can	be	considered	a	
knockout	pitch	if	there	are	multiple	pitches	A,	C,	D…,	n	such	that	the	difference	between	∑ (𝑖, 𝐵)!

"#$,"&' ≫
	∑ (𝐵, 𝑖)!

"#$,"&' 	is	also	true.	
	

The	magnitude	of	the	difference	between	the	forward	dependencies	from	one	direction	to	another	
also	 indicate	 that	 certain	 knockout	 pitches	 are	 “stronger”	 than	 other	 knockout	 pitches	 between	
clusters.	As	shown	in	cluster	3,	there	is	a	very	extreme	distinction	between	the	sum	of	the	forward	
dependencies	in	(FF,	CH)	versus	the	sum	of	the	forward	dependencies	in	(CH,	FF).	This	implies	that	
sequences	that	belong	to	cluster	3	rarely	use	changeups	unless	the	changeup	comes	at	the	end	of	the	
sequence.	In	comparison,	the	greatest	difference	between	forward	dependencies	for	certain	clusters	
such	as	cluster	12	is	far	lower	than	the	difference	that	is	displayed	in	cluster	3.	This	finding	suggests	
that	 the	changeup,	 	 the	knockout	pitch	 in	cluster	12,	 is	not	exclusively	used	towards	the	end	of	a	
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sequence.	Across	all	sequence	clusters,	knockout	pitches	tend	to	be	breaking-balls	whereas	setup	
pitches	are	largely	fastballs	or	fastball	variations.	While	this	intuition	is	assumed	as	trivial	domain	
knowledge	 for	 teams,	 coaches,	 and	 players,	 this	 quantitative	 assessment	 of	 setup	 and	 knockout	
pitches	within	the	context	of	pitch	sequences	is	likely	novel.	
	
3.1.3	Pitch-Type	Sequencing	in	Context	
There	are	several	sequencing	strategies	and	patterns	that	are	potentially	observable	from	the	model-
results.	For	example,	each	sequence	cluster	involves	a	combination	of	fastballs	and	off-speed	pitches,	
as	highlighted	above.		It	is	perhaps	significant	to	note	that	there	are	multiple	sequences	that	share	
pitch-type	constitution	yet	differ	in	ordering.	This	suggests	that	ordering	is	an	important	component	
of	 pitch-type	 sequences	 which	 alternatives	 such	 as	 simple	 pitch	 frequencies	 and	 pitch-to-pitch	
correlation	do	not	otherwise	capture.	Since	it	is	expected	that	pitchers	throw	pitch	sequences	that	
belong	to	different	several	clusters,	it	is	feasible	to	analyze	how	sequence	usage	varies	in	multiple	in-
game	contexts	and	matchups.	Figure	5	&	6	(Appendix)	displays	the	relative	frequency	of	each	cluster	
conditional	on	pitcher-batter	handedness	and	starter/reliever	role,	as	examples.	
					
3.2.1		Zone	Sequence	Clusters	
As	 with	 pitch-type	 sequencing,	 there	 are	 several	 universal	 zone	 sequencing	 patterns	 that	 were	
identified	by	model-based	clustering.	Pitchers	tend	to	vary	in	how	they	set-up	batters	via	their	zone	
sequences,	but	their	usage	of	these	clusters	is	not	uniformly	distributed	across	gameplay	situations	
(See	Figure	7,	Appendix:	Figure	8	&	9).		
	
Since	players	have	all	zones	available	to	them	(i.e.,	they	are	not	inhibited	by	pitch	arsenal),	cluster	
popularity	relates	to	which	location	strategies	are	preferred	by	MLB	pitchers	instead	of	physical	or	
arsenal	constraints.	It	is	significant	to	note	that	the	model-based	clustering	identifies	fewer	clusters	
for	zone-based	sequences	 than	pitch-type	sequences.	Additionally,	when	compared	between	each	
other,	zone-based	clusters	reflect	the	pitcher’s	desire	to	not	leave	pitches	in	the	middle	or	high	in	the	
zone	to	prevent	solid-contact	and	batted-balls	that	are	hit	in	the	air	(Table	5).	Instead,	each	cluster	
has	a	high	representation	of	zones	that	are	lower	down	in	the	strike	zone.	This	ultimately	supports	a	
case	that	pitch-type	sequencing	is	more	complex	in	aggregate	than	zone	sequencing.		
	

Figure	7:	Zone	Sequence	Cluster	by	Relative	Frequency/Density	

	
As	with	pitch-type	sequence	clustering,	model-based	clustering	allows	us	to	calculate	a	probabilistic	
distribution	for	each	unique	at-bat’s	assignment	to	a	zone	sequence	cluster.	Like	pitch-type	sequence	
clusters,	 the	overwhelming	majority	of	at-bat	sequences	(99.60%)	are	assigned	to	clusters	with	a	
high	probability	(greater	than	or	equal	to	99%	assignment	probability).	The	0.40%	of	at-bats	that	are	
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assigned	 to	 a	 zone	 cluster	with	 less	 than	 an	 associated	 99%	 probability	 all	 have	 an	 assignment	
probability	greater	than	50%	and	have	a	mean	assignment	probability	of	88.99%.		As	with	the	pitch-
type	clusters,	here	 is	no	explicit	pattern	as	 to	which	zone	sequences	 seem	difficult	 to	assign	 to	a	
cluster.	These	results	indicate	that	the	primary	zone	cluster	assignment	can	be	uniformly	used	given	
the	high	assignment	probabilities.	
	

Table	5:	Zone	Cluster	Membership	

	
3.2.2	Zone	Sequencing	in	Context	
If	zone	sequencing	strategies	are	relatively	non-complex,	then	it	is	expected	that	the	distribution	of	
zone	 sequence	 clusters	 to	 be	 relatively	 consistent	 between	 pitchers	 and	 across	 matchups.	 In	
particular,	 split	 summary	 statistics	 can	 easily	 describe	 how	 the	 usage	 of	 zone	 sequence	 clusters	
differs	against	various	right-	and	left-handed	batters	and	between	starters	and	relievers.	
	
The	two	zone-based	sequence	clusters	(clusters	4	and	6)	that	have	a	higher	frequency	of	pitches	up	
or	in	the	middle	of	the	strike	zone	tend	to	be	thrown	in	similar	contexts,	as	shown	in	Figure	8	&	9	
(Appendix).	Both	cluster	4	and	cluster	6	are	thrown	more	by	relievers	than	by	starters	in	comparison	
to	the	other	zone	clusters,	though	the	absolute	difference	in	usage	between	starters	and	relievers	is	
far	less	drastic	than	differences	that	are	observed	in	usage	of	pitch-type	clusters	between	starters	
and	relievers.	Additionally,	both	clusters	4	and	6	are	 thrown	predominantly	when	pitchers	share	
handedness	with	their	batters.		
	
3.3	Relationship	between	Pitch-Type	and	Zone	Sequencing	
The	Chi-Square	test	of	independence	(df	=	104)	finds	ample	statistical	evidence	to	suggest	that	the	
pitch-type	and	zone-clusters	are	not	independent;	that	is,	the	value	of	one	cluster	variables	implies	a	
change	in	the	expected	probability	distribution	of	the	other	(p	<	0.001).	Given	that	certain	pitch-types	
coincide	with	 location	 (e.g.,	 breaking-balls	 are	designed	 to	be	 in	 lower	zones),	 it	 is	 expected	 that	
clusters	with	 high	 frequencies	 of	 these	 types	 of	 pitches	 tend	 to	 be	 associated	with	 certain	 zone	
sequences.	Thus,	future	analysis	and	work	can	attempt	to	re-cluster	pitch	labels	(before	sequence	
analysis)	by	 including	 location	as	a	pitch-level	 characteristic.	 In	aggregate,	players	do	not	exhibit	
strong	differences	in	zone	sequencing	strategies	above	what	is	expected	by	differences	in	their	pitch	



	

	 13	

arsenals.	However,	 it	 is	 noteworthy	when	pitchers	decide	 to	deviate	 from	 their	 otherwise	 strong	
tendencies.	 This	 analytical	 framework	 allows	 teams	 to	 evaluate	 game-	 and	 matchup-level	
circumstances	when	they	may	anticipate	shifts	in	pitch	sequencing	behavior.		
	
3.4	Example	Player	Sequencing	Comparisons		
The	clustering	framework	enables	player	comparison	on	the	basis	of	pitch	sequencing.	While	it	 is	
valuable	to	know	what	sequences	a	player	is	accustomed	to	throwing,	it	is	increasingly	important	to	
have	an	understanding	of	how	a	player’s	 sequencing	behavior	 changes	 in	various	game	contexts.	
Teams	can	achieve	an	edge	in	scouting,	player	development,	and	matchup	preparation	by	using	these	
tools	to	decrypt	pitching	patterns	and	investigate	motivations	behind	these	decisions.		
	
Figure	 10	 displays	 side-to-side	 comparison	 of	 the	 pitch-type	 sequencing	 strategies	 used	 by	 4	
prominent	 MLB	 pitchers	 against	 left-handed	 and	 right-handed	 batters.	 There	 are	 several	 key	
takeaways	that	are	observable	from	this	small	sample	and	are	largely	reflective	of	baseball	intuition.	
Each	 pitcher	 relies	 on	 various	 clusters	 or	 pitch-type	 sequencing	 patterns.	 Pitchers	 are	 largely	
incentivized	 to	 remain	unpredictable	 and	variance	 in	pitch-type	 sequencing	 is	 one	 component	of	
their	ability	to	deceive	a	batter.	There	are	also	commonalities	among	pitchers	who	show	similarities	
in	sequence	pattern	distribution.	For	example,	starters	(e.g.,	Blake	Snell)	tend	to	show	more	variance	
and	matchup	versatility	in	their	pitch-type	sequencing	strategies	than	Chapman	and	Hader,	both	of	
whom	are	high-leverage	relievers.	
	
Using	a	pitcher’s	cluster	distribution	as	a	proxy	the	overall	diversity	of	their	sequencing	strategies,	a	
strong	 negative	 correlation	 between	 sequencing	 complexity	 and	 fastball	 velocity	 is	 detected.	
Intuitively,	this	suggests	that	players	who	throw	hard	can	rely	on	their	“stuff”	more-so	than	players	
who	do	not	have	that	advantage.	Conversely,	pitchers	that	cannot	throw	in	high	velocities	need	to	
take	more	diverse	and	complex	approaches	to	their	sequencing	decisions.	This	finding	is	consistent	
with	prior	research	on	effective	velocity	and	pitch	sequencing	strategy	[11].	
	
Players	seem	to	pursue	universal	sequencing	strategies	with	respect	to	zone	selection	as	shown	in	
Figure	11.	Their	zone	sequence	decision-making	is	highly	correlated	with	their	pitch	arsenal.	Unlike	
pitch-type	selection	where	players	need	to	draw	from	pitch-types	in	their	pitch-arsenal,	any	zone	is	
available	 to	a	pitcher	at	 a	given	 time,	 assuming	 that	a	pitcher	has	a	general	 command	over	 their	
pitches.	Accordingly,	each	pitcher	in	this	sample	throws	at	least	one	sequence	that	belongs	to	each	
cluster.		
	
As	with	pitch-type	sequencing,	each	pitcher	displays	a	unique	assortment	of	patterns	and	behaviors	
in	their	zone	sequencing	strategies.	Blake	Snell	(LHP),	for	example,	takes	divergent	approaches	when	
he	pitches	to	left-handed	and	right-handed	batters;	specifically,	he	relies	much	more	on	sequence	
cluster	6	(characterized	by	pitches	up	in	the	zone)	against	left-handed	batters	and	more	on	sequence	
cluster	 1	 (mixed	 locations)	 and	 sequence	 cluster	 8	 (low	 locations).	 This	 shift	 is	 not	 particularly	
observable	 in	other	pitchers	 and	 is	 visually	 apparent	 in	Figure	6.	Other	pitchers,	 such	as	Aroldis	
Chapman,	 Josh	 Hader,	 and	 Clayton	 Kershaw,	 depend	 on	 very	 similar	 zone	 sequencing	 strategies	
against	left-handed	and	right-handed	pitchers.	So,	while	zone	sequencing	strategies	are	less	complex	
than	 pitch-type	 sequencing	 strategies	 in	 aggregate	 (See	 3.2.1),	 players	 still	 exhibit	 significant	
differences	in	how	they	form	strategies	for	locating	their	pitches.	
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Given	 that	 both	 pitch-type	 and	 zone	 sequences	 are	 clustered	 on	 an	 at-bat	 level,	 player-specific	
development	and	evolution	across	various	time-spans	(e.g.,	within	a	game	or	season)	is	observable.	
While	some	players’	sequencing	behaviors	are	relatively	stable	across	the	seasons	they	participated	
in,	other	players	show	evidence	of	shifts	 in	how	they	approach	sequencing	overtime.	This	can	be	
attributed	to	changes	in	matchup	strategy,	growth	and	development	of	pitch	arsenals,	or	even	injury	
mitigation	 and	 recovery	 processes.	 Conversely,	 pitchers	 do	 not	 seem	 to	 exhibit	 significant	 time-
dependence	in	their	zone	sequencing	strategies.	
	

Figure	10	&	11:	Pitch-Type	&	Zone	Sequencing	Tendencies	–	Player	Examples	

	
3.5	Aggregate	Sequence-Based	Player	Similarity	
After	aggregating	pitch-level	data,	pitch	sequences	are	analyzed	at	the	at-bat	and	player-career	level.	
The	at-bat	embeddings	are	used	to	perform	analysis	on	game-varying	qualities	of	pitch	sequencing;	
an	 example	 analysis	 that	 this	 paper	 explores	 is	 what	 pattern	 clusters	 are	 identifiable	 across	 all	
pitchers.	The	aggregate	pitcher	sequence	embeddings	will	form	the	basis	for	player	similarity	search.		
	
Player	similarities	are	immensely	useful	to	teams,	scouts,	and	fans,	and	have	a	long	history	in	baseball	
analytics	 dating	 back	 to	 Bill	 James’	 similarity	 scores	 [11].	 Since	 player	 similarity	 enhances	 our	
contextual	understanding	of	a	player’s	tendencies	and	behavior,	it	is	valuable	to	determine	player	
similarity	 as	 measured	 through	 sequencing	 decisions	 that	 players	 have	 made	 during	 in-game	
situations.	 In	the	same	way	that	a	DNA	sequence	defines	the	biological	makeup	of	an	organism,	a	
pitch	sequence—when	aggregated	across	a	player’s	career—summarizes	the	cumulative	decisions	
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that	 the	 pitcher	 has	 previously	 made.	 After	 embedding	 each	 player-aggregate	 sequence,	 player	
similarities	are	computed	with	the	dot	product	of	the	query	embedding	with	other	embeddings	in	
our	player	sequence	database	[5].	For	each	player	sequence	query,	the	player	sequencing	embedding	
that	produces	 the	 largest	dot	product	with	 the	query	will	be	 taken	as	 the	most	similar	sequence.	
When	using	 raw	embedding	 outputs,	 this	 similarity	method	 takes	 into	 account	 diversity	 in	 pitch	
arsenals	 since	 pitch-types	 that	 are	 not	 seen	 in	 a	 specific	 players	 sequence	 will	 have	 a	 forward	
dependency	that	is	initialized	with	a	zero-value.	Using	the	dot	product,	pitchers	with	diverse	pitch	
arsenals	(i.e.,	many	pitch-types	they	can	throw)	tend	to	appear	frequently	as	similarity	matches	since	
they	have	the	last	number	of	forward	dependencies	initialized	as	zero.	Thus,	it	is	important	to	note	
that	 while	 these	 similarity	 matches	 are	 correlated	 with	 player	 pitch	 arsenals,	 sequence-based	
similarity	also	takes	into	the	order	in	which	pitches	are	thrown.	
	
Sequence-based	 player	 similarities	 are	 used	 to	 begin	 to	 explore	 the	 relationship	 between	 player	
value	and	sequencing.	Drawing	from	a	player	similarity	function	that	outputs	the	closest	player	for	
each	player	input,	it	is	evident	that	similarity	in	pitch-type	sequencing	does	not	correlate	to	either	
simple	(e.g.,	K%,	ERA,	H/9)		or	advanced	metrics	of	player	performance	(e.g.,	FIP,	xFIP,	tERA)	above	
what	is	achieved	from	random	assignment.	While	there	are	more	extensive	statistical	models	that	
can	test	 this	hypothesis	 further,	players	who	manifest	similar	sequencing	strategies	seem	to	vary	
quite	drastically	in	their	performance.	This	signals	that	sequencing	alone	does	not	predict	a	player’s	
performance	or	compensate	for	a	lack	of	pitching	“stuff.”		

It	 is	 also	 important	 to	 acknowledge	 that	 the	 approach	 described	 in	 this	 paper	 should	 not	 be	
interpreted	as	a	means	to	assign	value	to	pitch	sequences	or	sequencing	decisions.	In	order	to	define	
sequencing	skill	precisely,	researchers	should	strive	to	separate	the	effect	and	value	of	 individual	
pitches	 from	 the	 added	 benefit	 of	 a	 specific	 ordering.	 Instead,	 this	 research	 is	 instrumental	 in	
providing	a	framework	to	decode	the	sequencing	strategies	that	pitchers	consistently	utilize	for	the	
purposes	 of	 in-game	 strategy.	 Instead	 of	 applying	 pitch	 sequencing	 similarities	 for	 player	 value	
predictions,	player	sequencing	similarities	can	be	utilized	to	assist	teams	in	matchup	preparation	and	
pitchers	in	their	developmental	goals.		

From	this	graph	embedding	approach,	a	pitcher’s	aggregate	sequencing	decisions	can	be	represented	
in	 total	 by	 a	 directed	 graph	 or	 network.	 Each	 graph	 representation	 can	 easily	 be	 presented	 as	 a	
visualization	(See	Figure	12	&	13)	that	characterizes	a	pitcher’s	sequencing	patterns	across	multiple	
seasons	 (2016-2019).	 	 This	 visualization	 can	 capture	 the	 general	 complexity	 of	 each	 pitcher’s	
pitching	style	 for	a	variety	of	research	and	development	purposes.	The	relative	size	of	each	node	
corresponds	to	the	relative	frequency	of	each	pitch-type	whereas	the	relative	thickness	(i.e.,	weight)	
of	each	edge	corresponds	to	the	forward	dependency	between	two	pitch-types.	
	
In	 order	 to	maintain	 visual	 consistency	 across	 all	 graphs,	 each	major	 pitch-type	 is	 included	 in	 a	
pitcher’s	graph	visualization	irrespective	of	whether	that	pitcher	has	that	pitch	in	their	arsenal.	Each	
link	is	colored	according	to	the	direct	of	the	originating	node.	The	stronger	association	is	laid	over	
the	weaker	association	directionally.	The	relative	size	of	each	node	denotes	the	existence	of	that	pitch	
in	a	specific	pitcher’s	arsenal.	This	consistency	 in	the	visualization	format	allows	for	a	qualitative	
side-to-side	 comparison	 of	 player	 network	 graphs,	 though	 the	 design/aesthetic	 features	 are	
customizable	by	the	user.	The	data	that	underlies	each	network	visualization	can	be	limited	to	certain	
in-game	scenarios	or	matchups	to	illustrate	situational	decision-making.		
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Figure	12	&	13:	Sequence	Graph	Networks	for	Blake	Snell	and	Clayton	Kershaw	(2016-2019)	
	

	
	
4 Related	Applications	&	Future	Work	
In	 addition	 to	developing	 a	novel	 analytical	 framework	 to	 study	pitch	 sequencing	 strategies,	 this	
paper	presents	multiple	tools	that	MLB	teams	can	use	in	matchup	preparation,	scouting,	and	player	
development.	Since	pitch	sequencing	is	otherwise	difficult	to	encode	for	using	traditional	statistical	
methods,	 teams	 can	 take	 immediate	 steps	 in	 applying	 this	 graph	 embedding	 approach	 to	 study	
pitcher	 styles	 and	 behavior.	 There	 are	 many	 questions	 to	 be	 asked	 about	 the	 motivations	
surrounding	usage	of	certain	pitch	sequences.	This	framework	enables	researchers	to	reproduce	this	
approach	in	their	analysis	of	pitcher	behavior.	Furthermore,	graph	network	visualizations	(as	shown	
in	 Figure	 12	 &	 13)	 that	 are	 based	 upon	 player-aggregate	 sequence	 data	 can	 be	 helpful	 in	
communicating	a	pitcher’s	sequencing	profile	in	an	interpretable	manner.	When	mapped	in	a	time-
series,	teams	can	observe	how	sequence	networks	change	overtime	and	how	players	are	developing	
and	 modifying	 their	 existing	 strategies.	 This	 tool	 can	 supplement	 advance	 scouting	 preparation	
against	 other	 teams,	 especially	 after	 conditionalizing	 player	 data	 based	 on	 certain	 in-game	 and	
matchup	scenarios.	Additionally,	teams	can	consider	how	a	pitcher’s	sequencing	changes	in	response	
to	their	previous	outcomes	in	an	at-bat	or	game.	There	is	a	strong	strategic	component	to	this	work	
as	well—future	work	may	consider	testing	whether	pitch	sequence	clusters	are	predictive	of	player	
decisions,	which	would	imply	that	pitchers	are	victims	to	information	leakage	at	the	sequence	level.		
	
Finally,	steps	are	taken	to	develop	a	novel	open-source	aggregation	database	that	allows	independent	
researchers	and	MLB	teams	to	perform	pitch	sequence	analysis	based	on	this	research.	Functionality	
of	this	toolkit	includes	searching	for	specific	pitch	sequences	that	have	occurred	over	a	multi-year	
span,	ability	 to	visualize	networks	and	download	pitch	sequencing	graph	embeddings	 for	specific	
pitchers,	and	access	to	drop-down	comparisons	and	player-similarity	matching.			
	
	
	
	
	



	

	 17	

References	
[1]	Bock,	J.	(2015).	Pitch	Sequence	Complexity	and	Long-Term	Pitcher	Performance.	Sports,	40-55.	
[2]	Sharpe,	S.	(2020).	MLB	Pitch	Classification.	https://technology.mlblogs.com/mlb-pitch-				
	classification-64a1e32ee079.	
[3]	Glenn,	H.,	&	Zhao	S.	 (2017).	Using	Pitchf/x	 to	model	 the	dependence	of	 strikeout	 rate	on	 the	
predictability	of	pitch	sequences.	https://content.iospress.com/articles/journal-of-sports-analytics	
/jsa103.	
[4]	 Zhan,	 J.,	 Gerstner,	 L.,	 &	 Polimeni,	 J.	 (2020).	 Measuring	 the	 Impact	 of	 Robotic	 Umpires.	
https://global-uploads.webflow.com/5f1af76ed86d6771ad48324b/5f6a65851d1ac98081a707f0_	
Zhan_MeasurinM-the-impact-of-robotic-umpires.pdf.	
[5]	 Ranjan,	 C.,	 Ebrahimi	 S.,	 &	 Paynabar,	 K.	 (2016).	 Sequence	 Graph	 Transform	 (SGT):	 A	 Feature	
Embedding	Function	for	Data	Mining.	arXiv:1608.03533v13.	
[6]	Manning,	C.,	Raghavan,	P.,	&	Schütze,	H.	(2008).	Introduction	to	Information	Retrieval.	ISBN:	052	
1865719.	
[7]	Srihari,	S.	(2019).	Mixtures	of	Gaussians.	https://cedar.buffalo.edu/~srihari/CSE574/Chap9	
/Ch9.2-MixturesofGaussians.pdf. 
[8]	Carrasco,	O.	(2019).	Gaussian	Mixture	Models	Explained.	Towards	Data	Science.		
towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95.	
[9]	Brossard,	E.	(2010).	Graph	Theory:	Network	Flow.	University	of	Washington.	https://sites.math.	
washington.edu/~morrow/336_10/papers/elliott.pdf.	
[10]	 Agarwal,	 B.,	 &	 Khan,	 M.	 H.	 (2013).	 Analysis	 of	 Rank	 Sink	 Problem	 in	 PageRank	 Algorithm.	
International	Journal	of	Scientific	&	Engineering	Research.	https://www.ijser.org/researchpaper/	
Analysis-of-Rank-Sink-Problem-in-PageRank-Algorithm.pdf.	
[11]	Driveline	Baseball.	(2019).	Calling	the	Right	Pitch:	Investigating	Effective	Velocity	at	the	MLB	
Level.	https://www.drivelinebaseball.com/2019/05/calling-right-pitch-investigating-effective-	
velocity-mlb-level/.	
[12]	Baseball	Reference.	(2020).	Similarity	Scores.	https://www.baseball-reference.com	
/about/similarity.shtml.	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	

	 18	

Appendix	
Table	2:	Order	Comparison	by	Cluster	

	
	

Table	3:	Cluster	Average	Entropy	

	
	

Figure	5	&	6:	Pitch-Type	Sequence	Cluster	Splits	by	Matchup	Type	&	Role	

	
	

Figure	8	&	9:	Zone	Sequence	Cluster	by	Relative	Frequency/Density

	
	


