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Accurate statistical prediction of American football player development and 

performance is an important issue in the sports industry. We propose and implement 

a novel, fast, approximate k-nearest neighbor regression model utilizing locality-

sensitive hashing in highly dimensional spaces for prediction of yearly National 

Football League player statistics. MAYFIELD accepts quantitative and qualitative 

input data and can be calibrated according to a variety of parameters. Concurrently, 

we propose several new computational metrics for empirical player comparison and 

evaluation in American football, including a weighted inverse-distance similarity 

score, stadium and league factors, and NCAA-NFL statistical translations. We utilize a 

training set of comprehensive NFL statistics from 1970-2009, across all player 

positions and conduct cross-validation on the model with the subset of 2010-18 NFL 

statistics. Preliminary results indicate the model to significantly improve on current, 

publicly available predictive methods. Future training with advanced statistical 

datasets and integration with scouting-based methods could improve MAYFIELD's 

accuracy even further. 
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1. Introduction 

Accurate forecasting of on-field performance in professional sports is a major component of 

player evaluation by fans, coaches, and sports executives. Due to a variety of factors, including a lack 

of highly detailed, publicly available data, emphasis on traditional video scouting methods by coaches 

and executives, and the relative complexity of the sport, American football is considerably less 

analytically developed than other professional sports, most notably baseball and basketball. Silver 

(2003, 2015) presents advanced comprehensive forecasting models for the MLB and NBA, although 
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these algorithms are proprietary and are thus irreproducible. Schatz (2008) presents a similar non-

comprehensive2 model for the NFL, although it is likewise not publicly available. 

We present a reproducible, comprehensive, learning-based methodology for year-by-year 

statistical forecasting of NFL players’ careers and implement it on the entire set of post-merger (i.e., 

after 1970) NFL players. A wide survey of the relevant literature reveals that, to date, no algorithm 

exists which comprehensively projects NFL player statistics across all positions and utilizes a dataset 

of MAYFIELD’s size and scope. We also propose several important contributions to football analytics 
for future implementation into MAYFIELD: an Approximate Value metric for collegiate football 

players, NCAA-NFL statistical translations which adjust for park and league factors, and a Jamesean-

style Similarity Scores framework for empirical player comparison. 

Our paper proceeds in the following manner. Section 2 describes MAYFIELD's dataset, the 

operation of the MAYFIELD algorithm, and reviews the relevant previous work which MAYFIELD 

builds upon. Section 3 gives our initial evaluation of MAYFIELD's accuracy. Section 4 concludes the 

paper. 

 

2. Methodology 

2.1 Data 

 

Figure 1- Position Mapping 

MAYFIELD utilizes a dataset derived from the Pro Football Reference (PFR) historical 

database consisting of on-field performance statistics and biographical information for every player, 

team, and season since 1970, when the NFL and the AFL merged. For purpose of analysis, we 

 
2 Offensive linemen and punters are not included in Schatz’s (2008) forecasts. 
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segregate the player data into several position groups according to their PFR-listed positions as 

shown in Figure 13. 

Our on-field statistics comprise a set of standard NFL box-score statistics such as yards, 

touchdowns, tackles, field goal attempts, etc. As depicted in Figure 2, we limit the set of variables 

considered for players at a given position to only those relevant to the on-field role of a typical player 

at that position. Importantly, we include PFR's “Approximate Value" metric (Drinen 2008b), which 

places a numerical value on the all-inclusive contributions of a player to his team's success in a given 

season. 

Our biographical data can be split into two categories: static, and dynamic. Static biographical 

variables are variables for a player whose initial value never changes from year to year, whereas 

dynamic biographical variables may fluctuate from year to year. We list which biographical variables 

are used for offensive (i.e., QB, RB, TE, WR, OL) and defensive (i.e., DL, EDGE, LB, CB, S) players in 

Figure 34. In addition to data collected from PFR, some of the dynamic variables are not taken 

explicitly from PFR, but instead calculated from the data, including the variables for changes 

coaching, team, and scheme, consecutive years with a players' current coaches, team, and scheme, 

and the total AV per game of a team's players at each position during the previous season. One 

dynamic biographical statistic of note is team ratings from the Simple Rating System (SRS), which is 

described by Drinen (2006). SRS estimates the strength of a team's offense and defense relative to 

the league average in terms of points per game- for instance, a team with an offensive SRS of +6.0 

would be expected to score 6 more points per game than an average team, all else equal. 

 

Figure 2- Biographical Variable Assignment 

 
3 Note that some PFR-listed positions are mapped to MAYFIELD's according to the defensive schemes which 
the player performed under (i.e., 4-3 or 3-4). This is denoted by the name of the scheme marked on the 
corresponding arrow. 
4 Special teams players (K, P) only use the statistics listed in the intersection of Figure 3. Note that static 
biographical statistics are italicized. 
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When predicting a future performance, MAYFIELD combines players' historical performance 

over many years into overlapping periods of the respective player's career, which we refer to as 

segments. Each segment consists of a player's static biographical data and Y consecutive seasons of 

that player's dynamic biographical and performance data. We find the set S of all of the consecutive 

Y-year segments and use this S as the basis for our training set. 

 

Figure 3- Performance Variable Assignment 

2.2 Statistical Translations 

2.2.1 NFL Equivalencies 

A major hurdle when comparing raw statistics of professional football players is variance in 

scoring environments. Kickers, for instance, often experience high performance variance due to 

weather conditions (Pasteur & Cunningham-Rhoads 2014). Similarly, due to differences in rules 

across leagues, or the quality and styles of play, players of otherwise equal ability may experience 

nonrandom variance in their observed statistics. Despite that some of the earliest sabermetrics work 

addresses this issue in professional baseball (e.g., Davenport 1996; James 1985; Thorn & Palmer 

1984), no method yet exists for American football. 

We adopt a method similar to that of Szymborski (1997) to translate players' collegiate and 

professional statistics to one NFL-average baseline. First, we calculate stadium factors of each 

statistic for each team and post-merger season using a modified variant of Thorn & Palmer (1984)’s 

calculations, which we give below. Our base factor Φ𝑖,𝑡 for team i in year t on a statistic λ, where λ𝑖,𝑡 

is the per-game average of 𝜆 which team i recorded in year t, and λ′𝑖,𝑡 is the per-game average of  𝜆 

which team i allowed in year t, is: 
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Φ𝑖,𝑡 =
λℎ𝑜𝑚𝑒

𝑖,𝑡 + λℎ𝑜𝑚𝑒
′𝑖,𝑡

λ𝑎𝑤𝑎𝑦
𝑖,𝑡 + λ𝑎𝑤𝑎𝑦

′𝑖,𝑡
 

However, Φ is not entirely satisfactory since it accounts for neither the caliber of the team in 

question nor its opponents. To resolve the issue, we introduce Thorn & Palmer’s (1984) offensive 

and defensive team ratings with respect to λ which we call τ. The formulae for 𝜏 are as follows, letting 

𝑛𝑡 be the number of NFL teams playing during the current year: 

τ𝑜𝑓𝑓
𝑖,𝑡 = [

λ𝑎𝑤𝑎𝑦
𝑖,𝑡 (𝑛𝑡 − 1)

𝑛𝑡(𝑛𝑡 − 2) + Φ𝑖,𝑡
+

λℎ𝑜𝑚𝑒
𝑖,𝑡

Φ𝑖,𝑡(𝑛𝑡 − Φ𝑖,𝑡)
] ⋅

𝑛𝑡 − 2 + τ𝑑𝑒𝑓
𝑖,𝑡

2λ𝑖,𝑡
 

τ𝑑𝑒𝑓
𝑖,𝑡 = [

λ𝑎𝑤𝑎𝑦
′𝑖,𝑡 (𝑛𝑡 − 1)

𝑛𝑡(𝑛𝑡 − 2) + Φ𝑖,𝑡
+

λℎ𝑜𝑚𝑒
′𝑖,𝑡

Φ𝑖,𝑡(𝑛𝑡 − Φ𝑖,𝑡)
] ⋅

𝑛𝑡 − 2 + τ𝑜𝑓𝑓
𝑖,𝑡

2λ𝑖,𝑡
 

Since 𝜏 are codependent, we initialize each 𝜏 = 1, and then recompute their values until 

convergence, typically after 3 iterations. The adjusted stadium factors Ω are then respectively: 

Ω𝑜𝑓𝑓
𝑖,𝑡 =

𝑛𝑡 − Φ𝑖,𝑡 2𝑛𝑡 − Φ𝑖,𝑡 − 1
2𝑛𝑡 − 2

𝑛𝑡 − 2 + τ𝑑𝑒𝑓
𝑖,𝑡

  ;   Ω𝑑𝑒𝑓
𝑖,𝑡 =

𝑛𝑡 − Φ𝑖,𝑡 2𝑛𝑡 − Φ𝑖,𝑡 − 1
2𝑛𝑡 − 2

𝑛𝑡 − 2 + τ𝑜𝑓𝑓
𝑖,𝑡

 

We maintain Thorn & Palmer’s (1984) s segregation of offensive and defensive factors in our 

calculations; that is, offensive players' statistics are adjusted using Ω𝑜𝑓𝑓 and defensive players' 

statistics are adjusted using Ω𝑑𝑒𝑓 . However, instead of the typical 1-year park factors used in 

sabermetrics, we utilize an unweighted 5-year moving average of Ω due to the comparably smaller 

sample size of games in a given NFL season. Without adjustment to the time horizon of stadium factor 

calculations, random variance in the data may influence stadium factors more than is optimal. 

So far, our stadium factors only differ from those of Thorn & Palmer (1984) in our calculation 

of Φ. From here, we utilize Szymborski’s (1997) method for our translations. The two remaining 

components of interest are year and league factors. To adjust for these effects, we compute a league-

year factor, Θ for λ as follows: 

Θ𝑡 =
λ𝑖,∗

λ𝑖,𝑡
⋅ δ 

Θ is just the average team's λ during some base year and league over the average team's λ in 

a given league and year, times a deflator δ which measures the relative talent level of a player's league 

as a compared to the base league. We define our base as the NFL 2018-19 season, although any season 

or league could theoretically be used. The calculation of 𝛿 is not detailed by Szymborski, so where 

𝜒𝑖,𝑡 is the cumulative yearly statistics which player i recorded, we define 𝛿 as the ratio in NFL-average 

𝜒𝑖,𝑡 and the average 𝜒𝑖,𝑡 for a given league, among players which played in both the NFL and that 

league over the course of their careers (note that we adjust 𝜒𝑖,𝑡 with Ω and Θ first before computing 

averages). 
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We conduct translations of both players' collegiate and professional statistics. Importantly, δ 

is measured separately for each NCAA D-IA conference and an “Other" category for all non-D-IA 

players. The final translated value of a player's χ𝑖,𝑡 is then: 

χ𝑖, 𝑡̂ = χ𝑖, 𝑡√Θ𝑡/Ω𝑖,𝑡 

Note that these translations are not a prediction of how a player would have performed 

during that year if they had been in the NFL, rather, they are an estimation of the player's observed 
performance in the context of the baseline NFL environment. Changes in playing time due to higher 

levels of team talent, differences in play style, coaching, and strategy of NFL teams as opposed to 

collegiate teams, and other factors which influence observed player statistics in more nuanced 

manners are not captured by these translations. 

2.2.2 Collegiate Approximate Value 

All-inclusive measures of total player contributions to team success are an important 

component of advanced statistical analysis of sporting performance. The development and spread of 

such metrics (e.g., Wins Above Replacement in the MLB, Player Efficiency Rating in the NBA, and Real 

Plus-Minus in the NHL and NBA) have greatly affected both the style of play on the field and the 

evaluation of player talent off of it. Although less analytically advanced relative to its analogs in other 

professional sports, Approximate Value (Drinen 2008a) has proven a useful tool for empirically 

evaluating the performance of NFL athletes. However, Approximate Value is only defined for the NFL, 

and does not currently support evaluation of collegiate football players. Therefore, we extend 

Drinen’s (2008a) methodology to NCAA football, and give our formulation of collegiate Approximate 

Value below. 

Approximate Value evaluates player contributions to team success according to the players' 

primary positional responsibilities with respect to cumulative team success at that position group. 

Consider the following partition of offensive team performance, where ζ𝑎 is the fraction of total team 

offensive output by a positional responsibility a, among skill position players (defined as QB, RB, WR, 

TE): 

ζ𝑃𝑎𝑠𝑠
𝑖,𝑡 = 0.11 ⋅

χ𝑃𝑎𝑠𝑠𝑌𝑎𝑟𝑑𝑠
𝑖,𝑡

𝑔𝑖,𝑡λ𝑇𝑜𝑡𝑎𝑙𝑌𝑎𝑟𝑑𝑠
𝑖,𝑡

÷
λ𝑃𝑎𝑠𝑠𝑌𝑎𝑟𝑑𝑠

𝑖,𝑡

λ𝑇𝑜𝑡𝑎𝑙𝑌𝑎𝑟𝑑𝑠
𝑖,𝑡

+ (χ𝐴𝑌𝐴
𝑖,𝑡 − χ𝐴𝑌𝐴

𝑖,𝑡 ) ⋅ {

1

2
 χ𝐴𝑌𝐴

𝑖,𝑡 >  χ𝐴𝑌𝐴
𝑖,𝑡

−2 χ𝐴𝑌𝐴
𝑖,𝑡 < χ𝐴𝑌𝐴

𝑖,𝑡

 

ζ𝑅𝑢𝑠ℎ
𝑖,𝑡 = 0.12 ⋅

χ𝑅𝑢𝑠ℎ𝑌𝑎𝑟𝑑𝑠
𝑖,𝑡

𝑔𝑖,𝑡λ𝑇𝑜𝑡𝑎𝑙𝑌𝑎𝑟𝑑𝑠
𝑖,𝑡

÷
λ𝑅𝑢𝑠ℎ𝑌𝑎𝑟𝑑𝑠

𝑖,𝑡

λ𝑇𝑜𝑡𝑎𝑙𝑌𝑎𝑟𝑑𝑠
𝑖,𝑡

+ (χ𝑌𝑃𝐶
𝑖,𝑡 − χ𝑌𝑃𝐶

𝑖,𝑡 ) ⋅ {

3

4
 𝜒𝑌𝑃𝐶

𝑖,𝑡 >  𝜒𝑌𝑃𝐶
𝑖,𝑡

−2 𝜒𝑌𝑃𝐶
𝑖,𝑡 < 𝜒𝑌𝑃𝐶

𝑖,𝑡

 

𝜁𝑅𝑒𝑐
𝑖,𝑡 = 0.3154 ⋅

𝜒𝑅𝑒𝑐𝑌𝑎𝑟𝑑𝑠
𝑖,𝑡

𝑔𝑖,𝑡𝜆𝑇𝑜𝑡𝑎𝑙𝑌𝑎𝑟𝑑𝑠
𝑖,𝑡

÷
𝜆𝑅𝑒𝑐𝑌𝑎𝑟𝑑𝑠

𝑖,𝑡

𝜆𝑇𝑜𝑡𝑎𝑙𝑌𝑎𝑟𝑑𝑠
𝑖,𝑡

 

ζ𝐵𝑙𝑜𝑐𝑘
𝑖,𝑡 = 0.1136 ⋅

χ𝐺𝑎𝑚𝑒𝑠
𝑖,𝑡

5𝑔𝑖,𝑡 + ∑ χ𝐺𝑎𝑚𝑒𝑠
𝑖,𝑡

𝑖∈𝑇𝑒𝑎𝑚𝑖,𝑡

⋅ {6 Top 1 on 𝑇𝑒𝑎𝑚𝑖  in χ𝑇𝑜𝑢𝑐ℎ𝑒𝑠
𝑖,𝑡  at TE

1                                                         else
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Where 𝑔𝑖,𝑡 is the number of games which player i's team played in year t, 𝑇𝑒𝑎𝑚𝑖,𝑡 is the set of 

players on player i's team in year t, χ𝑌𝑃𝐶 =
χ𝑅𝑢𝑠ℎ𝑌𝑎𝑟𝑑𝑠

χ𝑅𝑢𝑠ℎ𝐴𝑡𝑡
, χ𝐴𝑌𝐴 = (χ𝑃𝑎𝑠𝑠𝑌𝑎𝑟𝑑𝑠 + 20χ𝑃𝑎𝑠𝑠𝑇𝐷 − 45χ𝑃𝑎𝑠𝑠𝐼𝑁𝑇)/

χ𝑃𝑎𝑠𝑠𝐴𝑡𝑡, and χ𝑇𝑜𝑢𝑐ℎ𝑒𝑠 = χ𝑅𝑢𝑠ℎ𝐴𝑡𝑡 + χ𝑅𝑒𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠. Note that here (and thereafter) the leading 

coefficients on each term are due to Drinen (2008a), and as in Section 2.2.1, averages are calculated 

within-conference. Furthermore, ζ𝐵𝑙𝑜𝑐𝑘 is used exclusively for the TE position and takes a value of 0 

otherwise. So, letting λ𝑃𝑃𝐷 = λ𝑃𝑜𝑖𝑛𝑡𝑠/λ𝐷𝑟𝑖𝑣𝑒𝑠, skill position Approximate Value is thus: 

𝐴𝑉𝑠𝑘𝑖𝑙𝑙
𝑖,𝑡 = 100

λ𝑃𝑃𝐷
𝑖,𝑡

λ𝑃𝑃𝐷
𝑖,𝑡

⋅ (ζ𝑃𝑎𝑠𝑠
𝑖,𝑡 + ζ𝑅𝑢𝑠ℎ

𝑖,𝑡 + ζ𝑅𝑒𝑐
𝑖,𝑡 + ζ𝐵𝑙𝑜𝑐𝑘

𝑖,𝑡 ) 

So far, we use Drinen’s (2008a) method without modification. However, we necessarily 

deviate for calculation of Approximate Value at the offensive line positions (OT, OG, C) due to Drinen’s 

(2008a) use of starting lineup and Pro Bowl / All-Pro5 data, which is unavailable and/or nonexistent 

at the collegiate level. Therefore, we adopt the following procedure, which substitutes All-America 

and All-Conference awards for the Pro Bowl and All-Pro dummy variables respectively, and does not 

utilize starting lineup data: 

𝐴𝑉𝑙𝑖𝑛𝑒𝑚𝑎𝑛
𝑖,𝑡 =

χ𝐺𝑎𝑚𝑒𝑠
𝑖,𝑡

𝑔𝑖,𝑡
 {6 Top 5 on 𝑇𝑒𝑎𝑚𝑖  in χ𝐺𝑎𝑚𝑒𝑠

𝑖,𝑡  at OL

1                                                      else
⋅ {

2          All − America Selection
1.65 All − Conference Slection

1                                            else
 

We now define defensive Approximate Value: 

 

Where 𝜓𝑖 = 0.6 when player i is a DL or EGDE, 0.3 when an LB, and 0.1 when a CB or S. This 

formulation of defensive AV is identical to that of Drinen (2008a), except for its modification on 

account of All-Americans and a lack of starting lineups, and that unlike Drinen, we utilize proportions 

of team-total defensive statistics (i.e., 
χ

𝑔λ
) rather than pooling by position group. Special teams 

Approximate Value is given as follows: 

 

 
5 For the unfamiliar reader, these are designations given to the top players at each position in the NFL. 
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Where χ𝑌𝑃𝑃 =
χ𝑃𝑢𝑛𝑡𝑌𝑎𝑟𝑑𝑠

χ𝑃𝑢𝑛𝑡𝑠
, χ𝑋𝑃𝑃 =

χ𝑋𝑃

χ𝑋𝑃𝐴𝑡𝑡
, and χ𝐹𝐺𝑃 =

χ𝐹𝐺

χ𝐹𝐺𝐴𝑡𝑡
. Finally, the cumulative Approximate Value 

for a player is thus: 

𝐴𝑉𝑖,𝑡 = 𝐴𝑉𝑠𝑘𝑖𝑙𝑙
𝑖,𝑡 + 𝐴𝑉𝑙𝑖𝑛𝑒𝑚𝑎𝑛

𝑖,𝑡 + 𝐴𝑉𝑑𝑒𝑓𝑒𝑛𝑠𝑒
𝑖,𝑡 + 𝐴𝑉𝑠𝑝𝑒𝑐𝑖𝑎𝑙

𝑖,𝑡  

This formulation of collegiate Approximate Value borrows heavily from Drinen’s (2008a) 

methodology and is designed to be as similar as feasibly possible, as to make player comparisons of 

the variety described in Section 2.3 more meaningful, as comparing these “Approximate Values" for 

one player across his collegiate and professional career yields less useful information the more 

dissimilar the two metrics are. We now proceed to describe MAYFIELD's algorithmic structure and 

operation. 

2.3 The kNN Algorithm 

K-nearest neighbor (kNN) algorithms are among the oldest and most widely utilized methods 

in machine learning. Since Cover (1968) originally put forth kNN6, nearest-neighbor algorithms have 

proliferated in usage for prediction problems in both classification and regression. The nearest-

neighbor principle from which kNN derives is essentially just that objects which are highly similar in 

their observable characteristics (i.e., are “nearest neighbors") are likely to be similar in their 

unknown characteristics as well. Due to the simplicity of this premise and of nearest-neighbor 

algorithms in general, kNN has been shown as a versatile, but surprisingly effective method for 

prediction in problems as disparate as credit scoring (Mukid et al. 2018), cardiovascular medicine 

(Shouman, Turner, & Stocker 2012), and encryption (Wong et al. 2009). Importantly, several 

advanced player projection techniques similar to MAYFIELD (Silver 2003, 2015; Schatz 2008) utilize 

nearest-neighbor comparisons, although their proprietary nature prevents analysis of their 

algorithmic structure (kNN or otherwise). MAYFIELD follows in the tradition of these algorithms, 

albeit with more formalized and reproducible methods. 

MAYFIELD can be characterized as an approximate kNN regression method for predicting the 

on-field statistics of National Football League players. In this respect, MAYFIELD is distinct from both 

kNN classification techniques, which predict categorical variables rather than continuous ones, and 

exact kNN methods, which search the entire training set for neighbors, as opposed to MAYFIELD's 

only partial search as controlled by locality-sensitive hashing (see Section 2.3.2). We provide the 

specification of MAYFIELD's exact structure and operation in the following subsections. 

2.3.1 Model Training Procedure 

Supervised learning methods such as kNN principally depend on parameters whose values 

are learned via training the specified model on the dataset. This process is achieved by generation of 

parameter combinations, measurement of the model's accuracy under the given parameter values, 

and repetition until errors are minimized. Hence, supervised learning is effectively equivalent to the 

optimization problem posed by finding the parameters values which minimize the model's error. 

MAYFIELD learns the optimal values for 6 + Y distinct weighting parameters, whose 

respective roles in the MAYFIELD algorithm are detailed in Sections 2.3.2-2.3.6. These weighting 

 
6 For more recent surveys of modern kNN methods, see Bhatia & Vandana (2010) and Altman (1992). 
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parameters should be distinguished from hyperparameters, whose values are not learned via 

optimization, but instead heuristically selected based upon results of cross-validation. More 

specifically, we specify 5 hyperparameters: K, the number of “nearest neighbors" used to predict 

players' future performance vectors; Y, the length in years of player career segments; u, the number 

of years into the future which MAYFIELD predicts performance; T, the number of randomly 

generated hash functions used during locality-sensitive hashing (see Section 2.3.2); and B, the 

proportion of the data which is used for calculating each local regression in our LOESS correction 

(see Section 2.3.5). However, we only select values for K and Y during cross-validation; B and T have 

little direct relationship to MAYFIELD's accuracy, and we set these ex-ante. u is effectively a 

hyperparameter in name only, as we train MAYFIELD for all values of 𝑢 ∈ {1,2,3}, since different u 

represent different sets of performance vectors we seek to predict. 

We select the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES) solver for 

optimizing MAYFIELD's parameters. For an excellent summary of CMA-ES, see Hansen (2016); we 
describe its basic method and desirable properties here. CMA-ES is a stochastic, evolutionary strategy 

solver which is especially useful for optimization on ill-conditioned problems (i.e., when fitness 

functions lack continuity, convexity, linearity, existence of derivatives, separability, low 

dimensionality, or other simplifying properties), and has been shown to be a highly efficient and 

reliable method for global optimization (Hansen 2009; Hansen & Kern 2004). As opposed to methods 

which attempt to directly estimate gradients (e.g., quasi-Newton), CMA-ES estimates a fitness 

function in several generations, selecting the most optimal parameter value combinations to serve as 

“parents" for the following generation of parameter estimates, repeating until the fitness function 

value converges. Since the landscape of player performance vectors is highly rugged, noisy, and 

highly dimensional, CMA-ES is an ideal optimization algorithm for use in MAYFIELD compared to 

other existing methods (e.g., BOBYQA, BFGS, Nelder-Mead, Powell, etc.). 

We train MAYFIELD using the CMA-ES algorithm in the following manner. Given the entire 

training set of Y-length segments S and values for each hyperparameter, we specify a subset 𝑅 =

{𝑟𝑖,𝑡 ∈ 𝑆: ∃𝑟𝑖,𝑡+𝑢 ∈ 𝑆} of segments which have corresponding future performance vectors in the 

training data. After applying the statistical translations of Section 2.2 and converting the quantitative 

data to percentile ranks, we then apply locality-sensitive hashing on R which generates a reduced set 

𝐻𝑟𝑖,𝑡  of nonequivalent and arbitrarily similar segments for each member of R. Given an initial CMA-

ES generation of parameter value combinations, the K most similar segments in 𝐻𝑟𝑖,𝑡  to each 𝑟𝑖,𝑡 are 

then used to predict the future performance vectors {𝑣𝑖,𝑡+𝑢} which correspond to R and whose value 

is a function of the parameters. The root-mean squared error across each dimension of the 

performance vector space V on these predictions is then calculated for each parameter combination. 

CMA-ES then re-estimates a generation of new parameter combinations based upon the most 

accurate members of the current generation and continues to repeat the parameters-predictions 

cycle until errors have converged. Once the solver terminates and returns the trained parameter 

values, we move on to a cross-validation step where we select the most optimal model across each 

different combination of hyperparameters, which we describe in Section 2.5. 

2.3.2 Locality Sensitive Hashing 

Locality-sensitive hashing (LSH) is a dimensionality reduction technique commonly 

employed in nearest neighbor search problems when distance measurements are computationally 
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costly. LSH was first proposed by Gionis, Indyk & Motwani (1999) and has acquired a considerable 

history of usage in statistical similarity measurement and related applications (e.g., Datar et al. 2004; 

Andoni & Indyk 2008; Andoni et al. 2015; Das et al. 2007; Koga, Ishibashi, & Watanabe 2007; Cochez 

& Mou 2015; Brizna et al. 2010). 

For any given player segment, MAYFIELD's initial N-order set of comparables may be in 

excess of 10,000 segments comprising up to q = 49*Y+17 variable dimensions, so some form of 

dimensionality reduction is necessary to make training MAYFIELD's parameters practically feasible. 
As a consequence of employing LSH, MAYFIELD is not an exact nearest neighbor search algorithm 

since some potential neighbors are excluded from distance measurement. However, the manner in 

which LSH operates ensures with high probability that these excluded segments are unlikely to be of 

practical interest when K is small relative to N (Leskovec 2001). We describe our LSH procedure 

below. 

When predicting future performance vectors 𝑣𝑡+𝑢 ∈ 𝑉 = [0,1]𝑝 of a segment 𝑟0, we begin 

with a set 𝑅 = 𝑟𝑖,𝑡 of segments which might be compared to 𝑟0. Each segment 𝑟𝑖,𝑡 can thus be viewed 

as corresponding to a vector in the q-dimensional feature space, F. Due to our choice of distance 

function (see Section 2.3.3 below for discussion), we apply a linear transformation to F, which yields 

a modified feature space F': 

𝐹′ = |𝐶|
−

1
𝑞𝐶Σ−

1
2𝐹 

Σ−
1

2 is the principal root of the inverse of the auto-covariance matrix Σ of F, and C is a 𝑞 × 𝑞 

diagonal matrix of nonnegative weighting coefficients (Section 2.3.3 explains further). Letting 𝑟′ be 

the vector in 𝐹′ corresponding to 𝑟 ∈ 𝐹, we first construct ⌈𝑙𝑜𝑔_2(𝑁)⌉ hyperplanes. For each 

hyperplane, we first generate q random vectors, which are distributed under the following 

multivariate uniform distribution: 

𝑤 ∼ Π𝑗=1
𝑞

𝒰𝒿 (𝑚𝑖𝑛(𝑟𝑗
′ ∈ 𝐹′), 𝑚𝑎𝑥(𝑟𝑗

′ ∈ 𝐹′)) 

Multiple linear regression on the set {𝑤} of these random vectors yields some affine function 

𝑓𝑘∈{1,2…𝑞}:  Π𝑗=1
𝑞−1

𝐹𝑗
′ → 𝐹𝑞

′ which describes a q-1-dimensional hyperplane that intersects every point in 

{𝑤}. If we consider 𝑟′ as just σ, 𝑟𝑞
′, the resulting hash function h will be: 

ℎ: 𝐹′ → {0,1}𝑞 , ℎ(𝑟′𝑖,𝑡) ≔ ([𝑓1(𝜎𝑖,𝑡) ≤ 𝑟𝑞
′𝑖,𝑡], … [𝑓𝑞(𝜎𝑖,𝑡) ≤ 𝑟𝑞

′𝑖,𝑡]) 

Notice that the jth bit of the hash code is just the value of the indicator function for that 𝑟′𝑖𝑡's 

residual on 𝑓𝑘 is nonnegative. These hash functions naturally imply a set of segments arbitrarily 

similar to 𝑟0, namely: 

𝐻𝑟0
𝑘 = {𝑟𝑖,𝑡 ∈ 𝑅: ℎ(𝑟′𝑖,𝑡) = ℎ(𝑟0) ∧ 𝑟𝑖,𝑡 ≠ 𝑟0} 

Statistical noise during the hyperplane construction process may result in the exclusion of 

low-distance comparables due to hyperplanes which cut closer to 𝑟0 than optimal. Therefore, we 

repeat the LSH process T times and take the union 𝐻𝑟0 =∪𝑘=1
𝑇 𝐻𝑟0

𝑘  across the H-sets or repeat until 

|𝐻𝑟0| ≥ 𝐾, whichever occurs last. We set the hyperparameter T = 20, although any positive integer 
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value could potentially be used instead; however, one should keep in mind that too low of a T will 

result in a narrow 𝐻𝑟0 , while too high of T may not give the desired reduction in runtime. 

2.3.3 A Novel Weighted Mahalanobis Distance Metric 

The canonical nearest neighbor problem for some object of interest a, is to find the most 

similar object b to a within a search set A, where 𝑎 ∈ 𝐴 and 𝑎 ≠ 𝑏, and to then make inferences about 

a based upon the observable characteristics of b. kNN is a generalization of nearest neighbor search 

which instead of mapping a to the most similar element b, returns the set 𝐵 ⊆ 𝐴 of the K elements 

most similar to a (i.e., |𝐵| = 𝐾 where 𝑎 ∉ 𝐵). For MAYFIELD, our object of interest is 𝑟0, and the 

search set is the LSH output 𝐻𝑟
0, which is a set of segments arbitrarily similar to 𝑟0. 

The principal question when designing a nearest-neighbor search algorithm is that of 

similarity measurement. The standard approach (which we adopt) is to specify some distance metric 

on the search set, and to identify the objects with lower distances to the object of interest as 

monotonically more similar. While many distance metrics exist which could potentially be utilized, 

the Mahalanobis distance (MD) is especially useful in similarity learning algorithms such as kNN 

(Mahalanobis 1936; De Maesschalck, Jouan-Rimbaud, & Massart 2000; Xing et al. 2003; Schultz & 

Joachims 2004; Woefel & Ekenel 2005). We give the classical formulation of MD below, where a and 

b are vectors in the feature space A, and Σ is the auto-covariance matrix of the features identified in 

A: 

𝑑𝐴(𝑎, 𝑏) = √(𝑏 − 𝑎)⊤Σ−1(𝑏 − 𝑎) 

MD offers several advantages over more common metrics, such as Euclidean distance. Chiefly, 

the insertion of the inverse auto-covariance matrix Σ−1 simultaneously standardizes the scale of each 

axis (as measured by the feature variance) and adjusts for the presence of correlation between 

dimensions of the data, which may result in a non-orthonormal basis of A if the issue is left 

uncorrected (as in Euclidean distance). Moreover, if we set Σ to be just 𝐼𝑞, then 𝑑𝐴 is the Euclidean 

norm on A. Similarly, any diagonal Σ (for instance, when each feature is pairwise independent) will 

yield a standardized Euclidean distance. Note that throughout, the distance component for a 

categorical variable between two segments would be the Jaccard distance (Jaccard 1901), rather than 

the numerical distance between the pair of vectors. 

However, some authors identify issues with using this formulation of the MD metric. Σ is 

highly sensitive to the presence of outliers, which may bias estimates of MD (Woefel & Ekenel 2005). 

Additionally, Σ may perform suboptimally if MD is used for inference on the object of interest, as it 

does not adjust for the relation between the measured features and those which are being predicted 

(Schultz & Joachims 2004; Xing et al. 2003). As MAYFIELD is foremost a predictive algorithm, these 

issues are of serious concern. 

To address the salient problems with classical MD, we make two modifications which should 

result in a more useful distance metric. Firstly, instead of estimating Σ as the classical auto-covariance 

matrix, we compute Rousseuw’s (1984) Minimum Covariance Determinant (MCD) estimator Σ. MCD 

has been shown to be highly robust to outliers (Rousseuw & Van Drissen 1992; Hubert & Debruyne 

2010), and previous authors' results demonstrate MCD to be a quite clearly superior estimator of 

covariance when used in MD calculations. Secondly, we introduce a diagonal matrix 𝐶2 of weighting 
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coefficients into the MD equation in the reparameterization described by Schultz & Joachims (2004). 

Their “weighted" MD metric replaces Σ with a matrix 𝐴 𝑊 𝐴⊤, where W is some 𝑞 × 𝑞 diagonal real 

matrix with nonnegative entries, and A is any 𝑞 × 𝑞 real matrix such that 𝐴 𝑊 𝐴⊤ is positive 

semidefinite. Since Σ is positive semidefinite and symmetric, assuming Σ is nonsingular7, it 

necessarily has a unique positive semidefinite inverse square root (i.e., some A such that 𝐴2 = Σ−1) 

which is also symmetric (hence Σ−
1

2 = Σ−
1

2

⊤

). Therefore, we set Schultz & Joachims’ (2004) A equal to 

the square root of the inverse of Σ as estimated by the MCD (denoted by Σ−
1

2), and W to a matrix 

|𝐶|
−

2

𝑞𝐶2, which we discuss below. This weighted MD is now: 

𝑑𝐹(𝑟𝑖,𝑡 , 𝑟0) = |𝐶|
−

1
𝑞√(𝑟𝑖,𝑡 − 𝑟0)⊤Σ−

1
2𝐶2Σ−

1
2(𝑟𝑖,𝑡 − 𝑟0) 

Conveniently, 𝑑𝐹 can be interpreted as simply the Euclidean distance between 𝑟′𝑖,𝑡 and 𝑟′0 in 

the linearly transformed space F'. Note that since Σ−
1

2 is positive semidefinite, and 𝐶2 has strictly 

nonnegative entries independent of the specification of a diagonal C and is thus also positive 

semidefinite, the product matrix will satisfy Schultz & Joachims (2004) criteria of the positive 

semidefiniteness of 𝐴 𝑊 𝐴⊤. Additionally, since we utilize Σ−
1

2 and C in our implementation of LSH, 

our estimations of Σ and C are performed on the entire population of segments, rather than 𝑟0-

dependent subsets thereof such as R or 𝐻𝑟0 . 

This generalized parameterization of MD is considerably more flexible than the classical 

variant. Considering each entry 𝐶𝑗,𝑗
2  as simply the relative weight placed on the jth feature of 

𝐹𝑗∈{1,2,…𝑞}, we are able to link each feature's influence on 𝑑𝐹 to its predictive power. For instance, 

supposing each feature to have equivalent predictive power, we set 𝐶 = 𝐼𝑞, which yields the classical 

MD, since Σ−
1

2𝐶2Σ−
1

2 = Σ−1 by definition. 

The optimal measure of a feature's predictive power, especially when predicting future 

components of a vector as opposed to a singular scalar value, is less clear. While Schultz & Joachims 

(2004) suggest supervised learning of each coefficient in C, this is impractical for our values of q due 

to a lack of computing power. We therefore adopt the following approach to estimating C, which 

yields a computationally more efficient solution. 

The principal goal of setting C is to maximize similarity between the arbitrary segments 𝑟𝑖1,𝑡 and 𝑟𝑖2,𝑡 

contingent upon the similarity of future performance vectors 𝑣𝑖1,𝑡+𝑢 and 𝑣𝑖2,𝑡+𝑢, respectively. 

Therefore, we seek to identify the features that correlate most strongly with highly similar future 

performance of two segments. Consider the random variables η𝑗 and κ, which are respectively the 

standardized Euclidean (i.e., the classical 1-dimensional Mahalanobis) pairwise distance between 

𝑟𝑗
𝑖1,𝑡

  and 𝑟𝑗
𝑖2,𝑡

, and the classical MD 𝑑𝐴(𝑣𝑖1,𝑡+𝑢, 𝑣𝑖2,𝑡+𝑢), for any given segments 𝑟𝑖1,𝑡 and 𝑟𝑖2,𝑡: 

 
7 In practice, it is statistically unlikely to observe singular estimates of Σ. In such cases, we utilize the Moore-
Penrose pseudoinverse of Σ, which exists for any real matrix Σ (Moore 1920; Penrose 1955; Bjerhammar 
1951). Additionally, since the pseudoinverse of nonsingular Σ are just Σ−1, we may be regarded as simply 
computing the pseudoinverse of Σ in all cases. 
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η𝑗 =
1

Σ𝐹𝑗,𝑗

√(𝑟𝑗
𝑖2,𝑡

− 𝑟𝑗
𝑖1,𝑡

)
2

  ;   κ = √(𝑣𝑖2,𝑡+𝑢 − 𝑣𝑖1,𝑡+𝑢)⊤Σ𝑉
−1(𝑣𝑖2,𝑡+𝑢 − 𝑣𝑖1,𝑡+𝑢) 

To calculate C, we first identify the (𝑁
2

) nonidentical segments in the population of the data 

and compute the values of η𝑗 and κ for each pair under their respective MCD auto-covariance 

matrices. Letting ρ𝑗 = 𝑐𝑜𝑟𝑟(η𝑗, κ) we appear to have found a suitable candidate for each coefficient 

on the diagonal of C. However, simply setting each 𝐶𝑗,𝑗 = ρ𝑗 is not quite satisfactory for two reasons. 

Firstly, if any ρ𝑗 = 0, then C will be singular and result in indeterminate values of 𝑑𝐹 , making any 

estimation of v impossible. Secondly, features which have negative correlations with κ make 

estimations of v based on 𝑑𝐹 less accurate. These “malignant" features are such that the more similar 

any two segments are in that dimension of the data, the less similar their corresponding future 

performance vectors are. Consequently, weighting a malignant feature such that it comprises a higher 

proportion of 𝑑𝐹 will result in higher selection rates of “near" neighbors which are similar in terms 

of 𝑟𝑗, but imply predicted v dissimilar to the actual “true" v, resulting in highly imprecise estimates. 

While the easiest course of action might be to simply remove such features from the calculation of 𝑑𝐹 

by setting 𝐶𝑗,𝑗 = 0 ∀ρ𝑗 ≤ 0, this runs into the former issue of a singular C. Therefore, to ensure strictly 

positive 𝐶𝑗,𝑗 which appropriately upweight features with large, positive ρ, we adopt the following 

exponential weighting scheme based on a hyperparameter α ∈ [1,∞): 

𝐶 = ⨁ αρ𝑗𝑒𝑗̂

𝑞

𝑗=1

 

This 𝐶 in some sense still makes 𝑑𝐹 a “learned" metric on 𝐹 in the same manner which Schultz 

& Joachims’s (2004) original specification of their “learned" MD; however, our approach is feasible 

when 𝑞 is large without any loss of resolution in the data via principal components analysis or similar 

methods. 

2.3.4 Inverse Distance-Weighted Similarity Scores 

 It is often useful to compute indices of similarity as an inverse distance function. Whereas a 

distance metric measures the dissimilarity of two objects on the interval [0,∞), where the larger the 

distance, the more dissimilar the two objects are, a similarity measure indexes the similarity of two 

objects on the interval (0,1], with a larger similarity index indicating, as the name suggests, highly 

similar objects. The key property of any similarity measure is a strictly decreasing image with respect 

to its corresponding distance metric. Often, similarity measures can be expressed in closed form as 

kernel functions that map directly from the feature space, which are commonly used in learning-

based algorithms (Schoelkopf, Tsuda, & Vert, 2004). 

 Similarity measures appear in some sabermetrics and other sports analytics work, albeit in a 

more informal manner. Bill James (1994) first introduced the concept of “similarity scores" for 

empirical comparison of Baseball Hall of Fame candidates to its already inducted members, which 

spawned a variety of methods for sports performance comparison (e.g.  Silver, 2015; Kubatko 2004; 

Hollinger 2003; Pelton 2003; Drinen 2008b). Some forecasting models (Silver 2003, 2015; Schatz 

2008) incorporate similarity scores into their respective methodologies as well. Similarity scores are 

one of the few areas of advanced empirical analysis of sports in which American football is well-
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represented. Schatz (2010) and Drinen’s (2008b) methodologies are well-known, and more 

importantly, reproducible. However, almost all work on sports performance similarity scores have 

used strictly first or second order polynomial models8 with no consideration for interactions 

between features. Moreover, the weighting coefficients utilized in such models appear to be 

completely arbitrary, as their respective authors give no treatment to the procedure used to estimate 

weights9. We seek to rectify these shortcomings by returning to more formally established methods 

in the non-sporting literature. 

 MD has the property that, if features are normally distributed, 𝑑𝐴
2 ∼ χ2(𝑞). While our data is 

certainly nonnormal (and moreover, are highly nonindependent), making this property less useful, 

we percentilize the data, which conforms features to a strictly uniform distribution on (0,1). Linear 

transformation of the feature space from F into 𝐹′ modifies the range of the underlying feature 

distributions, but not their uniformity. Our distance function 𝑑𝐹 is therefore principally a summation 

of uniformly distributed random variables, which for large q, converges to a normal distribution. 

Since our q certainly qualify as large (𝑞 > 60 in all cases), we may expect the distribution of 𝑑𝐹 to be 

sufficiently approximated by χ2(𝑞). 

 We define our similarity score as the probability, given 𝑟0, of observing a segment at least as 

distant from 𝑟0 as a given segment 𝑟𝑖,𝑡, which under the assumed 𝑑𝐹 ∼ χ2(𝑞): 

 

 Γ and γ are the complete and lower incomplete gamma functions, respectively. Notice that 𝑆𝑆 

is just the complement of the χ2(𝑞) cumulative distribution function over 𝑑𝐹 . For every segment 𝑟𝑖,𝑡 ∈

𝐻𝑟0 , we compute 𝑆𝑆(𝑟𝑖,𝑡 , 𝑟0) and identify the following set of 𝑟0's “nearest neighbors": 

 

Less formally, 𝑀𝑟0  is just the set of the K most similar segments to 𝑟0 which reside in 𝐻𝑟0 , or 

equivalently, the set of the K segments in 𝐻𝑟0  which are least distant from 𝑟0. We now proceed to the 

following steps in the MAYFIELD algorithm, where we describe MAYFIELD's further utilization of 

𝑀𝑟0  in its predictions of 𝑣0,𝑡+𝑢. 

2.3.5 The Regression Equation 

Given the set 𝑀𝑟0 , our remaining task is to form an estimate of 𝑣0,𝑡+𝑢. Consider the set 𝐿𝑟0 , 

the set of future performance vectors which correspond to the members of 𝑀𝑟0: 

 

 
8 The methods we review exclusively use affine equations over either absolute or squared differences in 
observed feature values to compute their similarity scores. 
9 We speculate that the weighting coefficients of these similarity scores were set a priori by their respective 
authors, rather than via analytical methods. 



 

 
 15 

Classical kNN regression techniques (e.g., Benedetti 1977; Altman 1992) typically compute a 

weighted average of vectors in 𝐿𝑟0  as the predicted value of 𝑣0,𝑡+𝑢. However, more recent authors 

(e.g., Mehdizadeh 2020; Al-Qhatani & Crone 2013; Wen, Song, & Wang 2016) find that incorporating 

traditional time-series techniques such as autoregressive moving-average (ARMA) terms into the 

kNN regression equation greatly improves model accuracy and fit in some applications. We therefore 

take an approach which builds autoregressive terms and a directional component of 𝐿𝑟0  into the 

classical kNN regression equation: 

 

 The predicted value for 𝑣0,𝑡+𝑢 is a linear combination of an inverse-distance weighted 

interpolation of 𝐿𝑟0 , a similar interpolation on the net change in 𝑣𝑖,𝑡10, and lagged values of 𝑣0,𝑡, plus 

a constant. The first pair of terms is the classical kNN regression value, which is a first-order 

polynomial on the interpolated 𝑣𝑖,𝑡+𝑢 weighted by similarity and a parameter β1. The third term is 

the interpolated change in 𝑣𝑖,𝑡 weighted by similarity and a parameter β2. The final term is a Y-order 

autoregressive series on 𝑣0,𝑡, which are the single-year components of the performance vector within 

𝑟0. Note that the φ and β are weighting parameters whose values are learned through the training 

process. 

We favor this hybrid approach to regression, much like other parts of MAYFIELD, due to its 

flexibility and computational efficiency. Beyond the aforementioned improvement in accuracy 

resulting from integrating AR into the kNN model, there are a few other advantageous attributes to 

the above formulation of the regression equation. One common pitfall of algorithms similar in aim to 

MAYFIELD is their failure to consistently predict statistics with accuracy better than even a naive 

model. Simply letting φ3 = 1 and the remaining φ𝑤≠3 = 0 , the above just becomes a naive prediction 

of 𝑣0,𝑡+𝑢. MAYFIELD is thus guaranteed accuracy no worse than either a naive or the classical kNN 

predicted value, since both methods are subsumed by our model. 

However, we are not quite done. Two potential issues may arise in the above regression, 

dependent on the local structure of the data in the training set. Firstly, our formulation of the kNN 

regression may predict values of  𝑣0,𝑡+𝑢̂ which has components 𝑣𝑗
0,𝑡+𝑢̂ ∉ [0,1]. Since percentile ranks 

not contained on this interval are impossible, we need a method for dealing with such instances in 

the data. Standard methods in least-squares regression for prediction of bounded dependent 

variables include transforming the data using an asymptotically bounded function (e.g., probit and 

logit models), or censoring fitted values which fall outside the interval (e.g., Tobit models). We take 

a slightly different route due to the second potential issue we identify: systematic bias in 𝑣0,𝑡+𝑢, which 

may arise among any or all of the components of 𝑣0,𝑡+𝑢. Since CMA-ES optimization attempts to 

minimize a scalar error (see Sections 2.3.1 and 2.3.6), each individual dimension of V may be 

suboptimally predicted by 𝑣0,𝑡+𝑢 . We may regard predictions of 𝑣𝑗
0,𝑡+𝑢 ∉ [0,1] as a special case of 

such systemic bias, since any 𝑣𝑗
0,𝑡+𝑢̂ > 1 are inherently biased upwards, and any 𝑣𝑗

0,𝑡+𝑢̂ < 0 are 

similarly biased downwards. Additionally, there may be cases where for of some range of 𝑣𝑗
0,𝑡+𝑢̂ ∈

 
10 This term can be unambiguously interpreted as the expected residual of a naive prediction of 𝑣𝑖,𝑡+𝑢 . 
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[𝑎, 𝑏] ⊆ [0,1] the expected residuals 𝐸 (𝑣𝑗
0,𝑡+𝑢 − 𝑣𝑗

0,𝑡+𝑢̂) ∉ [𝑎, 𝑏] . For instance, 𝑣𝑗
0,𝑡+𝑢 may be 

nonmonotonic with respect to 𝑣𝑗
0,𝑡+𝑢̂, or may increase at a rate different from unity. kNN regressions 

such as MAYFIELD are particularly suspect in this respect, since interpolations on the data as 

performed in nearest-neighbor algorithms may over-predict regression to the mean. Although we 

expect such cases to be limited, robustness to such issues is a desirable feature for regression models. 

Given the possible estimation bias that may enter into our regression, we take the additional 

step of fitting a LOESS model for each feature in V, i.e., regressing 𝑣𝑗
0,𝑡+𝑢 on 𝑣𝑗

0,𝑡+𝑢̂. LOESS, or locally 

estimated scatterplot smoothing, was independently discovered by Savitzky & Golay (1964) and 

Cleveland (1979), and has since become widely utilized in several fields of application, including 

learning-based algorithms (e.g., Cleveland & Devlin 1988; Cleveland, Grosse, & Shyu, 1992; Jacoby 

2000; Trexler & Travis 1993; Berger et al., 2004; Howarth & McArthur 1997; McArthur & Howarth 

2001). LOESS is a nonparametric method which estimates weighted low-order polynomial 

regressions on overlapping subsets of the independent variable and constructs a smoothed function 

on the local polynomials. The size of these subsets depends on the bandwidth hyperparameter B, 

which is the ratio of the order of the subsets to N, the number of total players in R. Larger values of B 

result in smoother results and make the locally estimated polynomials more robust to outliers. We 

set 𝐵 =
𝑙𝑜𝑔2(𝑁)

𝑁
, which results in a relatively large bandwidth, as our data is both highly noisy and 

highly dense. So, where 𝑔𝑗 is the LOESS-constructed function for the jth feature of V, our final 

predicted value of the performance vector 𝑣0,𝑡+𝑢 is: 

𝑣0,𝑡+𝑢̂̂ = ∑ 𝑔𝑗 (𝑣𝑗
0,𝑡+𝑢̂) 𝑒𝑗̂

𝑝

𝑗=1

 

Our utilization of this LOESS correction to 𝑣0,𝑡+𝑢̂ yields several advantages. Firstly, the 

aforementioned issues of ill-defined and biased values of 𝑣0,𝑡+𝑢 ̂ are resolved. Secondly, the 

nonparametric nature of LOESS admits a far more flexible bias correction than the standard 

parametric models; cases of non-monotonically increasing 𝑣0,𝑡+𝑢 with respect to 𝑣0,𝑡+𝑢̂ are likely to 

benefit. Thirdly, LOESS's confidence intervals are calculated based on the local structure of the data, 

as opposed to aggregate measures of variance (as in most least-squares regressions) and give a 

meaningful and ready-made confidence bounds on the expected range of 𝑣0,𝑡+𝑢. These may be 

especially useful when more than just point-estimates of 𝑣0,𝑡+𝑢 are required. Finally, investigation 

on the shape of the LOESS-generated functions 𝑔𝑗 may reveal various characteristics of 𝑣0,𝑡+𝑢̂ such 

as over or under-prediction of regression to the mean, artificially induced clustering, or lack of 

predictive power by the training data. 

Note that while it is possible to absorb the linear regression in the above formula into the 

LOESS correction by simply computing a multiple LOESS regression of 𝑣0,𝑡+𝑢 on the respective terms 

in the former regression stage, there are good reasons against doing so. Since we are interested in 

the values of 𝜑, which offer a measure of the relative importance of the respective components in the 

above formula, LOESS' lack of a functional form with directly interpretable coefficients would mean 

that combining the two regression stages would result in a loss of this information. Additionally, we 

intend LOESS as a minor correction to the prediction of 𝑣0,𝑡+𝑢̂, not the prediction itself; due to LOESS' 
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flexibility, overfitting, especially in a multiple regression setting, is a concern for the out-of-sample 

robustness of 𝑣0,𝑡+𝑢̂̂. Moreover, LOESS is computationally expensive, especially when performed on 

multivariate data, so letting LOESS estimate 𝑣0,𝑡+𝑢 from 𝑆𝑆(𝑟0, 𝑟𝑖,𝑡), 𝑣0,𝑡−𝑤−1, 𝑣𝑖,𝑡+𝑢, and 𝑣𝑖,𝑡 would 

result in far greater runtimes than with our linear first stage and a univariate LOESS correction. 

2.3.6 RMSE Fitness Function 

After predicting 𝑣𝑖,𝑡+𝑢̂̂ for all 𝑟𝑖,𝑡 ∈ 𝑅, we need a mechanism for computing the cumulative 

error of 𝑣0,𝑡+𝑢̂̂ across all dimensions of V. Standard methods, such as computing root-mean squared 

error (RMSE) or mean absolute scaled error (MASE), may work for predicting univariate data, but 

for estimating V, do not have readily available formulations for comparing accuracy across the entire 

performance vector space V. Hence, we require an extra step to convert 𝑣0,𝑡+𝑢̂̂  −  𝑣0,𝑡+𝑢 from a p-

dimensional vector to a scalar value. 

Fortunately, we have already specified a metric which has this capacity: the classical 

Mahalanobis distance. In fact, classical MD is especially useful since it adjusts for covariance between 

the dimensions of V, and thus constitutes a measure of the general lack of information on 𝑣0,𝑡+𝑢 with 

respect to 𝑣0,𝑡+𝑢̂̂, rather than simply the cumulative observed errors across each dimension. After 

computing the classical MD between the predicted and realized values of 𝑣0,𝑡+𝑢, errors can be 

interpreted as univariate, and methods such as RMSE and MASE may then be applied to measure the 

cumulative error across the set of all 𝑣0,𝑡+𝑢̂̂. Therefore, we specify our fitness function, whose value 

the CMA-ES optimizer attempts to minimize, as follows: 

ϵ(𝑅) =
√∑ (𝑣𝑖,𝑡+𝑢̂̂ − 𝑣𝑖,𝑡+𝑢)

⊤

Σ−1 (𝑣𝑖,𝑡+𝑢̂̂ − 𝑣𝑖,𝑡+𝑢)𝑟𝑖,𝑡∈𝑅

𝑁
 

ε is thus the RMSE of the classical MD between 𝑣𝑖,𝑡+𝑢 and 𝑣𝑖,𝑡+𝑢̂̂ for all segments in R. While ε 

will depend on the local structure of the data in R, it is principally a function of the weighting 

parameters ε, β1, and β2, and the set of φ, which MAYFIELD learns via CMA-ES minimization of ε. 

Position U = 1 U = 2 U = 3 
QB 15 15 15 
RB 20 40 35 
WR 15 45 50 
TE 45 50 45 
OL 50 40 50 
DL 30 30 25 
EDGE 15 15 25 
LB 20 20 40 
CB 25 40 45 
S 20 45 50 
K 10 10 45 
P 45 50 50 

Table 1: Optimal K 
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2.4 Cross-Validation Procedure 

To select the optimal hyperparameters for MAYFIELD, we first train (via the CMA-ES 

optimizer) MAYFIELD's parameters on a 1970-2009 subset of the data, and then evaluate 

MAYFIELD's out-of-sample accuracy on a 2010-2018 subset of the data in a cross-validation step. We 

test values of K ∈ {5,10,15,20,25,30,35,40,45,50} and u ∈ {1,2,3} with Y= 3. We present the results of 

our cross-validation above in Table 1. Note that for player-seasons for which the player in question 

has played less than Y years, we use his predicted stats for Y = y, where y is the length in years of the 

player's career so far, and the same value of K as is Y were unchanged. RMSE are stable between the 

training set and the out-of-sample results, indicating that MAYFIELD is not accuracy due to spurious 

variation in the data, but rather genuine predictive power (see Table 2 for example) 

Table 2: MAYFIELD Tight End RMSEs (u=2) In-sample vs. out-of-sample 

 
Games 

Games 
Started AV 

All 
pro 

Pro 
bowl 

2pt 
conversions Fumbles Receptions Targets 

Rec 
yards 

Rec 
td 

In-
sample 2.63 3.37 1.33 0.13 0.20 0.15 0.62 11.34 15.08 137.32 1.46 
Out-of-
sample 2.67 3.38 1.46 0.16 0.25 0.23 0.44 11.88 18.95 137.43 1.51 

 

3. Results 

To evaluate the effectiveness of MAYFIELD, we compared the predicted season results of our 

model to the 2010-2017 predictions of KUBIAK (Schatz, 2008), the foremost football statistics 

prediction model. Similar to MAYFIELD, KUBIAK considers historical performance of each player 

over multiple seasons, biographical statistics, and comparisons to similar players. We compare the 

standardized RMSEs (i.e., where 1.0 represents an RMSE of 1 standard deviation, lower is better) for 

all positions below: 

 

Figure 4- MAYFIELD vs. KUBIAK Standardized RMSEs 
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Figure 5 (contd.)- MAYFIELD vs. KUBIAK Standardized RMSEs 
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Figure 6 (contd.)- MAYFIELD vs. KUBIAK Standardized RMSEs 

 

Overall, MAYFIELD offers a substantial improvement in accuracy over KUBIAK's methods in 

every position as shown by the graphs above. Furthermore, MAYFIELD's standardized RMSEs are 

more balanced across each statistic as compared to KUBIAK. MAYFIELD's main weaknesses appear 
to be the prediction of defensive/special teams touchdowns and wide receiver rushing statistics. For 

almost every position that includes the defensive/special teams TD statistic, MAYFIELD's 

standardized RMSE’s for these variables were among the largest among all statistics at the respective 

positions and were also usually larger than the KUBIAK values. In addition to these categories, the 

only other case where KUBIAK significantly (at 90% confidence) outperformed MAYFIELD was for 

wide receiver rushing statistics (rushing attempts, yards, touchdowns). While these previously 

mentioned variables, are better estimated by KUBIAK, they are not truly indicative of player 

performance for that respective position, as defensive touchdowns, special teams touchdowns, and 

wide receiver rushes are currently rare occurrences in the NFL and not stable. MAYFIELD is 

significantly better than KUBIAK for all other statistics. This includes all quarterback, tight end, and 

kicker statistics. This also includes all statistics that are very relevant to their respective positions, 

including running back rushing attempts, yards, touchdowns and fumbles, wide receiver targets, 

receptions, receiving yards and touchdowns, and defensive solo tackles, assisted tackles, tackles for 

loss, sacks, forced fumbles, fumble recoveries, pass deflections, and interceptions. These statistics are 

better indicative of player talent level and of a team’s performance as a whole. 
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Table 3: MAYFIELD RMSEs (u=1) 2010-2017 out-of-sample 

 QB RB WR TE OL DL EDGE LB CB S K P 
Games 2.78 2.98 3.31 2.73 4.30 2.44 3.06 2.68 2.54 2.45 2.35 2.32 
Games Started 2.01 3.07 3.28 3.09 5.14 2.97 3.04 3.39 2.81 3.38 1.62 1.16 
AV 2.36 1.91 1.67 1.34 3.05 1.58 1.67 1.54 1.36 1.32 1.47 2.80 
All pro 0.15 0.17 0.16 0.14 0.20 0.15 0.18 0.15 0.18 0.18 0.18 0.19 
Pro bowl 0.25 0.23 0.23 0.22 0.28 0.21 0.25 0.20 0.23 0.24 0.24 0.22 
2pt conversions 0.17 0.29 0.30 0.22         
Pass comp 44.77            
Pass att 70.07            
Pass yards 508.44            
Pass td 5.13            
Pass int 3.56            
Pass sack 6.89            
Pass sack yards 48.28            
Rush att 8.73 34.64 16.31          
Rush yard 51.69 161.23 77.93          
Rush td 1.08 1.60 0.66          
Fumbles 2.28 1.09 0.94 0.45     0.35 0.34   
Receptions  8.85 12.02 10.55         
Targets  17.04 22.80 16.82         
Rec yards  92.92 157.14 123.76         
Rec td  1.14 1.94 1.45         
Punt ret  3.35 5.21      2.48 2.39   
Punt ret yards  35.90 53.86      25.61 25.35   
Punt ret TD  0.11 0.18      0.08 0.08   
Kick ret  3.53 4.10      1.86 1.89   
Kick ret yards  93.12 108.70      48.66 49.44   
Kick ret TD  0.11 0.12      0.02 0.02   
Forced fumb      0.86 1.06 0.89 0.77 0.77   
Fumb rec      0.61 0.68 0.65 0.60 0.62   
Fumb rec yards      5.14 9.04 7.94 9.30 9.29   
Fumb rec TD      0.15 0.20 0.18 0.18 0.18   
Sacks      2.12 2.34 1.81 0.83 0.82   
Tfl      2.82 3.09 2.72 1.56 1.61   
Solo tackle      7.94 11.56 14.45 13.17 13.59   
Ast tackle      5.14 6.21 8.45 6.18 6.26   
QB hits      5.02 5.32 3.83 1.80 1.85   
Safeties      0.13 0.15 0.13 0.06 0.07   
Pass deflection      1.58 1.93 2.21 3.33 3.34   
Int       0.47 0.70 1.07 1.10   
Int yards       8.68 13.62 22.65 22.85   
Int TD       0.18 0.22 0.32 0.32   
FGA 0-19           0.38  
FGM 0-19           0.38  
FGA 20-29           2.35  
FGM 20-29           2.23  
FGA 30-39           2.35  
FGM 30-39           2.25  
FGA 40-49           2.59  
FGM 40-49           2.41  
FGA 50+           1.92  
FGM 50+           1.56  
FGM Long           5.24  
XPA           8.06  
XPM           8.06  
Punt att            8.62 
Punt yards            403.88 
Punt block            0.53 
Punt Long            5.81 
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4. Conclusion 

 MAYFIELD displays excellent predictive accuracy across all positions and appears to be very 

balanced across the performance variables, rather than targeting a few specific variables. This is 

likely due to the endogenous nature of MAYFIELD’s parameter weighting scheme (as discussed in 

Section 2.3), its large sample size of player comparisons to draw upon, and its algorithmic 

architecture that builds in state-of-the-art computational tools from the computer science, statistics, 

and sports analytics literature. Given the results shown here, MAYFIELD could be successfully 

applied for numerous sports forecasting problems, such as in player scouting, sports gambling, and 

prediction of team-level performance and results. 

The MAYFIELD algorithm we propose is designed in a manner which supports integration with 

possible future advances in football analytics.  For instance, while our dataset consists of only 

standard box-score performance variables, newer metrics reliant11 upon player-tracking or other 

advanced techniques are easily absorbed into MAYFIELD's feature space, since our distance function 

is robust to missing data (a major concern for any newer metrics which are unable to be calculated 

for historical data). Similarly, integration with other contextual data, such as player positions on 

depth chart, scouting report grades, and medical or salary information, would likewise increase 

MAYFIELD's accuracy by their addition to the feature space without any modification needed to make 

full use of the inserted variables. 

Most American sports, such as baseball and basketball, have experienced a boom in 

analytics while football has fallen behind. Factors such as the complexity of the sport, emphasis on 

traditional scouting methods, and lack of high-quality public data have led to this gap. Our 

MAYFIELD algorithm is an effort to close that gap. Similar methods exist in other sports such as 

those proposed by Silver (2003, 2015), but the algorithm details are not as transparent as 

MAYFIELD. Attempts to produce a similar model for football (Schatz 2008) focus only on fantasy-

relevant players and have methods which are likewise largely not publicly available. We present a 

reproducible, comprehensive, learning-based methodology for year-by-year statistical forecasting 

of NFL players' careers and implement it on the entire set of post-merger NFL players. The initial 

results we present here indicate MAYFIELD to be an improvement over currently existing methods. 

Based on a wide survey of the relevant literature, MAYFIELD is unprecedented in size and scope of 

application. We also propose several important contributions to football analytics for future 

implementation into MAYFIELD: an Approximate Value metric for collegiate football players, NCAA-

NFL statistical translations which adjust for park and league factors, and a Jamesean-style 

Similarity Scores framework for empirical player comparison. These advancements represent 

substantial progress in updating football analytics methods to the state-of-the-art as compared to 

other professional sports and demonstrate MAYFIELD's potential for utilization by football 

decision-makers, statisticians, and fans alike. 

 

 

 
11 E.g., pass blocking and pass rushing win rate (Burke 2018), air yards, completion percentage allowed, 
nflWAR (Yurko, Ventura, & Horowitz 2019), etc. 



 

 
 23 

Acknowledgements 

We thank Dr. John Draper and Dr. Ryan Ruddy for their guidance on the project. Their advice, 
assistance, and encouragement proved invaluable. Additionally, we thank Dr. Chris Knoester and the 
Ohio State University Sports and Society Initiative for their support, Jesse Chick, Nick Sarkauskas and 
Dr. Dhabaleswar Panda for their technical assistance, and Josh Krassenstein for his contributions to 
the project’s initial stages. Finally, we thank Aaron Schatz and Football Outsiders for generously 
sharing KUBIAK’s historical data with us. 

 

 

References 

Al-Qhatani, F., Crone, S. 2013. Multivariate k-nearest neighbour regression for time series data — a 

novel algorithm for forecasting UK electricity demand. Proceedings of the 2013 International 

Joint Conference on Neural Networks, 228-235. 

Altman, N.S. 1992. An introduction to kernel and nearest neighbor nonparametric regression. The 

American Statistician, 4(3): 175-185. 

Andoni, A., Indyk, P. 2008. Near-optimal hashing algorithms for approximate nearest neighbor in high 

dimensions. Communications of the ACM, 51(1): 117-122. 

Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., Schmidt, L. 2015. Practical and optimal LSH for 

angular distance. Proceedings of the 28th International Conference on Neural Information 

Processing Systems, 1225–1233. 

Benedetti, J. K. 1977. On the Nonparametric Estimation of Regression Functions. Journal of the Royal 

Statistical Society Series B, 39(2): 248-253.  

Berger, J., Hautaniemi, S, Jaervinen, A.K., Edgren, H. Mitra S.K., Astola, J. 2004. Optimized LOWESS 

normalization parameter selection for DNA microarray data. BMC Bioinformatics, 5(194): 1-

13. 

Bhatia, N., Vandana. 2010. Survey of nearest neighbor techniques. International Journal of Computer 

Science and Information Security, 8(2): 302-305. 

Bjerhammar, A. 1951. Application of calculus of matrices to method of least squares; with special 

references to geodetic calculations. Transactions of the Royal Institute of Technology, 49. 

Brizna, D., Schultz, M., Tesler, G., Bafna, V. 2010. RAPID detection of gene-gene interactions in 

genome-wide association studies. Bioinformatics, 26(22): 2856-2862. 

Burke, B. 2018. We created better pass-rusher and pass-blocker stats: How they work. ESPN. 

Accessed at https://www.espn.com/nfl/story/\_/id/24892208/creating-better-nfl-pass-

blocking-pass-rushing-stats-analytics-explainer-faq-how-work. 

Cleveland, W.S. 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the 

American Statistical Association, 74(368): 829-836. 



 

 
 24 

Cleveland, W.S., Devlin, S. 1988. Locally weighted regression: an approach to regression analysis by 

local fitting. Journal of the American Statistical Association, 83(403): 596-610. 

Cleveland, W.S., Grosse, E., Shyu, W.M. Local regression models; 309-376 in Chambers, J.M., Hastie, T. 

1992. Statistical models in S. Chapman & Hall / CRC Press. Print. 

Cochez, M., Mou, H. 2015. Twister tries: approximate hierarchical agglomerative clustering for 

average distance in linear time. Proceedings of the 2015 ACM SIGMOD International 

Conference on Management of Data, 505-517. 

Cover, T. 1968. Estimation by the nearest neighbor rule. IEEE Transactions on Information Theory, 

14(1): 50-55. 

Das, A., Datar, M., Garg, A., Rajaram, S.S. 2007. Google news personalization: scalable online 

collaborative filtering. Proceedings of the 16th International Conference on World Wide Web, 

271-280. 

Datar, M., Immorlica, N., Indyk, P., Mirrokni., V. 2004. Locality-sensitive hashing scheme based on p-

stable distributions. Proceedings of the twentieth annual symposium on Computational 

geometry,  253-262. 

Davenport, C. Davenport Translations; in Huckaby, G., Davenport, C., Jazayerli, R., Kahrl, C., Sheehan, 

J. 1996. Baseball Prospectus 1996. Baseball Prospectus LLC. Accessed at 

https://legacy.baseballprospectus.com/other/bp1996/dtessay.html. 

De Maesschalck, R. Jouan-Rimbaud, D. Massart, D.L. 2000. The Mahalanobis distance. Chemometrics 

and Intelligent Laboratory Systems, 50(1): 1-18. 

Drinen, D. 2006. A very simple ranking system. Pro Football Reference. Accessed at 

https://www.pro-football-reference.com/blog/index4837.html?p=37. 

Drinen, D. 2008. Approximate value in the NFL. Pro Football Reference. Accessed at 

https://www.pro-football-reference.com/blog/index6b92.html?p=465. 

Drinen, D. 2008. Who is the current Dave Duerson?. Pro Football Reference. Accessed at 

https://www.pro-football-reference.com/blog/indexa215.html?p=556. 

Gionis, A., Indyk, P., Motwani, R. 1999. Similarity search in high dimensions via hashing. Proceedings 

of the 25th VLDB Conference, 518-529. 

Hansen, N. 2009. Benchmarking a bi-population CMA-ES on the BBOB-2009 function testbed. 

Workshop Proceedings of the GECCO Genetic and Evolutionary Computation Conference, 

2389-2395. 

Hansen, N. 2016. The CMA Evolution Strategy: a tutorial. ArXiv Preprint: 1604.0077. Accessed at 

https://arxiv.org/abs/1604.00772. 

Hansen, N., Kern, S. 2004. Evaluating the CMA Evolution Strategy on multimodal test functions. 

Proceedings of the Eighth International Conference on Parallel Problem Solving from Nature 

PPSN VIII, 282-291. 



 

 
 25 

Hollinger, J. 2003. Pro Basketball Prospectus: 2003 Edition. University of Nebraska Press. Print. 

Howarth, R.J., McArthur, J.M. 1997. Statistics For strontium isotope stratigraphy: a robust Lowess fit 

to the marine sr‐isotope curve for 0 to 206 Ma, with look‐up table for derivation of numeric 

age. The Journal of Geology, 105(4): 441-456. 

Hubert, M., Debruyne, M. 2010. Minimum covariance determinant. Computational Statistics, 2(1): 36-

43. 

Jaccard, P. 1901. Etude comparative de la distribution florale dans une portion des Alpes et du Jura., 

Bulletin de la Soci'et'e Vaudoise des Sciences Naturelles, 37(1): 547–579. 

Jacoby, W. 2000. Loess: a nonparametric, graphical tool for depicting relationships between 

variables. Electoral Studies, 19(4): 577-613. 

James, B. 1985. The Bill James baseball abstract, 1985. Ballantine Books. Print. 

James, B. 1994. The politics of glory. Macmillan Publishers. Print. 

Kerhet, A. Small, C. Quon, H. Riauka, T. Schrader, L. Greiner, R. Yee, D. McEwan, A. Roa, W. 2010. 

Application of machine learning methodology for PET-based definition of lung cancer. 

Current Oncology, 17(1): 41–47. 

Koga, H., Ishibashi, T., Watanabe, T. 2007. Fast agglomerative hierarchical clustering algorithm using 

locality-sensitive hashing. Knowledge and Information Systems, 12(1): 25-53. 

Kubatko, J. 2004. Similarity scores. Basketball Reference. Accessed at https://www.basketball-

reference.com/about/similar.html. 

Leskovec, J., Rajaraman, A., Ullman, J. 2011. Mining of massive datasets. Cambridge University Press. 

Print. 

Mahalanobis, P.C. 1936. On the generalized distance in statistics. Proceedings of National Institute of 

Sciences, 2(1): 49-55. 

McArthur, J.M., Howarth, R.J., Bailey, T.R. 2001. Strontium isotope stratigraphy: LOWESS version 3: 

best fit to the marine sr‐isotope curve for 0–509 Ma and accompanying look‐up table for 

deriving numerical age. The Journal of Geology, 109(2): 155-170. 

Mehdizadeh, S. 2020. Using AR, MA, and ARMA time series models to improve the performance of 

MARS and KNN approaches in monthly precipitation modeling under limited climatic data. 

Water Resources Management, 34(1): 263–282. 

Moore, E. H. 1920. On the reciprocal of the general algebraic matrix. Bulletin of the American 

Mathematical Society, 26(9): 394–95. 

Mukid, M.A., Widiharih, T., Rusgiyono, A., Prahutama, A. 2018. Credit scoring analysis using weighted 

k nearest neighbor. Journal of Physics: Conference Series, 1025(1): 012114. 

Pasteur, R., Cunningham-Rhoads, K. 2014. An expectation-based metric for NFL field goal kickers. 

Journal of Quantitative Analysis in Sports, 10(1): 49-66. 



 

 
 26 

Pelton, K. 2003. Review: Pro Basketball Prospectus: 2003-04 Edition. Hoopsworld. Accessed at 

http://www.hoopsworld.com/article\_5978.shtml. 

Penrose, R. 1955. A generalized inverse for matrices. Proceedings of the Cambridge Philosophical 

Society, 51(3): 406–13. 

Rezvani, M., Hashemi, S.M. 2012. Enhancing accuracy of topic sensitive PageRank using Jaccard Index 

and cosine similarity. Proceedings of the 2012 IEEE/WIC/ACM International Conferences on 

Web Intelligence and Intelligent Agent Technology, 620-624. 

Rousseeuw, P. 1984. Least median of squares regression. Journal of the American Statistical 

Association, 79(338): 871-880. 

Rousseeuw, P., Van Driessen, K. 1999. A fast algorithm for the minimum covariance determinant 

estimator. Technometrics, 41(3): 212-223. 

Savitzky, A., Golay, M.J.E. 1964. Smoothing and differentiation of data by simplified least squares 

procedures. Analytical Chemistry, 36(8): 1627–1639. 

Schatz, A. 2008. Pro Football Prospectus 2008. Plume. Print. 

Schatz, A. 2010. Football Outsiders similarity scores. Football Outsiders. Accessed at 

https://www.footballoutsiders.com/stats/similarity. 

Schoelkopf, B., Tsuda, K., Vert, J.P. 2004. Primer on kernel methods in computational biology. MIT 

Press. Print. 

Schultz, M., Joachims, T. 2004. Learning a distance metric from relative comparisons. Proceedings of 

the 16th International Conference on Neural Information Processing Systems, 41-48. 

Shouman, M., Turner, T., Stocker, R. 2012. Applying k-Nearest Neighbour in diagnosing heart disease 

patients. International Journal of Information and Education Technology, 2(3): 220-223. 

Silver, N. Introducing PECOTA; 507-514 in Huckaby, G., Kahrl, C., Pease, D. 2003. Baseball Prospectus: 

2003 Edition. Potomac Books. Print. 

Silver, N. 2015. We're predicting the career of every NBA player. Here's how. FiveThirtyEight. 

Accessed at https://fivethirtyeight.com/features/how-were-predicting-nba-player-career/. 

Szymborski, D. 1997. How to calculate MLEs. Baseball Think Factory. Accessed at 

https://www.baseballthinkfactory.org/btf/scholars/czerny/articles/calculatingMLEs.htm. 

Thorn, J., Palmer, P. 1984. The hidden game of baseball. Knopf Doubleday Publishing Group. Print. 

Trexler, J., Travis, J. 1993. Nontraditional regression analyses. Ecology, 74(6): 1629-1637. 

Wen Y., Song M., Wang, J. 2016. A combined AR-kNN model for short-term wind speed forecasting. 

Proceedings of the 2016 IEEE 55th Conference on Decision and Control, online. 

Woelfel, M., Ekenel, H.K. 2005. Feature weighted mahalanobis distance: improved robustness for 

Gaussian classifiers. Proceedings of the 2005 13th European Signal Processing Conference, 

online. 



 

 
 27 

Wong, W.K., Cheung, D.W., Kao, B., Mamoulis, N. 2009. Secure kNN computation on encrypted 

databases. Proceedings of the 2009 ACM SIGMOD International Conference on Management 

of data, 139–152. 

Xing, E., Ng, A., Jordan, M., Russell, S. 2003. Distance metric learning with application to clustering 

with side-information. Proceedings of the 15th International Conference on Neural 

Information Processing Systems, 521-528. 

Yurko, R., Ventura, S., Horowitz, M. nflWAR: a reproducible method for offensive player evaluation in 

football. Journal of Quantitative Analysis in Sports, 15(3): 163-183. 


