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Abstract	

Baseball	players	must	be	able	to	see	and	react	in	an	instant,	yet	it	is	hotly	debated	whether	superior	
on-field	performance	is	associated	with	superior	sensorimotor	abilities.		In	this	study,	we	compare	
sensorimotor	abilities,	measured	through	eight	psychomotor	tasks	comprising	the	Nike	Sensory	
Station	battery,	and	game	statistics	in	a	sample	of	252	professional	baseball	players.		For	this	
purpose,	we	develop	a	series	of	Bayesian	hierarchical	latent	variable	models	that	enable	us	to	
compare	statistics	across	multiple	professional	baseball	leagues.		Within	this	framework,	we	find	
that	sensorimotor	abilities	are	statistically	significant	predictors	of	on-base	percentage,	walk	rate,	
and	strikeout	rate,	accounting	for	confounding	variables	such	as	age,	position,	and	league.		We	find	
no	such	relationship	for	either	slugging	percentage	or	fielder-independent	pitching.		The	pattern	of	
results	suggests	performance	contributions	from	both	visual-sensory	and	visual-motor	abilities	and	
indicates	that	sensorimotor	screenings	may	be	useful	for	player	scouting.	

	
1. Introduction	
	
Ted	Williams,	one	of	the	most	legendary	baseball	players	of	all	time,	once	said,	“I	think	without	
question	the	hardest	single	thing	to	do	in	sport	is	to	hit	a	baseball.”	Advances	in	sport	science	
continue	to	validate	Williams’	claim;	hitting	a	pitched	baseball	places	incredible	demands	on	
athletes’	visual	systems.	We	now	know	that	Major	League	Baseball	(MLB)	pitches	move	at	speeds	
near	the	processing	limits	of	vestibular-ocular	tracking	[1],	leaving	the	batter	with	mere	
milliseconds	to	decipher	the	pitch,	project	its	trajectory,	decide	to	swing,	and	coordinate	the	timing	
and	trajectory	of	a	2.5-inch	diameter	bat.	The	immense	difficulty	of	this	task	is	underscored	by	the	
fact	that	players	who	hit	successfully	on	less	than	a	third	of	their	at-bats	can	receive	nine-figure	
contracts	in	today’s	free-agent	market.	

Pitching,	while	equally	demanding,	draws	upon	a	fundamentally	different	skill	set.	Pitchers	attempt	
to	deny	batters	effective	contact	with	the	ball	while	projecting	it	through	the	strike	zone	sixty	feet	
away.	Despite	the	need	to	visualize	the	strike	zone,	it	has	been	argued	that	motor	demands,	such	as	
controlling	the	speed,	spin,	and	location	of	the	ball,	are	more	important	for	pitching	success	than	
visual	requirements	[2].		

Given	the	substantial	role	of	visual	and	motor	demands	in	baseball	(henceforth	called	
“sensorimotor	skills”),	there	has	been	a	concerted	effort	to	determine	which	elements	of	the	
perception-action	cycle	contribute	to	successful	baseball	performance	[3].	However,	the	
combination	of	noisy	game	statistics	and	costly	sample	acquisition	makes	inferring	meaningful	
relationships	difficult.		
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Between	2011	and	2015,	the	Nike	Sensory	Stations	were	developed	and	utilized	as	a	tool	to	
quantitatively	evaluate	athlete	visual	and	motor	skills.	Participants	filled	out	a	registry	of	
information	about	themselves	and	completed	a	battery	of	nine	visual-motor	tasks	administered	
under	standardized	conditions	with	video	instructions	and	conducted	by	trained	and	certified	
administrators.	Data	from	these	assessments	were	maintained	on	a	central	database	and	used	to	
provide	sport-specific	normative	information	to	individuals	about	their	relative	abilities	and	to	
monitor	learning	when	coupled	with	sensorimotor	training	interventions.		

Past	research	with	the	Sensory	Stations	has	demonstrated	that	the	battery	of	tests	is	reliable	[4,	5]	
and	cross-validated	[6],	with	some	tasks	demonstrating	linear	improvements	with	practice	over	
multiple	sessions	[7].	Improved	performance	on	this	battery	has	been	seen	following	sports	vision	
training	interventions		[8]	and	has	been	linked	to	baseball	batting	expertise,	with	professional	
baseball	hitters	showing	better	performance	on	measures	of	visual	sensitivity	relative	to	pitchers	
[9].	Furthermore,	reduced	performance	on	these	tasks	has	been	associated	with	an	increased	
likelihood	of	sustaining	head	impacts	during	practices	and	games	for	American	collegiate	football	
players	[10].	In	addition,	Poltavski	and	Biberdorff	[11]	found	that	better	performance	on	measures	
of	dynamic	visual	acuity	and	visual	motor	control	accounted	for	nearly	70%	of	the	variability	in	
goals	scored	over	two	seasons	in	a	sample	of	19	men’s	and	19	women’s	collegiate	hockey	players.	
Collectively,	past	research	[reviewed	by	12]	suggests	that	this	battery	may	serve	as	a	useful	tool	for	
understanding	human	performance,	warranting	further	investigation	into	the	sensorimotor	
characteristics	of	athletes	and	their	relation	to	performance	outcomes.		

2. Methods	
	

2.1. 	Data	
In	the	current	study,	Sensory	Station	assessments	from	252	professional	baseball	players	collected	
in	2012	and	2013	were	compared	to	game	statistics	to	evaluate	the	relationship	between	
sensorimotor	skills	and	baseball	production.	For	each	player,	game	statistics	from	the	season	after	
testing	were	acquired	along	with	information	about	their	league(s)	of	participation.	All	data	were	
shared	with	the	research	team	under	a	secondary-data	protocol	approved	by	the	Duke	University	
Institutional	Review	Board	[IRB	B0706].	Under	this	protocol,	all	data	were	collected	for	“real	world	
use,”	without	informed	consent,	and	shared	with	the	research	team	after	removal	of	all	protected	
health	information	(PHI).	As	such,	these	data	conform	to	U.S.	Department	of	Health	and	Human	
Services,	“Regulatory	considerations	regarding	classification	of	projects	involving	real	world	data,”	
[13].	

2.1.1.	Sensorimotor	Assessments	
The	Sensory	Stations	consist	of	a	battery	of	nine	computerized	sensorimotor	tasks,	each	designed	
to	evaluate	a	specific	facet	of	a	participant’s	visual-motor	abilities.	Each	task	is	briefly	described	
below	and	is	depicted	visually	in	Figure	1.		More	detailed	descriptions	of	the	tasks,	along	with	the	
behavioral	performance	distributions	on	these	measures	can	be	found	in	the	Appendix.		

• The	Visual	Clarity	task	measures	visual	acuity	for	fine	details	at	a	distance.	 	

• The	Contrast	Sensitivity	task	measures	the	minimum	resolvable	difference	in	contrast	at	
a	distance.	 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• The	Depth	Perception	task	measures	how	quickly	and	accurately	participants	are	able	to	
detect	differences	in	depth	at	a	distance	using	liquid	crystal	glasses.	 	

• The	Target	Capture	task	measures	the	speed	at	which	participants	can	shift	attention	
and	recognize	peripheral	targets.	 	

• The	Near-Far	Quickness	task	measures	the	number	of	near	and	far	targets	that	can	be	
correctly	reported	in	30	seconds.	 	

• The	Perception	Span	task	measures	the	ability	to	remember	and	recreate	visual	
patterns.	 	

• The	Eye	Hand	Coordination	task	measures	the	speed	at	which	participants	can	make	
 visually-guided	hand	responses	to	rapidly	changing	targets	 	

• The	Go/No-Go	task	measures	the	ability	to	execute	and	inhibit	visually	guided	hand	
responses	in	the	presence	of	“go”	and	“no-go”	stimuli	 	

• The	Reaction	Time	task	measures	how	quickly	participants	react	and	respond	to	a	
simple	visual	stimulus.	 	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	1:	Illustrations	of	the	nine	perceptual	and	visuomotor	tasks	included	in	the	Nike	SPARQ	
Sensory	Station	battery.	#	indicates	tasks	performed	under	a	staircase	schedule.	
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2.1.2.	Response	Variables	
The	sensorimotor	assessments	performed	by	the	Nike	Sensory	Stations	serve	as	our	best	
measurement	of	a	player’s	underlying	sensorimotor	abilities.	Similarly,	a	player’s	game	statistics	
are	strong	indicators	of	his	on-field	performance.	Although	advanced	metrics	such	as	wOBA	and	
wRC	are	excellent	at	quantifying	overall	offensive	performance,	we	were	not	provided	enough	
information	under	the	secondary-data	protocol	to	calculate	these	statistics.		As	such,	in	this	study,	
we	use	on-base	percentage	(OBP),	walk	rate	(BB%),	strikeout	rate	(K%),	and	slugging-percentage	
(SLG)	to	measure	the	performance	of	batters.	In	addition,	we	use	fielder-independent	pitching	(FIP)	
to	measure	the	performance	of	pitchers.	Below	are	brief	descriptions	of	each	of	these	statistics	and	
our	motivation	for	using	them	as	response	variables	in	our	models.		

On-Base	Percentage	measures	a	player’s	propensity	to	reach	base.		On-base	percentage	is	defined	
as	

	
𝑂𝐵𝑃 = 	

𝐻𝑖𝑡𝑠 + 𝑊𝑎𝑙𝑘𝑠 + 𝐻𝑖𝑡	𝐵𝑦	𝑃𝑖𝑡𝑐ℎ
𝐴𝑡	𝐵𝑎𝑡𝑠 + 𝑊𝑎𝑙𝑘𝑠 + 𝐻𝑖𝑡	𝐵𝑦	𝑃𝑖𝑡𝑐ℎ + 𝑆𝑎𝑐𝑟𝑖𝑓𝑖𝑐𝑒	𝐹𝑙𝑖𝑒𝑠	

	 (1)	

On-base	percentage	is	a	simple	and	widely	used	metric	for	player	evaluation,	since	frequently	
reaching	base	gives	the	offense	more	opportunities	to	score	runs.	Players	with	high	on-base	
percentages	consistently	make	effective	contact	with	the	ball	and	draw	walks.	As	such,	on-base	
percentage	offers	a	robust	measure	of	player	productivity	and	a	useful	statistic	by	which	to	evaluate	
the	relationship	between	sensorimotor	abilities	and	on-field	performance.		

Walk	Rate	measures	a	player’s	propensity	to	draw	walks.	Walk	rate	is	defined	as		

	
𝐵𝐵% = 	

𝑊𝑎𝑙𝑘𝑠
𝑃𝑙𝑎𝑡𝑒	𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒𝑠	

	 (2)	

Players	who	routinely	draw	walks	generally	differentiate	well	between	balls	and	strikes,	forcing	the	
pitcher	to	throw	pitches	that	are	easier	to	hit.	Walk	rate	can	also	provide	information	about	a	
hitter’s	underlying	approach	at	the	plate.	

Strikeout	Rate	measures	a	player’s	propensity	to	strike	out.	Strikeout	rate	is	defined	as		

	
𝐾% = 	

𝑆𝑡𝑟𝑖𝑘𝑒𝑜𝑢𝑡𝑠
𝑃𝑙𝑎𝑡𝑒	𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒𝑠	

	 (3)	

Strikeouts	are	an	unequivocally	negative	outcome	for	the	offense	and	should	be	avoided	in	an	at-
bat.	Although	some	successful	players	have	high	strikeout	rates,	a	high	strikeout	rate	indicates	that	
a	batter	struggles	recognizing	pitches	or	making	contact	with	the	ball.	A	player	who	strikes	out	
frequently	and	walks	rarely	typically	has	a	dim	future	in	baseball.		

Slugging	Percentage	measures	a	player’s	propensity	to	hit	for	power.		Slugging	percentage	is	
defined	as	



	

	 5	

2018	Research	Papers	Competition		
Presented	by:	

	
𝑆𝐿𝐺 = 	

𝑇𝑜𝑡𝑎𝑙	𝐵𝑎𝑠𝑒𝑠
𝐴𝑡	𝐵𝑎𝑡𝑠	

	 (4)	

Slugging	percentage	makes	use	of	the	fact	that	not	all	hits	are	equally	valuable.		Although	it	is	an	
imperfect	metric	(e.g.	doubles	are	not	worth	twice	as	much	as	singles),	it	does	a	decent	job	of	
quantifying	batting	power.	Sensorimotor	abilities	may	have	different	effects	on	a	batter’s	ability	to	
hit	for	contact	and	ability	to	hit	for	power.	

Fielder-Independent	Pitching	measures	a	pitcher’s	run	prevention,	independent	of	the	ability	of	
the	defense	behind	him.	FIP	is	defined	in	terms	of	only	variables	that	cannot	be	affected	by	the	
ability	of	the	defense	behind	the	pitcher.	

	
𝐹𝐼𝑃 = 	

13 ∗ 𝐻𝑅 + 3 ∗ 𝑊𝑎𝑙𝑘𝑠 + 𝐻𝐵𝑃 	− 	2 ∗ 𝑆𝑡𝑟𝑖𝑘𝑒𝑜𝑢𝑡𝑠
𝐼𝑛𝑛𝑖𝑛𝑔𝑠	𝑃𝑖𝑡𝑐ℎ𝑒𝑑

+ 𝐹𝐼𝑃	𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡	 (5)	

According	to	FanGraphs	[14],	“Fielder	Independent	Pitching	(FIP)	measures	what	a	player’s	ERA	
would	look	like	over	a	given	period	of	time	if	the	pitcher	were	to	have	experienced	league	average	
results	on	balls	in	play	and	league	average	timing.”	It	is	generally	more	stable	than	ERA,	since	it	is	a	
measurement	that	cancels	out	the	effects	of	defense	and	luck.	Sensorimotor	abilities	may	be	related	
to	pitcher	performance,	and	FIP	represents	one	of	the	best	metrics	for	quantifying	pitcher	
performance	in	a	game	setting.	

2.1.3.	Sample	Characteristics	
Although	data	was	obtained	for	308	professional	baseball	players	(149	batters,	159	pitchers),	we	
only	examine	data	for	the	players	with	more	than	30	at-bats	or	more	than	30	innings	pitched	to	
mitigate	the	statistical	noise	associated	with	low	sample	sizes.		This	yields	a	final	analyzed	data	set	
of	252	players	(141	batters,	111	pitchers).		Table	1	reports	the	distribution	of	age	and	positional	
category	in	this	sample.	Most	of	the	players	in	the	sample	are	young	prospects	between	20-25	years	
old,	though	there	are	older	players	in	the	sample	who	disproportionately	play	in	the	Major	Leagues.		

	 Batters	 Pitchers	

Age	 	 	

Mean	(SD)	 22.7	(3.9)	 23.7	(3.6)	

Min	–	Max	 17	-	37	 18	-	39	

Position	 	 	

#	Catchers	 19	 	

#	Infielders	 65	 	

#	Outfielders	 57	 	

Table	1:	Sample	characteristics	 	
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Not	all	professional	leagues	are	equal.	The	level	of	competition	in	Major	League	baseball	
significantly	outclasses	that	of	AA	baseball,	for	example.	Players	in	our	sample	played	in	leagues	
ranging	from	Rookie	League	to	Major	League	Baseball,	which	makes	player	comparison	more	
challenging.	Table	2	displays	the	number	of	players	in	our	sample	who	play	in	each	league.	Note	
that	some	players	play	in	more	than	one	league.		

	

	 Rookie	 A	 Adv.	A	 AA	 AAA	 Majors	

Batters	 63	 18	 33	 17	 23	 14	

Pitchers	 29	 17	 24	 21	 17	 13	

	

Table	2:	Distribution	of	Leagues	by	Player	Type	

2.2.	Statistical	Models	
We	fit	separate	models	for	the	five	response	variables.		The	models	use	a	common	set	of	predictors.		
For	any	model,	all	parameters	are	estimated	using	only	the	data	for	that	model.		For	convenience,	
we	use	a	common	notation	across	models	when	describing	the	models,	so	aj	in	the	OBP	model	will	
be	distinct	from	aj	in	the	SLG	model,	for	example.	
	
Binomial	Response		
Since	OBP,	BB%,	and	K%	are	defined	as	the	number	of	successes	divided	by	the	number	of	
opportunities,	we	use	a	binomial	response	for	these	three	variables.	Without	loss	of	generality,	we	
present	the	model	for	OBP.		Let	𝑂𝐵KL		denote	the	number	of	times	that	player	i	reached	base	in	
league	𝑗	out	of	𝑁KL	opportunities	between	2012	and	2013.		We	treat	each	𝑂𝐵KL 	as	a	realization	of	a	
random	sample,	with	the	player’s	true	on	base	percentage	equal	to	𝑝KL 			Each	𝑝KL 	is	a	function	of	the	
degree	of	difficulty	of	getting	on	base	in	league	𝑗,	as	well	as	the	player’s	latent,	on-base	ability	
parameter	𝐴K .	Each	𝐴K 	is	a	function	of	variables	Xi	that	include	the	player’s	sensorimotor	abilities,	a	
set	of	indicator	variables	for	position,	and	age.		Putting	it	together,	we	have	the	Bayesian	multilevel	
model	[15]	
	
	 𝑂𝐵KL	~	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁KL, 𝑝KL)	 (6)	

	 𝑙𝑜𝑔𝑖𝑡 𝑝KL 	~	𝑁𝑜𝑟𝑚𝑎𝑙 𝛼L + 	𝛾L𝐴K, 𝜏WX 	 (7)	

	 𝐴K = 𝑋KZ𝛽	 (8)	

	
Here,	aL 	represents	the	degree	of	difficulty	in	league	𝑗,	and	gL 	represents	the	impact	of	ability	on	
performance	in	league	𝑗.	Accounting	for	league	differences	in	this	way	enables	us	to	compare,	for	
example,	a	0.400	OBP	player	in	AAA	ball	to	a	0.320	OBP	player	in	the	MLB.		We	constrain	gL 	to	be	
positive,	so	that	a	higher	latent	ability	level	corresponds	to	a	higher	probability	of	reaching	base.	
We	use	𝜏WX 	> 	0	to	allow	for	additional	player	heterogeneity	when	modeling	the	𝑝KL .		We	include	all	
of	the	sensorimotor	variables	in	𝑋K 	with	the	exception	of	Go/No-Go,	since	it	is	highly	correlated	with	
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the	Eye-Hand	Coordination	task	and	has	limitations	as	a	task	[6].	We	transform	Depth	Perception	to	
the	log	scale	as	it	is	highly	right-skewed	and	model	the	performance	effects	of	age	as	linear.		
Diagnostics	indicated	that	modeling	age	linearly	fits	the	data	reasonably	well	for	all	outcome	
models.		We	note	that	our	findings	were	robust	to	both	non-linear	models	for	age	and	a	maximum	
age	threshold,	mainly	because	age	and	sensorimotor	tasks	have	weak	associations	in	our	sample	
(see	also	[9]).		In	addition	to	standardized	age,	Xi	includes	an	indicator	for	catcher	and	an	indicator	
for	infielder.	Hence,	interpretations	of	all	position	coefficients	are	with	respect	to	outfielders.		
Ultimately,	we	are	interested	in	performing	inference	on	the	posterior	distribution	of	β,	which	
represents	the	impact	of	sensorimotor	abilities	on	𝐴K .		We	use	non-informative	normal-gamma	
priors	on	b	and	t;	see	section	A.4.	for	details.	
		
Normal	Response		
SLG	and	FIP	are	long-run	statistical	averages	over	the	number	of	at-bats	and	innings	pitched,	
respectively.		We	present	the	model	for	SLG	below;	the	model	for	FIP	uses	the	same	format.		Let	
𝑆𝐿𝐺KL 	be	the	slugging	percentage	for	player	𝑖	in	league	𝑗	in	𝑁KL	at-bats.		By	the	central	limit	theorem,	
as	𝑁KL	increases,	the	sampling	distribution	of	𝑆𝐿𝐺KL		approaches	a	normal	distribution	with	some	
mean	µKL	and	variance	s

_/𝑁KL .		Because	we	only	included	player/league	combinations	such	that	
𝑁KL > 30,	the	assumption	of	normality	is	plausible.		We	then	specify	a	Bayesian	multilevel	model	
conditional	on	the	slugging	percentage	ability	parameters	and	league	adjustment	parameters.	We	
have		
	

	𝑆𝐿𝐺KL	~	𝑁𝑜𝑟𝑚𝑎𝑙 𝜇KL,
𝜎_

𝑁KL
	 (10)	

	 𝜇KL	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝛼L + 	𝛾L𝐴K, 𝜏WX)	 (11)	

	 𝐴K = 𝑋KZ𝛽	 (12)	

	
The	procedure	for	estimating	this	model	is	analogous	to	the	binomial	response	case,	but	with	an	
inverse-gamma	prior	distribution	for	s_.		The	prior	specifications	are	provided	in	section	A.4.	
	
	
2.3.	Model	Estimation	
The	models	outlined	in	(7)	-	(12)	are	not	identifiable	since	aL ,	gL ,	and	Ai	are	unknown	and	depend	
upon	each	other.	We	overcome	this	problem	by	imposing	highly	concentrated	priors	on	αj	and	gj,	
obtained	by	modeling	the	game	statistics	of	all	professional	baseball	players	between	2012	and	
2013	who	played	in	multiple	leagues.	Details	about	this	process	are	available	in	section	A.3.		

The	posterior	means	of	the	league	effect	parameters	aL 	and	gL 	obtained	via	the	model	of	game	
statistics	with	all	professional	players	are	summarized	in	Tables	3	and	4.	In	particular,	Table	3	
illustrates	that	there	are	two	significant	jumps	in	difficulty	in	professional	baseball.	There	is	a	
sizable	increase	in	the	quality	of	competition	between	Rookie	baseball	and	non-rookie	minor	league	
baseball	(A-AAA).	In	addition,	there	is	an	immense	gap	between	AAA	and	the	Major	Leagues.	Our	
model	was	unable	to	differentiate	significantly	between	the	non-rookie	minor	leagues.		From	Table	
4,	the	impacts	of	ability	are	consistent	across	leagues,	with	the	exception	of	the	Major	Leagues.	With	
some	statistics,	such	as	OBP,	latent	ability	matters	less	in	the	Major	Leagues	than	it	does	in	others.	
With	others,	such	as	FIP,	it	matters	much	more.		
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Attribute	 Rookie	 A	 Adv.	A	 AA	 AAA	 MLB	

logit-1(OBP)	 0.358	 0.327	 0.327	 0.322	 0.329	 0.292	

logit-1(BB%)	 0.108	 0.093	 0.096	 0.093	 0.089	 0.071	

logit-1(K%)	 0.170	 0.188	 0.184	 0.192	 0.195	 0.232	

SLG	 0.432	 0.384	 0.379	 0.376	 0.397	 0.351	

FIP	 3.013	 3.517	 3.377	 3.613	 3.782	 4.279	

	

Table	3:	Posterior	Means	for	aL 	displaying	the	inverse-logit	of	the	means	for	OBP,	BB%,	and	K%	for	
interpretability.		In	context,	we	project	that	an	average	professional	player	will	obtain	a	0.358	OBP	in	
Rookie	ball	and	a	0.292	OBP	in	the	MLB				

	

Attribute	 Rookie	 A	 Adv.	A	 AA	 AAA	 MLB	

OBP	 0.110	 0.118	 0.109	 0.101	 0.103	 0.060	

BB%	 0.316	 0.304	 0.300	 0.320	 0.305	 0.275	

K%	 0.327	 0.356	 0.335	 0.346	 0.345	 0.341	

SLG	 0.059	 0.050	 0.045	 0.041	 0.047	 0.027	

FIP	 0.356	 0.405	 0.383	 0.343	 0.442	 0.556	

	

Table	4:	Posterior	Means	for	gL .	Higher	values	indicate	a	higher	relative	impact	of	ability	on	the	
corresponding	game	statistic,	given	the	model.		These	values	should	not	be	compared	across	statistics,	
since	they	are	on	different	scales.	

	

Once	strong	prior	information	on	aL 	and	gL 	is	obtained,	we	estimate	the	models	detailed	in	
equations	(7)	-	(12),	restricting	our	attention	to	the	seasons	of	141	batters	and	111	pitchers	in	our	
sample	with	greater	than	30	at-bats	or	innings	pitched	in	each	league.		While	it	is	reasonable	to	
include	data	from	all	149	batters	when	estimating	the	binomial	response	models,	we	elect	to	use	
the	same	player	pool	in	all	our	models	for	consistency.		To	facilitate	efficient	Gibbs	sampling	and	
generate	comparable	coefficients,	we	standardize	all	variables	in	Xi	with	the	exception	of	the	
position	dummy	variables.	Although	measurements	of	Depth	Perception	are	missing	for	four	
batters	and	four	pitchers,	the	missing	values	are	sampled	as	part	of	the	Gibbs	sampler	used	to	
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estimate	the	model	[16]	with	an	independent	standard	normal	prior	placed	on	each	of	the	missing	
values.		We	ran	the	model	for	three	chains	of	10,000	iterations	after	a	1000	iteration	burn-in	period,	
and	validated	it	using	Markov	Chain	Monte	Carlo	diagnostics	and	posterior	predictive	checks.		

3.	Results	
	
To	start	off	the	analysis,	we	check	to	see	if	performance	on	the	battery	of	sensorimotor	tasks	
predicts	on-field	performance.	In	doing	so,	for	each	response	variable,	we	fit	two	separate	models:	
one	with	the	sensorimotor	tasks	included	and	one	with	only	age	and	position	included	as	control	
variables.	If	sensorimotor	abilities	predict	on-field	performance,	the	full	model	should	significantly	
outperform	the	reduced	model.	Following	upon	this,	we	report	the	individual	coefficients	for	each	
of	the	models	in	which	sensorimotor	abilities	added	predictive	power	beyond	the	control	variables.	

3.1.	WAIC	
The	Watanabe-Akaike	Information	Criterion	(WAIC)	is	a	useful	way	to	compare	two	different	
Bayesian	models	of	a	particular	response.	It	uses	the	log-posterior	predictive	density	as	the	primary	
measure	of	accuracy,	with	a	correction	based	upon	the	effective	number	of	parameters	in	the	model	
[17].	Asymptotically,	it	can	be	shown	that	WAIC	approaches	the	results	obtained	via	leave-one-out	
cross-validation	[18].	For	each	of	the	five	models,	we	use	WAIC	to	compare	the	full	model	with	the	
sensorimotor	task	results	included	in	the	design	matrix	to	the	reduced	model	that	only	accounts	for	
position	and	age.	If	sensorimotor	variables	add	predictive	power	above	and	beyond	that	of	the	
control	variables,	then	the	WAIC	of	the	full	model	should	be	lower	than	that	of	the	reduced	model.		

Table	5	compares	the	WAIC	of	the	full	model	to	that	of	the	reduced	model	for	each	of	the	five	
response	variables.	As	indicated	by	the	lower	values	for	the	Full,	relative	to	the	Reduced	model,	
performance	on	the	Nike	Sensory	Station	tasks	is	predictive	of	OBP,	BB%,	and	K%.	However,	
sensorimotor	abilities	do	not	predict	either	SLG	or	FIP.	We	therefore	present	coefficient	summaries	
for	OBP,	BB%,	and	K%	in	the	sections	below.	Summaries	for	SLG	and	FIP	can	be	found	in	section	
A.5.		

	

	 OBP	 BB%	 K%	 SLG	 FIP	

Full	Model	 1210.8	 1075.8	 1276.4	 403.4	 363.8	

Reduced	Model	 1226.4	 1084.4	 1284.6	 403.1	 361.9	

	

Table	5:	WAIC	Model	Comparison.	Lower	values	for	the	full	models	relative	to	the	reduced	OBP,	BB%,	
and	K%	models	indicate	that	the	added	variables	in	the	full	models	add	meaningful	predictive	power.			

3.2.	Model	Summaries	
The	posterior	means,	standard	deviations,	and	95%	credible	intervals	for	the	coefficients	β	are	
presented	in	Table	6	for	the	full	OBP,	BB%,	K%	models,	and	in	the	Appendix	for	SLG	and	FIP.		The	
control	covariates	that	are	included	in	both	the	full	and	reduced	models	are	indicated	in	the	left	
sidebar.		Variables	for	which	0	falls	outside	the	95%	credible	intervals	are	bolded.	In	general,	
bolded	positive	coefficients	indicate	that	there	is	greater	than	95%	probability	that	the	
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sensorimotor	ability	measured	in	the	task	has	an	association	with	on-field	performance.		To	
illustrate	the	posterior	tail	probabilities,	a	heat	map	of	the	z-scored	coefficients	for	OBP,	BB%	and	
K%	is	given	in	Figure	2.		

	

Table	6:	Mean	coefficients,	standard	deviations,	and	95%	credible	intervals	for	each	model	variable	
are	shown	for	(A)	on-base	percentage,	(B)	walk	rate,	and	(C)	strikeout	rate.		Values	for	which	the	95%	

credible	interval	excludes	zero	are	bolded. 	

From	the	OBP	model	results,	we	observe	that	performance	on	the	Perception	Span	task,	which	
measures	the	ability	to	remember	and	recreate	visual	patterns,	is	associated	with	an	increased	
ability	to	reach	base.	Moreover,	the	size	of	the	coefficient	is	comparable	to	that	of	age,	a	remarkable	
result	considering	it	is	well	known	that	older	players	tend	to	perform	better	than	younger	players	
in	professional	baseball	due	to	survivorship	bias.		For	interpretation,	suppose	player	X	is	a	23-year-
old	outfielder	with	completely	average	abilities	as	a	professional	baseball	player.		The	model	
predicts	his	OBP	in	the	MLB	to	be	.292.		We	expect	a	similar	player	who	scores	one	standard	
deviation	higher	on	the	Perception	Span	task	to	have	an	OBP	of	.300,	a	nontrivial	difference.		While	
the	coefficients	of	the	other	tasks	trend	positive,	there	is	simply	not	enough	data	to	draw	strong	
conclusions	about	them.		

Furthermore,	superior	performance	on	the	tasks	that	measure	a	player’s	ability to	quickly	identify	
and	react	to	visual	stimuli,	Eye-Hand	Coordination	and	Reaction	Time,	were	found	to	be	associated	
with	an	increased	ability	to	draw	walks. For	example,	our	model	predicts	player	X	to	obtain	a	walk	
rate	of	7.1%	in	the	MLB,	but	predicts	a	similar	player	with	a	one	standard	deviation	superior	score	
on	the	hand-eye	coordination	task	to	have	a	walk	rate	of	8.0%.	On	the	other	hand,	superior	
performance	on	tasks	that	measure	a	player’s spatial	recognition	and	memory,	such	as	Near-Far	
Quickness,	Target	Capture,	and	Perception	Span,	was	found	to	be	associated	with	an	increased	
ability	to	avoid	strikeouts. In	context,	our	model	predicts	the	strikeout	rate	of	player	X	to	be	23.2%	
in	the	MLB.	A	player	similar	to	player	X	who	scores	one	standard	deviation	better	on	the	Perception	

	 	 (A) On-Base	Percentages	 (B)	Walk	Rate	 (C)	Strikeout	Rate	

	 	 Mean	 SD	 2.5%	 97.5%	 Mean	 SD	 2.5%	 97.5%	 Mean	 SD	 2.5%	 97.5%	

	Only	Full	M
odel	

Visual	Clarity	 -0.24	 0.17	 -0.59	 0.10	 -0.15	 0.10	 -0.35	 0.05	 -0.08	 0.07	 -0.21	 0.06	

Contrast	Sensitivity	 0.13	 0.16	 -0.18	 0.45	 0.04	 0.09	 -0.14	 0.23	 0.14	 0.06	 0.02	 0.26	

Depth	Perception	 0.19	 0.16	 -0.12	 0.50	 0.21	 0.10	 0.02	 0.40	 -0.12	 0.07	 -0.26	 0.02	

Near-Far	Quickness	 -0.02	 0.15	 -0.32	 0.28	 -0.05	 0.09	 -0.23	 0.14	 0.21	 0.07	 0.09	 0.34	

Target	Capture	 0.15	 0.16	 -0.16	 0.47	 -0.16	 0.09	 -0.35	 0.01	 0.16	 0.06	 0.04	 0.29	

Perception	Span	 0.64	 0.17	 0.31	 0.99	 0.15	 0.10	 -0.04	 0.34	 0.34	 0.07	 0.21	 0.47	

Eye-Hand	Coordination	 0.22	 0.17	 -0.11	 0.56	 0.46	 0.10	 0.26	 0.67	 -0.19	 0.07	 -0.32	 -0.06	

Reaction	Time	 0.21	 0.17	 -0.11	 0.55	 0.23	 0.11	 0.03	 0.44	 0.12	 0.07	 -0.02	 0.26	

Both	

Age	 0.66	 0.17	 0.34	 1.00	 0.53	 0.09	 0.36	 0.71	 0.22	 0.06	 0.09	 0.34	

Infield	 -0.53	 0.31	 -1.15	 0.08	 0.05	 0.19	 -0.33	 0.43	 0.65	 0.13	 0.40	 0.91	

Catcher	 -1.28	 0.49	 -2.25	 -0.35	 0.15	 0.29	 -0.40	 0.72	 0.26	 0.19	 -0.12	 0.64	

Intercept	 -0.13	 0.23	 -0.57	 0.31	 -0.84	 0.14	 -1.12	 -0.57	 -0.52	 0.09	 -0.71	 -0.34	
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Span	task	is	predicted	to	a	strikeout	rate	of	21.2%.		It	is	surprising	that	Eye-Hand	Coordination	was	
found	to	be	significant	in	the	opposite	direction	than	we	would	expect	a	priori,	which	motivates	
further	study.	

 

Figure	2:	Heat	map	of	b	Coefficients.		The	darker	the	color,	the	closer	the	posterior	tail	probability	gets	to	
zero	(indicating	evidence	of	an	association).	

	

4.	Discussion	
	
The	specific	roles	of	vision,	perception	and	motor	control	in	interceptive	sports	such	as	baseball	
and	cricket	have	been	a	hotly	debated	topic	for	years	[3,	19,	20,	21].	In	the	current	study,	we	shed	
new	light	on	this	debate	by	using	real-world	data	collected	from	a	large	sports	performance	
program	launched	by	Nike	Inc.	Through	Bayesian	hierarchical	latent	variable	modeling	of	the	
relationship	between	psychometric	performance	on	the	task	battery	and	season-wide	game	
statistics,	we	find	that	sensorimotor	abilities	predict	on-base	percentage,	walk	rate,	and	strikeout	
rate,	but	not	slugging	percentage	or	fielder-independent	pitching.		

The	observation	that	better	sensorimotor	abilities	generally	correlate	with	better	on-base	
percentage,	walk	rate,	and	strikeout	rate	is	largely	intuitive	since	it	is	expected	that	players	draw	on	
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these	skills	to	project	the	location	of	the	pitch	through	the	strike	zone	and	decide	whether	to	swing	
or	not.	Conversely,	the	ability	to	hit	for	power,	captured	by	slugging	percentage,	should	have	more	
to	do	with	strength,	bat	speed,	and	swing	plane	than	sensorimotor	abilities.	Pitchers	rely	on	a	
strong	arm,	consistent	mechanics,	and	a	varied	repertoire	to	prevent	runs,	attributes	that	are	
superficially	unrelated	to	sensorimotor	abilities.		

Among	the	individual	tasks	tested,	Perception	Span	shows the	strongest	relationship	with on-field	
performance,	with	better	scores	strongly	associated	with	both	increased	on-base	percentages	and	
reduced	strikeout	rates.		In	addition,	performance	on	the	Perception	Span	task	exhibits	some	
association	with	both	higher	walk	rates	and	increased	slugging	percentages,	though	the	evidence	is	
not	conclusive.		This	task	measures	the	ability	to	remember	and	recreate	visual	patterns	and	may	
reflect	visual	recognition	abilities	that	have	previously	been	tied	to	batting	performance	in	small	
samples	of	players	(N=20)	tested	with	Tachistoscopic	methods	[22]	and	in	a	conference	paper	
reporting	relationships	in	collegiate	players	[23].			

A	number	of	other	tasks	correlate	with	higher	walk	rates,	including	Depth	Perception,	Eye-Hand	
Coordination	and	Reaction	Times.	The	observation	that	Eye-Hand	Coordination	and	Reaction	Time	
are	positively	correlated	with	walk	rate	indicates	that	the	ability	to	quickly	react	to	visual	stimuli	is	
highly	influential	in	a	player’s	ability	to	draw	walks.	The	positive	relationship	with	Depth	
Perception	supports	previous	findings	indicating	that	binocular	vision	contributes	to	precisely	
projecting	the	location	of	a	pitched	baseball	[24].	Furthermore,	past	research	comparing	pitchers	
and	hitters	on	the	Sensory	Station	battery	found	better	performance	for	professional	hitters,	
relative	to	pitchers,	on	both	the	Visual	Clarity	and	Depth	Perception	tasks	[9],	suggesting	that	better	
depth	disparity	differentiates	highly	experienced	athletes	who	bat	from	those	who	pitch.		

The	model	linking	sensorimotor	abilities	to	strikeout	rates	offers	a	mixed	view	of	the	relative	
contributions	of	sensorimotor	skills	towards	avoiding	strikes.	The	pattern	of	results	indicates	that	
better	performance	on	the	Perception	Span,	Near-Far	Quickness,	Target	Capture,	and	Contrast	
Sensitivity	tasks	is	associated	with	an	increased	ability	to	avoid	strikeouts.	However,	it	is	surprising	
that	worse	Eye-Hand	Coordination	is	associated	with	reduced	strikeout	rates,	though	it	has	a	
relatively	weak	coefficient.		

In	light	of	the	current	findings,	it	is	worth	noting	several	strengths	and	weaknesses	in	the	approach.	
First,	this	dataset	reflects	one	of	the	largest	samples	of	high-level	baseball	players	tested	on	a	
consistent	battery	of	psychometric	tasks.	These	tasks	were	presented	with	video	instructions	and	
conducted	by	trained	and	certified	administrators,	providing	some	assurance	towards	data	quality.	
Further,	the	latent	approach	to	modeling	league	heterogeneity	offers	a	systematic	means	by	which	
to	incorporate	data	from	multiple	leagues,	while	also	scaling	production	in	each	league	to	
accurately	reflect	the	relative	difficulty	of	that	league	in	that	year.	Nonetheless,	it	is	important	to	
note	that	while	the	individual	tasks	in	the	battery	have	been	identified	as	important	abilities	for	
sports	performance	[4]	the	choice	to	include	multiple	measures	in	the	battery	comes	with	a	tradeoff	
of	fewer	trials	(and	less	sensitivity)	for	each	measure.	On	the	baseball	side,	the	data	shared	with	the	
research	team	limited	the	scope	of	potential	research	directions,	preventing	us	from	incorporating	
park-specific	factors	and	more	granular,	robust	metrics	of	player	performance.	

4.1.	Future	Work	
Given	the	incredible	amounts	of	data	that	technological	tools	such	TrackMan	and	StatCast	generate	
in	professional	baseball,	this	study	only	scratches	the	surface	of	the	informational	gold-mine	that	
can	be	harvested	by	teams,	researchers,	and	vision	centers	who	want	to	understand	the	



	

	 13	

2018	Research	Papers	Competition		
Presented	by:	

relationship	between	sensorimotor	skills	and	on-field	performance.		Below,	we	present	a	few	ideas	
for	follow-up	studies	that	can	be	conducted	by	teams	or	researchers	under	a	secondary-data	
protocol.			

One	interpretation	of	the	strong	relationship	between	Perception	Span	and	batting	performance	is	
that	the	ability	to	store	pitches	in	spatial	working	memory,	and	subsequently	recognize	them,	helps	
batters	avoid	strikeouts	and	reach	base	more	frequently.	There	may	be	evidence	for	this	
empirically,	since	pitchers	obtain	the	highest	strikeout	rates	and	allow	the	lowest	on-base	
percentage	when	seeing	batters	for	the	first	time.	Each	time	a	batter	faces	a	pitcher,	his	on-base	
percentage	improves	and	strikeout	rate	declines	[25],	in	part	because	he	has	“seen” the	pitcher’s 
repertoire	before	and	filed it	away	into	memory,	making	for	easier	recollection	and	recognition	
during	subsequent	meetings.	Future	research	may	examine	whether	players	with	high	scores	on	
the	Perception	Span	task	perform	better	against	pitchers	during	the	second	and	third	times	through	
the	order,	above	and	beyond	the	improvement	expected	of	them.		To	do	this,	at-bat	level	data	will	
be	needed,	rather	than	aggregated	season	statistics.		

Walk	rate	is	an	imperfect	metric	for	plate	discipline	because	it	captures	a	batter’s	underlying	
approach	to	the	plate,	in	addition	to	measuring	a	batter’s	ability	to	differentiate	between	balls	and	
strikes.		There’s	no	question	that	a	batter’s	vision	plays	an	integral	role	in	his	decision	to	swing.		In	
2008,	Carlos	Santana,	one	of	the	most	disciplined	first	basemen	in	the	MLB,	independently	began	to	
practice	pitch	visualization,	imagining	a	ring	between	the	pitcher’s	round	and	home-plate.		If	the	
ball	traveled	through	the	ring,	he	would	make	the	decision	to	swing	and	otherwise	hold	back	[26].		
Perhaps	analyzing	pitch-level	data	can	clarify	the	specific	sensorimotor	skills	that	help	batters	like	
Santana	make	optimal	decisions.		

One	important	attribute	not	considered	in	this	study	is	a	player’s	defensive	ability.		With	Statcast,	
which	tracks	the	location	of	every	player	on	the	field	at	25	frames	per	second,	teams	have	the	
ability	to	track	the	route	efficiency	and	first	step	of	outfielders	as	they	attempt	to	catch	fly	balls.		An	
analysis	of	the	relationship	between	sensorimotor	abilities	and	route	efficiency	could	provide	
unique	insight	into	player	defense,	particularly	for	outfielders.	

If	the	present	and	future	results	speak	to	underlying	building	blocks	of	baseball	expertise,	how	can	
they	be	used	to	improve	baseball	performance?	This	question	lies	at	the	heart	of	efforts	to	
implement	“sports	vision	training” programs [27,	28]	based	on	the	notion	that	practice	with	
demanding	visual,	perceptual,	cognitive,	or	oculomotor	tasks	can	improve	the	ability	to	process	and	
respond	to	what	is	seen,	thereby	improving	athlete	performance.	The	literature	has	examined	
training	techniques	that	target	anticipation	and	decision-making	abilities	of	athletes	[29],	as	well	as	
new	digital	technologies	that	train	general	visual,	perceptual	and	cognitive	skills	critical	for	
sporting	performance	[12,	30,	31].	Ultimately,	the	ability	to	determine	which	visual	and	motor	
characteristics	are	related	to	performance	will	focus	research	on	specific	training	programs,	
enabling	athletes	to	make	the	most	of	their	system	physiologies.	The	current	findings	are	an	
important	step	in	this	direction.	 	
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Appendix	
	
A.1.	Sensorimotor	Assessments	
The	Sensory	Stations	consist	of	a	battery	of	nine	computerized	sensorimotor	tasks,	each	designed	
to	evaluate	a	specific	facet	of	a	participant’s visual-motor	abilities.	The	first	five	tasks	were	
completed	using	a	handheld	Apple	iPod	Touch,	standing	4.9	m	from	the	station.	The	last	four	tasks	
were	completed	at	arm’s	length	from	the	touchscreen	monitor. Four of	the	tasks	– Visual	Clarity,	
Contrast	Sensitivity,	Depth	Perception,	and	Target	Capture	– operated	on	staircase	schedules	in	
which	subsequent	stimulus	difficulty	increased	following	a	correct	response	and	decreased	
following	an	incorrect	response. For	these tasks,	scores	were	calculated	as	the	final	step	according	
to	response	accuracy	on	the	staircase	schedule.	All	tasks	were	preceded	by	video	instructions.	
Procedures	and	descriptions	for	each	task	are	provided	below,	and	detailed	descriptions	can	be	
found	in	[A1]	and	[A3].	
	
The	Visual	Clarity	task	measures	visual	acuity	for	fine	details	at	a	distance	using	a	black	Landolt	
ring	–	an	incomplete	ring	with	a	small	gap	oriented	in	one	of	the	four	cardinal	directions.	
Participants	were	asked	to	swipe	on	the	iPod	in	the	direction	that	corresponded	to	the	orientation	
of	the	gap	in	the	ring.	The	task	was	completed	in	three	separate	rounds:	one	with	an	occluder	
covering	the	right	eye,	then	the	left,	then	a	final	round	with	both	eyes	uncovered.	Visual	Clarity	
scores	were	taken	as	the	average	of	these	three	conditions.		
	
The	Contrast	Sensitivity	task	measures	the	minimum	resolvable	difference	in	contrast	at	a	
distance.	Participants	were	presented	with	four	black	rings	on	a	light	gray	background	and	asked	to	
indicate	which	ring	contained	a	pattern	of	dark	gray	concentric	circles	by	swiping	on	the	iPod	in	the	
direction	corresponding	to	the	patterned	ring.		
	
The	Depth	Perception	task	measures	how	quickly	and	accurately	participants	are	able	to	detect	
differences	in	depth	at	a	distance	using	liquid	crystal	glasses.	Here,	four	black	rings	were	presented	
and	participants	were	asked	to	swipe	in	the	direction	of	the	ring	that	appeared	to	have	depth.	The	
task	was	completed	three	times:	once	facing	towards	the	screen,	once	facing	to	the	left	and	looking	
over	the	right	shoulder,	and	once	facing	right	and	looking	over	the	left	shoulder.	Depth	Perception	
scores	were	taken	as	the	average	of	these	three	conditions.		
	
The	Near-Far	Quickness	task	measures	the	number	of	near	and	far	targets	that	can	be	correctly	
reported	in	30	seconds.	Participants	aligned	the	top	of	the	iPod	with	the	bottom	edge	of	the	large	
monitor	then	swiped	in	the	direction	of	the	gap	in	the	Landolt	ring	that	appeared	on	either	the	iPod	
or	larger	monitor	screen.	Participants	were	instructed	to	respond	as	quickly	as	possible,	and	the	
ring	only	moved	from	one	screen	to	another	following	a	correct	response.	Participants	continued	to	
respond	until	they	answered	correctly	or	ran	out	of	time.	Near-Far	Quickness	scores	were	the	total	
number	of	correct	responses	made	in	30-seconds.	
	
The	Target	Capture	task	measures	the	speed	at	which	participants	can	shift	attention	and	
recognize	peripheral	targets.	A	small	black	Landolt	ring	was	briefly	presented	in	one	of	the	four	
corners	of	the	monitor,	and	participants	were	asked	to	swipe	on	the	iPod	in	the	direction	
corresponding	to	the	gap	in	the	ring.	Following	a	correct	answer,	the	ring	was	presented	for	a	
shorter	duration,	and	for	a	longer	duration	following	an	incorrect	answer,	per	the	staircase	
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procedure.	Because	this	task	was	performed	on	a	duration	staircase,	the	final	accuracy	step	
reflected	the	minimum	stimulus	duration	according	to	accuracy	on	the	staircase	schedule.	
	
The	Perception	Span	task	measures	the	capacity	of	spatial	working	memory.	As	participants	stood	
at	arm’s length	from	the	monitor,	a	grid	of	empty	black	circles	was	presented,	and	a	subset	was	
filled	briefly	with	green	dots	that	disappeared	after	100	milliseconds. Participants	were	asked	to	
recreate	the	pattern	on	each	trial	by	touching	the	circles	that	had	previously	contained	the	green	
dots.	There	were	eleven	total	possible	pseudo-randomized	trials	with	increased	grid	sizes	and	
increasing	number	of	green	dots	presented	at	each	level.	Perception	Span	scores	were	computed	as	
the	total	number	of	correctly	identified	dots	minus	the	number	of	missed	or	falsely	identified	dots	
across	all	of	the	trials.	
	
The	Eye	Hand	Coordination	task	measures	the	speed	at	which	participants	can	make	visually-
guided	hand	responses	to	rapidly	changing	targets.	A	grid	of	48	evenly	spaced	black	rings	was	
presented	on	the	screen.	When	a	green	dot	appeared	in	one	of	the	rings,	participants	touched	the	
dot	as	quickly	as	possible.	The	dot	then	relocated	to	another	ring	for	a	total	succession	of	96	dots.	
The	score	for	Eye	Hand	Coordination	was	the	total	time	it	took	to	complete	the	sequence.	
	
The	Go/No-Go	task	measures	the	ability	to	execute	and	inhibit	visually	guided	hand	responses	in	
the	presence	of	“go”	and	“no-go”	stimuli.	Similar	to	the	previous	task,	a	grid	of	48	rings	was	
presented;	however,	in	this	task	the	dots	could	appear	either	green	or	red.	Participants	tried	to	
touch	the	green	dots	as	quickly	as	possible	while	avoiding	red	dots.	96	dots	were	presented	for	500	
milliseconds	each	before	disappearing,	and	the	total	score	was	calculated	as	the	number	of	green	
dots	touched	minus	the	number	of	red	dots	touched.	
		
The	Response	Time	task	measures	how	quickly	participants	react	and	respond	to	a	simple	visual	
stimulus.	Two	rings	were	shown	on	each	side	of	the	large	monitor.	Participants	began	with	their	
dominant	hand	in	the	“starting” ring,	while	their	body	was	oriented	in	front	of	the	“landing” ring	on	
the	opposite	side	of	the	screen.	When	the	landing	ring	turned	green,	participants	moved	their	hand	
from	the	starting	ring	to	the	landing	ring	as	quickly	and	accurately	as	possible.	A	total	of	seven	
separate	trials	were	completed,	and	participants	had	the	opportunity	to	repeat	up	to	two	of	these	
trials	if	any	were	slower	than	two	standard	deviations	from	the	mean.	Response	Time	scores	were	
taken	as	the	average	of	the	seven	best	trials.	
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A.2.	Performance	Distributions	for	the	Sensory	Station	tasks	
	

 

Histograms	of	behavioral	performance	on	the	Sensory	Station	tasks	for	(L)	batters	and	(R)	pitchers.			

	
A.3.	League	Effect	Models	
To	estimate	𝛼L and	𝛾L ,	we	first	scrape	publicly	available	minor	and	major	league	play-by-play	data	
between	2012	and	2013	from	MLB.com	using	the	pitchRx	package	in	the	R	language	[A2].		We	
collate	the	statistics	of	all	players	(1695	batters,	1053	pitchers)	who	played	in	multiple	leagues	
during	that	period.	By	examining	the	difference	in	player	performance	between	the	leagues,	we	
quantify	the	degree	of	difficulty	of	each	league	with	a	separate	Bayesian	model.		For	example,	if	the	
Major	League	is	more	difficult	than	AAA,	we	should	expect	a	player	who	plays	in	both	leagues	to	
register	a	lower	on-base	percentage	in	the	Major	League	than	in	AAA.			
	
For	each	of	the	five	game	statistic	variables,	we	estimate	the	corresponding	model	detailed	in	
Eqs.(7)	-	(12),	using	the	data	of	all	players	who	played	in	multiple	leagues	between	2012	and	2013.		
Since	we	do	not	have	sensorimotor	measurements	for	these	players,	we	instead	place	a	standard	
normal	prior	on	each	Ai.	Because	we	assume	that	increased	ability	corresponds	to	improved	
performance	for	each	game	statistic,	we	impose	a	half-Cauchy	prior	on 𝛾L ,	as	well	as	conjugate	
Normal/Gamma	priors	for	𝛼L and	𝜏.	
For	the	initial	on-base	percentage	model,	we	use	the	following	specification	and	priors.	
	
𝑂𝐵KL	~	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁KL, 𝑝KL)	 𝑙𝑜𝑔𝑖𝑡 𝑝KL 	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝛼L + 	𝛾L𝐴K, 𝜏WX)	 𝐴K	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)	
aL	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, taWX)	 ta	~	𝑇𝑁(0, 1, 0,∞)	 	
gL	~	𝑇𝑁 0, tgWX, 0,∞ 	 tg	~	𝑇𝑁(0, 1, 0,∞)	 t	~	𝐺𝑎𝑚𝑚𝑎(0.5, 0.5)	
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where	TN(µ,	s,	a,	b)	is	the	normal	distribution	truncated	to	a	lower	bound	a	and	upper	bound	b.		
The	initial	models	for	BB%	and	K%	models	have	similar	specifications,	with	the	exception	that	gj	in	
the	K%	model	is	bounded	above	by	zero,	since	players	with	higher	ability	strike	out	less	frequently.		
	
For	the	initial	slugging	percentage	model,	we	use	the	following	specification	and	priors.	
	

𝑆𝐿𝐺KL	~	𝑁𝑜𝑟𝑚𝑎𝑙 𝜇KL,
𝜎_

𝑁KL
	 𝜇KL	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝛼L + 	𝛾L𝐴K, 𝜏WX)	 𝐴K	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)	

aL	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, taWX)	 ta	~	𝑇𝑁(0, 1, 0,∞)	 1 s_	~	𝐺𝑎𝑚𝑚𝑎(0.5, 0.5)	
gL	~	𝑇𝑁 0, tgWX, 0,∞ 	 tg	~	𝑇𝑁(0, 1, 0,∞)	 t	~	𝐺𝑎𝑚𝑚𝑎(0.5, 0.5).	

	
The	specification	for	the	FIP	model	is	the	same	as	that	for	the	SLG	model,	with	the	exception	that	gj	
in	the	FIP	model	is	bounded	above	by	zero,	since	players	with	higher	ability	record	lower	values	for	
FIP.	
For	each	model,	we	draw	ten	thousand	samples	of	the	parameters	from	the	joint	posterior	
distribution	via	Gibbs	sampling.		We	compute	the	posterior	means	and	variances	for	all	parameters,	
including 𝛼L and	𝛾L .	These	means	and	variances	are	used	in	the	prior	distributions	for	the	final	
models,	as	described	in	A.4.	
	
A.4.	Specifications	for	Final	Models	
As	mentioned	in	the	main	body	of	the	article	and	in	A.3.,	we	first	fit	an	initial	model	to	obtain	
concentrated	priors	for	aj,	gj,	t,	and	s2.		We	use	the	posterior	means	and	variances	to	form	prior	
distributions	in	the	final	models	used	to	assess	the	relationship	between	sensorimotor	abilities	and	
on-field	performance.		For	any	initial	model,	let	the	t	and	tde	be	the	posterior	mean	and	standard	
deviation	of	t,	respectively,	computed	as	described	in	A.3.		We	use	analogous	notation	for	the	
posterior	means	and	standard	deviations	for	the	other	parameters.		We	emphasize	that	each	
outcome	variable	has	its	own	set	of	parameters,	although	we	use	a	common	notation	for	
convenience.			
	
The	final	on-base	percentage	model	used	to	produce	the	results	in	Table	6,	including	all	prior	
distributions,	is	as	follows:	
	
𝑂𝐵KL	~	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁KL, 𝑝KL)	 𝑙𝑜𝑔𝑖𝑡 𝑝KL 	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝛼L + 	𝛾L𝐴K, 𝜏WX)	 𝐴K = 𝑋b	
aL	~	𝑁𝑜𝑟𝑚𝑎𝑙(aL,adeL_ )	 gL	~	𝑇𝑁 gL, gdeL

_ , 0,∞ 	 bL	~	𝑁𝑜𝑟𝑚𝑎𝑙 0, 10
_ , ∀	𝑗	

	 t	~	𝑇𝑁(t, tde_ , 0,∞)	
	

𝑋K,gKhh	~	𝑁𝑜𝑟𝑚𝑎𝑙 0,1 	
	

	
			The	specifications	for	the	BB%	and	K%	models	are	identical,	with	the	exception	that	gj	in	the	K%	
model	is	bounded	above	by	zero,	since	players	with	higher	ability	strike	out	less	frequently.	
	
The	final	slugging	percentage	model	used	to	produce	the	results	in	Table	6,	including	all	prior	
distributions,	is	as	follows.	
	

𝑆𝐿𝐺KL	~	𝑁𝑜𝑟𝑚𝑎𝑙 𝜇KL,
𝜎_

𝑁KL
	 𝜇KL	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝛼L + 	𝛾L𝐴K, 𝜏WX)	 𝐴K = 𝑋b	
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aL	~	𝑁𝑜𝑟𝑚𝑎𝑙(aL,adeL_ )	 gL	~	𝑇𝑁 gL, gdeL
_ , 0,∞ 	 bL	~	𝑁𝑜𝑟𝑚𝑎𝑙 0, 10

_ , ∀	𝑗	

s	~	𝑇𝑁(s,sde_ , 0,∞)	 t	~	𝑇𝑁(t, tde_ , 0,∞)	
	

𝑋K,gKhh	~	𝑁𝑜𝑟𝑚𝑎𝑙 0,1 	
	

The	specification	for	the	FIP	model	is	the	same	as	that	for	the	SLG	model,	with	the	exception	that	gj	
in	the	FIP	model	is	bounded	above	by	zero,	since	players	with	higher	ability	record	lower	values	for	
FIP.	
	
A.5.	SLG	and	FIP	Model	Summaries	

	

Mean	coefficients,	standard	deviations,	and	95%	credible	intervals	for	each	model	variable	are	shown	for	
(A)	slugging	percentage	and	(B)	fielder-independent	pitching.		Values	for	which	the	95%	credible	interval	

excludes	zero	are	bolded.	
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	 	 (A) Slugging	Percentage	 (B)	Fielder	Independent	Pitching	

	 	 Mean	 SD	 2.5%	 97.5%	 Mean	 SD	 2.5%	 97.5%	

Full	M
odel	

Visual	Clarity	 -0.01	 0.15	 -0.30	 0.28	 -0.24	 0.25	 -0.71	 0.26	

Contrast	Sensitivity	 -0.14	 0.14	 -0.41	 0.15	 0.07	 0.24	 -0.40	 0.54	

Depth	Perception	 0.18	 0.14	 -0.08	 0.45	 -0.68	 0.22	 -1.12	 -0.26	

Near-Far	Quickness	 0.00	 0.14	 -0.26	 0.27	 0.25	 0.23	 -0.20	 0.70	

Target	Capture	 0.15	 0.14	 -0.12	 0.43	 -0.11	 0.21	 -0.52	 0.29	

Perception	Span	 0.29	 0.14	 0.01	 0.58	 0.21	 0.23	 -0.25	 0.66	

Eye-Hand	Coordination	 0.05	 0.15	 -0.25	 0.34	 -0.18	 0.20	 -0.58	 0.20	

Reaction	Time	 0.09	 0.15	 -0.21	 0.40	 -0.07	 0.20	 -0.47	 0.34	

Reduced	

Age	 0.44	 0.15	 0.15	 0.72	 0.55	 0.21	 0.15	 0.96	

Infield	 -0.60	 0.28	 -1.13	 -0.05	 	 	 	 	

Catcher	 -1.40	 0.41	 -2.21	 -0.60	 	 	 	 	

Intercept	 0.07	 0.20	 -0.33	 0.45	 -0.32	 0.21	 -0.74	 0.07	


