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Abstract 
 

The pick and roll is a powerful tool; as former coach Stan Van Gundy once said of his Magic team, 
"[The pick and roll is] what we're going to be in when the game's on the line. [...] I don't care how good 
you are, you can't take away everything" [1]. In today's perimeter oriented NBA, the pick and roll is 
more important than ever before. The player tracking data that is now being collected across all arenas 
in the NBA holds out the promise of deepening our understanding of offensive strategies. In this paper 
we approach part of that problem by introducing a pattern recognition framework for identifying on-
ball screens. We use a machine learning classifier on top of a rule-based algorithm to recognize on-ball 
screens. Tested on 21 quarters from 14 NBA games from last season our algorithm achieved a 
sensitivity of 82% and positive predictive value of 80% 

 
1   Introduction 
 
The pick and roll is a fundamental part of offense in the NBA; thus, much effort is invested in determining the most 
effective way to run it. Until now, this required a significant amount of manual labor for video/play review (or just a 
lot of coaching experience). With the player tracking data provided by the STATS SportVu system and machine 
learning techniques, we can automate much of this effort. In this paper, we describe the development of a system 
for automatically recognizing on-ball screens. Our results suggest that such a system could be useful for identifying 
similarities between teams in the NBA, and how they run their offenses.  Moreover, the techniques and framework 
described here can be applied to other pattern recognition tasks, such as identifying offensive plays or defensive 
schemes. 
 
2   Data Segmentation  
 
For our analysis we use player-tracking data collected by the STATS SportVu system from the 2012-2013 season.  
These data form a Position table and an Event table: 
 
Position table - contains the {x,y} position of every player on the court and the {x,y,z} coordinates of the ball, at 
25 frames a second.  
 
Event table - contains play-by-play data, i.e., a chronological list of events that occur in the game (e.g. fouls, passes, 
dribbles, shots), and when each event occurred. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IF [ 

there is a player who is dribbling the ball (i.e., the ball-handler) 

AND there is an offensive player within 10 feet of the ball-handler (i.e., 

          the screener) 

AND the screener is not in or near the paint (see in-set figure for 

          definition of “near”) 

AND the screener is no more than 2 ft. further from the basket than the  

    ball-handler is 

AND there is a defensive player <= 12 ft. from the ball-handler (i.e., the 

          on-ball defender)  

AND the basketball is not in the paint 

] for >=13 consecutive frames 

AND the ball-handler is the same for every frame 

THEN 

  identify as action 

Figure 1: A rule-based algorithm to segment the data into actions 
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To identify on-ball screens, we begin by segmenting the data from the Position table into short periods of time, 
called actions.  We do this using a rule-based algorithm that examines each frame against a set of criteria described in 
Figure 1.  We developed these criteria to include any period of time when an on-ball screen was possible and to 
eliminate situations when an on-ball screen could not be occurring (e.g., when there is no one dribbling or the ball-
handler is in isolation).  An action represents a continuous period of time during which every frame fulfills the 
criteria. In our data, the average length of an action was just over 1.5 seconds long.  
 
Segmenting the data into actions serves two purposes: (1) it reduces the size of the data by eliminating irrelevant 
data, and (2) it creates a set of discrete examples that can be annotated.  This first step alone significantly reduces the 
amount of labor required to identify on-ball screens.  When we applied the criteria in Figure 1 to 21 randomly 
selected quarters from 14 games (see Appendix), we achieved a sensitivity of approximately 98% and a positive 
predictive value (PPV) of approximately 52%.  I.e., approximately 98% of all the on-ball screens were part of actions 
and approximately 52% of all actions contained an on-ball screen.  Of course, a PPV of 52% is not nearly good 
enough. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When we inspected the actions by eye, we identified three major categories of actions (see Figure 2). Based on these 
observations, we hypothesized that the large number of Type 2 and Type 3 non-screen actions causes the poor PPV. 
In the next section, we describe the development of a machine learning classifier to automatically discriminate the 
on-ball screen actions from the non-screen actions.  
 
3   Machine Learning Classifier 
 
Learning and testing a supervised classifier can be split into several major steps as shown in Figure 3. In the sections 
that follow we describe each step in building our classifier in detail. 
 
 
 
 
 
 
 
 
 
 
3.1  Labeling the Data 

Figure 2:  These court mockups illustrate the three major categories of actions we identified.  

(a) Type 1, a classic on-ball screen. The screener starts close to the paint and moves away from the 
basket towards the ball-handler to set a screen.   

(b) Type 2, establishing half-court positions. The paths of ball-handler and screener come close as 
they move to their positions in the half-court offense.  There is no screen in this type of action. 

(c) Type 3, a perimeter movement. The ball-handler moves along the perimeter, while another 
offensive player moves in the opposite direction along the perimeter. That second offensive 
player may or may not set a screen. 

 

(a) (b) (c) 

Figure 3: The process of learning a supervised classifier 
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We assign each action a value of either +1 or -1, indicating whether the action is an on-ball screen or not.  As 
mentioned above, we chose 21 randomly selected quarters from 14 games (Appendix).  Ten teams were represented 
in the 14 games, of which nine teams had a non-trivial (greater than 10) number of screens.  To label the data, we 
watched the quarter and recorded the time each on-ball screen occurred.  If we had any doubt that an on-ball screen 
occurred, we did not include it in our analysis.  We also did not consider handoffs to be on-ball screens.  If an action 
contained an on-ball screen annotation between the start and end times, it was labeled as positive, otherwise it was 
labeled as negative.  
 
3.2  Feature Extraction 
 
For each action, we extract 30 continuous features.  We begin by determining the ball-handler, the screener and the 
on-ball defender using the Event and Position tables.  
 

Ball-Handler: We examine the Event table and if the most recent event was a dribble, the player that performed 
the dribble is identified as the ball-handler. Otherwise there is no ball-handler and the preprocessing algorithm 
rejects the frame. 
 
Screener: We determine the player that sets the screen by weighing three factors: how long the player is 
stationary, whether he approaches the ball-handler early in the action and how close the player gets to the ball-
handler. 
 
On-Ball Defender: The on-ball defender is identified as the defensive player who is closest to the ball-handler 
during the first 11 frames of the action.  To account for the possibility of the on-ball defender being caught on 
the screen, we weight the distance between the player and the ball-handler more heavily in the earlier frames of 
the action. 
 

Next, we quantify the pairwise interactions between the ball-handler, the screener, the on-ball defender and the 

basket. Let               represent the {x,y} position of a player   during an action. We measure the pairwise 

distance between two players, player   and player  , at time  , as        ‖     ‖, and between player  , and the 

basket as             ‖          ‖ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We define the moment of the screen,  , as the time when the pairwise distance between the ball-handler    and the 

screener    is at a minimum.  

        
 

         
 

 

This screen moment, divides the action into two halves: the approach     and the departure    . Given the 

pairwise distance between player   and player  , and   we summarize each time series using 5 continuous values:  
 

Figure 4: The court mock-up on the left illustrates actual position data for an action between Portland 
and OKC. This data is transformed into the pairwise distance time series plotted on the right in which 
we identify the “screen moment”. This index event allows us to extract relevant features pertaining to 
before and after the screen. For clarity, we only show 3 of the 6 pairwise distance time series. 
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We repeat the above to characterize the distance between each player and the basket, substituting         for player 

 . Extracting the features listed above for each set of pairwise distance results in 30 continuous features (five for 
each pair). Next, we discretize each continuous feature into five binary features based on quintiles. This results in a 
150-dimensional feature vector for every action.  
 
3.3  Splitting Data into Training and Testing Sets 
 
In order for each team to factor equally into our analysis, we needed to create a dataset that included the same 
number of data points from each team. We randomly selected 27 positive and 27 negative data points from each 
team and combined that into a global dataset. We then partitioned that dataset into a training set of 252 points (14 
positive and 14 negative randomly chosen from each team) and a test set of 234 points (13 positive and 13 negative 
from each team).  
 
3.4  Training the Classifier 
 
Our dataset is defined as follows: 

  {       |         {    }}
   

 
 

 

where   represents the number of labeled examples in the training data, and   represents a 150-dimensional feature 

space in which each feature vector,   , lies. Using support vector machine (SVMs) we learn a linear classifier      
    where 
 

           
 

  is a weight vector       and   is a scalar. The optimal settings of   and   are learned using LIBSVM [3]. When 
learning the SVM we select the cost-parameter using 5-fold cross validation on the training set1. Given a new point 

 , it is labeled according to     (    ).  

 
3.5  Performance 
 

We applied the classifier to our test set and generated predictions according to  ̂               for each 
example. To measure performance on the test set, we considered the true positive rate and the false positive rate at 

each value of the decision boundary,  .  This creates the Receiver Operator Characteristic (ROC) curve (Figure 5a). 
We used the area under the ROC curve (AUROC)2 as a measure of performance. We repeated the entire process, 
shown in Figure 3, 200 times for different random splits of data. The mean AUROC across all splits was 0.8309.  As 
shown in the Figure 5b, there exists a trade-off between sensitivity and positive predictive value.  If we set the 
threshold so that we have 80% confidence that a positive label is correct (80% PPV), we can identify 82% of the 
positively labeled actions (82% sensitivity).  
 
 
 

                                                           
1 For an in-depth review of SVMs please refer to [2]. 
2 The AUROC is a summary statistic representing the probability that, given two random examples of opposing 
labels, the classifier will rank the positive example higher than the negative example. An AUROC of 0.5 is no better 
than random and an AUROC of 1.0 is perfect. 

Table 1: The five continuous features extracted for each action 
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4   Improving The Classifier By Identifying Similar Offenses 
 
Different teams run different offenses and this limits the global classifier’s ability to identify on-ball screens.  We 
hypothesized that we could achieve even better performance by learning classifiers trained on groups of teams that 
run similar offenses. To test this hypothesis, we first estimated the similarity between pairs of teams. If a classifier 
trained on data from Team A performs well when applied to data from Team B, we consider Team A to be similar 
to Team B (in terms of on-ball screens). (Note: this notion of similarity is not symmetric.)  In order to control for 
the number of training examples (e.g., for some teams we had more data than for others), each team-specific 
classifier was trained on the same number of randomly selected examples. We applied each classifier to each team’s 
test data. The resulting AUROCs of each experiment are shown in Figure 6a (Full results in Appendix).  Figure 6b 
gives the similarity of each team with respect to the Golden State Warriors.  
 

 
 
4.1  Augmented Team-Specific Classifiers 
 

Figure 6: (a) The performance (AUROC) when testing all team-specific classifiers and the global 
classifier on each team’s test set. 
(b) Creating similarity ranks for GSW by sorting single-team classifier performance on the GSW test set.  

(a) 
(b) 

SIMILARITY RANKS 
 

1) GSW 
2) BOS 
3) CHI 
3) HOU 
5) CLE 
6) PHO 
7) NYK 
8) OKC 
9) POR 

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

Sensitivity

P
o
s
it
iv

e
 P

re
d
ic

ti
v
e
 V

a
lu

e

Figure 5: (a) The ROC curve for the global classifier with the median AUROC 
(b) The Recall-Precision tradeoff (right) for that global classifier with some Sensitivity-PPV value pairs. 

(a) 
(b) 

Sensitivity PPV 

0.5214 0.8472 

0.5983 0.8235 
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To test our hypothesis, we carried out an experiment comparing the value of more training data from a variety of 
teams versus the value of using less training data from a subset of similar teams.  We started by creating a 9-team 
group classifier trained on 252 actions, 14 positive and 14 negative from all nine teams.  Then, for each team, we 
created an 8-team group classifier where we trained a classifier on 224 actions, 28 from each of the 8 most similar 
teams.  We continued to reduce the size of the group classifier using the similarity rankings (as defined earlier) until 
we were left with a classifier trained on the single most similar team.  
 
As shown in Figure 7, the size of the optimal classifier varied between teams.  In almost every case the optimal 
classifier was trained on 56% or less of the available training data. This is somewhat surprising, since in general 
classifier performance improves with more data.  These results suggest that inter-team differences in the way on-ball 
screens are run are significant, and simply pooling the data together to learn one classifier can be detrimental to 
performance. By intelligently selecting a subset of teams to include in the training set, we can drastically reduce the 
amount of labeled data required without sacrificing team-specific performance.  

 
It appears that on-ball screens run by Golden State and Houston are both much easier to classify than those run by 
any of the other teams. We looked over film from the games we labeled and found that one possible explanation is 
that the Warriors and the Rockets place a strong emphasis on spacing and so, unlike many other teams, they rarely 
have their perimeter players approach each other.  Therefore they have very few Type 3 actions. In contrast, 
Oklahoma City, a team for which it is more difficult to identify on-ball screens, focuses on forcing switches by 
running Westbrook-Durant brush screens on the perimeter. This means many of the Thunder’s actions are Type 3. 
The classifier is much better at differentiating Type 1, which are always screens, from Type 2 actions, which are 
never screens, than it is at differentiating Type 3 actions that are screens from Type 3 actions that are not screens. A 
secondary classifier focusing exclusively on Type 3 actions might be able to improve the performance of our system.  
 
6   Limitations, Future Work, and Conclusions 
 
Our ability to evaluate our method was limited by the fact that we did our own labeling of the data.  Since our 
classifiers are learned from the data, the problem is not as severe as it would have been if we were evaluating a hand-
coded classifier.  However, going forward we would like to conduct a study in which an outside expert supplies the 
labels. 
 
As part of this work we built team-specific classifiers. However, teams change personnel throughout the course of a 
game and over the course of a season. To the extent that offenses are dominated by coaching philosophies, our 
approach makes sense. Going forward, it would be interesting to build personnel-specific classifiers. Unfortunately, 
at the time of this writing, we did not have enough data to do this. 
 

Figure 7: For each team’s test set, this graph shows how the performance of the Augmented Team-
Specific classifier changes as we repeatedly remove the least similar team from the training set. For 
each team, the training size of the Augmented Team-Specific Classifier decreases from left to right. 
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Despite these limitations, we believe that the line of work reported here shows great promise.  Despite the limited 
number of examples, we were able to use machine learning to derive accurate classifiers.  Furthermore, we showed 
that learning team-specific classifiers from data rather than hand coding a global classifier sheds light upon how 
certain teams run their pick-and-roll offenses similarly.  We believe that we can use the same approach (though with 
different features and segmentation criteria) to recognize both other offenses and various defensive schemes.  
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8   Appendix 

 
Labeled Games 

 

Away Team Home Team Date Quarter(s) 

POR OKC 2-Nov-12 4 

CHI PHO 14-Nov-12 1 

MIN GSW 24-Nov-12 1 

CLE BOS 19-Dec-12 1, 2, 3 & 4 

NYK OKC 7-Apr-13 1, 2, 3 & 4 

HOU BOS 11-Jan-13 2 

POR HOU 8-Feb-13 1 

CHI HOU 21-Nov-12 3 

POR PHO 21-Nov-12 4 

NYK GSW 11-Mar-13 3 

CHI GSW 15-Mar-13 1 

PHO GSW 20-Feb-13 2 

NYK HOU 23-Nov-12 4 

POR HOU 8-Feb-13 3 

CHI HOU 21-Nov-12 1 

 
 
Labeled Data Size By Team 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LABELED DATA 

      

TEAM 
# of positive 

actions 
# of negative 

actions 

      

BOS 50 43 

CLE 37 51 

CHI 71 54 

GSW 35 42 

HOU 43 81 

NYK 62 43 

OKC 39 33 

PHO 31 34 

POR 50 28 

GLOBAL 418 409 
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Performance (AUROC) of Team-Specific and Global Classifiers on Each Team 

                CLASSIFIERS 

    BOS CLE CHI GSW HOU NYK OKC PHO POR GLOBAL 

TEST 
SETS 

BOS 0.7744 0.6958 0.7706 0.7820 0.7169 0.7471 0.7128 0.7246 0.7380 0.7347 

CLE 0.6978 0.7810 0.7667 0.7718 0.7704 0.7389 0.7702 0.7236 0.7593 0.7631 

CHI 0.8066 0.7601 0.8062 0.7857 0.7349 0.7746 0.7532 0.7641 0.7718 0.7761 

GSW 0.8370 0.8238 0.8348 0.8472 0.8348 0.8129 0.8092 0.8172 0.8019 0.8250 

HOU 0.7487 0.8233 0.7703 0.8348 0.8467 0.7879 0.8138 0.8165 0.8150 0.8039 

NYK 0.7999 0.7408 0.7663 0.7654 0.7469 0.8122 0.8232 0.7741 0.7863 0.7928 

OKC 0.7385 0.7556 0.7303 0.7441 0.7469 0.7871 0.7890 0.7485 0.7666 0.7678 

PHO 0.7662 0.7447 0.7603 0.8024 0.7901 0.8191 0.8222 0.8012 0.8056 0.7932 

POR 0.7488 0.7602 0.7379 0.7671 0.7716 0.7968 0.8203 0.7761 0.8091 0.7830 

GLOBAL 0.7717 0.7714 0.7772 0.7966 0.7769 0.7898 0.7959 0.7814 0.7888 0.7859 


