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1. Introduction	
Baseball	enthusiasts	frequently	focus	on	how	individual	pitch	characteristics,	like	fastball	velocity	
and	curveball	movement,	impact	pitching	results.		Studying	these	elements	in	isolation,	however,	
fails	to	account	for	relationships	among	a	pitcher’s	different	pitches.		For	example,	a	pitcher’s	
curveball	is	more	effective	if	its	movement	is	dramatically	different	than	his	fastball.		The	
effectiveness	of	these	pitches	is	dependent	on	each	other.		The	relationships	among	all	pitches	in	a	
pitcher’s	arsenal—rather	than	the	characteristics	of	a	single	pitch—are	a	larger	determinate	of	
success	[1]-[4].			
	
Using	PITCHf/x	information	for	over	2.5	million	MLB	pitches	thrown	by	402	pitchers	from	2012	
through	2017,	this	paper	predicts	pitcher	strikeout	percentages	by	examining	differences	in	
velocity,	movement,	and	release	points	among	each	of	their	pitch	types.		The	best	performing	model	
has	a	mean	absolute	error	of	2.94	percentage	points	from	a	pitcher’s	actual	strikeout	percentage.		
Velocity	attributes	and	differences	in	vertical	movement	among	pitches	have	the	most	significant	
impact	on	a	pitcher’s	strikeout	percentage.		Understanding	these	performance	drivers	enables	
players	and	coaches	to	both	target	the	pitch	elements	most	likely	to	increase	strikeouts	and	to	
identify	promising	young	pitchers	for	development.	

2. Background	
In	this	analysis,	performance	is	evaluated	by	pitcher	strikeout	percentage.		Compared	to	other	rate	
measures,	strikeout	percentage	is	one	of	the	most	reliable	and	consistent	pitching	statistics	and	the	
statistic	least	likely	to	be	affected	by	chance	or	a	team’s	defensive	ability	[5],	[6].				
	
In	2002,	Gray	[7]	conducted	research	to	understand	how	differences	among	pitches	induce	
strikeouts.		His	study	examined	college	baseball	players	swinging	at	computer-generated	images	of	
baseballs	having	varying	speeds	and	movement.		Gray	found	that	hitting	was	“nearly	impossible	in	a	
situation	where	pitch	speed	is	random	and	in	which	no	auxiliary	cues	(e.g.,	pitcher’s	arm	motion	or	
pitch	count)	are	available	to	the	batter”	[7,	p.	1140].		Batters	suffered	(and	pitchers	benefited)	as	
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the	number	of	different	pitch	speeds	increased.		The	study	noted	the	importance	for	pitchers	to	
learn	to	throw	at	least	three	different	pitch	types	[7],	[8].			
	
Subsequent	analyses	using	MLB	PITCHf/x	data	examined	the	interrelationship	between	velocity	
and	pitch	movement	and	its	effect	on	swing-and-miss	rates	[9],	swinging	strikes	[10],	batter	contact	
rates	[11],	and	expected	runs	[12].		Other	attempts	have	been	made	to	quantify	how	a	pitcher’s	
pitch	repertoire	induces	outs.		Different	“arsenal	scores”	have	been	developed	to	evaluate	the	
effectiveness	of	a	pitcher’s	collection	of	pitches	[13]-[15].		While	their	methods	varied,	each	
calculation	aggregated	the	impacts	of	individual	pitch	types	to	create	a	single	measure	of	
effectiveness.		Unlike	the	present	analysis,	however,	these	studies	either	did	not	specifically	
examine	the	combined	interrelation	among	a	pitcher’s	entire	arsenal	of	pitches	or	explore	how	
pitch	characteristics	such	as	velocity	or	movement	affect	strikeout	rates.	
	
Healy,	Zhao,	and	Brooks	[16]	developed	a	pitch	sequencing	model	examining	a	pitcher’s	strikeout	
rate	as	a	function	of	pitch	velocity	and	movement.		They	discovered	pitcher	strikeout	rates	
increased	when	both	fastball	velocity	and	vertical	movement	increased	[16].		The	study’s	
conclusion	suggests	“a	more	detailed	model	could	include	information	about	the	number,	
frequency,	and	physical	properties	of	a	pitcher’s	off-speed	pitches	and	how	well	these	pitches	
complement	each	other	and	the	pitcher’s	fastball”	[16,	p.	101].		This	proposition	was	the	catalyst	for	
this	paper.			

3. Methods	
This	paper	sources	PITCHf/x	information	from	2012	through	2017.		Pitcher	statistics	from	each	
season	are	collected	from	Baseball-Reference.com	[17].		Model-based	clustering	techniques	are	
used	to	group	pitches	from	each	pitcher	based	on	velocity,	horizontal	movement,	and	vertical	
movement.		Several	statistical	models,	trained	using	data	from	the	2012-2016	seasons,	employ	
supervised	and	unsupervised	machine	learning	techniques	to	predict	pitcher	strikeout	rates.		The	
2017	season	is	used	as	the	test	set	to	evaluate	each	model’s	accuracy.	
	
Short	relief	pitchers	are	excluded	from	the	analysis.		Their	tendency	to	enter	games	in	favorable	
match-ups	often	biases	their	statistics.		This	analysis	therefore	only	includes	pitchers	who	both	
faced	an	average	of	10	batters	per	appearance	and	pitched	at	least	1,000	pitches	in	a	season.		The	
resulting	training	set	contains	894	observations	for	359	different	pitchers	from	2012-2016	while	
the	2017	test	set	includes	170	pitchers.		Each	observation	in	the	dataset	represents	pitching	
information	from	a	full	MLB	season	in	an	effort	to	normalize	both	opposing	batter	talent	and	
potential	measurement	discrepancies	across	stadiums	due	to	systematic	errors	in	stadium	
PITCHf/x	and	Statcast	measurement	systems	[18]-[24].			
	
While	this	analysis	focuses	on	the	relationship	among	each	pitcher’s	pitch	types,	it	ignores	other	
influential	pitching	effects	that	induce	outs.		For	example,	pitch	location	and	sequencing	are	not	
evaluated	here,	although	they	undoubtedly	affect	pitcher	performance.		(See	[7],	[25]-[27]).		Future	
extensions	of	this	analysis	may	seek	to	incorporate	these	elements.	
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3.1.		Identifying	Pitch	Types	–	Clustering	

Identifying	different	pitch	types	can	be	difficult.		For	example,	a	sinker	from	one	pitcher	may	move	
the	same	as	another	pitcher’s	four-seam	fastball	[25].		PITCHf/x	pitch	type	designations	are	
sometimes	inconsistent	and	can	label	the	same	ball	movement	differently	among	pitchers	[18].		
Nevertheless,	whether	a	pitch	is	labeled	a	sinker	or	a	four-seam	fastball	is	irrelevant	to	a	hitter.		
Hitters	are	simply	concerned	with	velocity	and	movement.		What	matters	is	a	pitcher’s	ability	to	
deceive	a	hitter	by	changing	the	velocity,	movement,	and	location	of	each	pitch.			
	
This	analysis	determines	each	pitcher’s	pitch	repertoire	by	using	the	model-based	clustering	
algorithm	introduced	by	Pane	et	al.	[28]	instead	of	PITCHf/x	pitch	classifications.		Pane	et	al.	[28]	
determined	that	model-based	clustering	more	accurately	identifies	MLB	pitch	types	than	either	k-
means	or	neural	network	clustering.		Model-based	clustering	is	also	better	able	to	identify	pitches	
with	differing	variances	and	often	reduces	the	number	of	small	clusters.	
	
In	this	analysis,	pitches	are	assigned	to	clusters	according	to	velocity,	horizontal	movement,	and	
vertical	movement	using	an	agglomerative	hierarchical	clustering	method	based	on	maximum	
likelihood	criteria	for	parameterized	Gaussian	mixture	models	[29]-[31].2		Each	pitcher’s	pitches	
are	separated	into	nine	alternative	cluster	configurations:	all	pitches	are	assigned	to	either	one,	
two,	three,	etc.,	pitch	clusters.		As	set	forth	by	Pane	et	al.	[28],	Bayesian	Information	Criterion	(BIC)	
values	for	each	alternative	cluster	configuration	are	adjusted	using	penalties	based	on	the	number	
of	clusters	and	high	intra-cluster	correlation	coefficients.		This	reduces	the	number	of	small	clusters	
and	provides	a	more	reliable	representation	of	each	pitcher’s	pitch	types.		Accordingly,	the	present	
analysis	uses	the	cluster	configuration	for	each	pitcher	with	the	lowest	adjusted	BIC	value.	
	
Identifying	outlier	pitches	in	a	model-based	clustering	method	is	especially	important	since	the	
number	of	clusters	and	their	variance	structures	are	unknown	[28].		This	analysis	identifies	outliers	
by	first	determining	each	cluster’s	mean	using	the	minimum	covariance	determinant	method	
developed	by	Rousseeuw	and	Van	Driessen	[34].		The	Mahalanobis	distances	of	the	points	from	
each	cluster’s	mean	are	used	to	create	97.5%	Gaussian	confidence	ellipsoids	[34]-[36].		Pitches	
more	than	two	standard	deviations	from	their	cluster’s	mean	are	removed	as	outliers.		Between	
3-6%	of	each	player’s	pitches	are	therefore	removed	(µ	=	4.5%	,	s	=	0.4%).		Pitch	clusters	are	
deleted	if	they	contain	fewer	than	either	10	pitches	in	a	season	or	one	pitch	per	game	appearance.		
Finally,	three	pitchers	in	the	dataset	have	only	two	pitch	clusters	and,	due	to	their	low	incidence,	
are	excluded	from	this	analysis.			
	 		
Table	1.		Number	of	Pitchers	with	3-9	Pitch	Clusters	in	the	Training	and	Test	Sets	
	 Number	of	pitch	clusters	
Data	 3	 4	 5	 6	 7	 8	 9	
Training	 105	 287	 235	 114	 79	 42	 32	
Test	 32	 72	 39	 18	 5	 2	 2	
Total	 137	 359	 274	 132	 84	 44	 34	
	

																																																								
2	To	adjust	for	changes	PITCHf/x	made	reporting	velocity	in	2017,	velocities	in	the	data	set	for	2017	
are	adjusted	to	indicate	values	50	feet	from	home	plate	[32],	[33].			
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Table	1	lists	the	distribution	of	pitch	clusters	in	the	training	and	test	sets.		Almost	60%	(59.5%)	of	
the	pitchers	have	either	four	or	five	pitch	types.		Notably,	a	relatively	large	proportion	of	pitchers	
(15.2%)	have	pitches	grouped	into	seven	or	more	clusters.		This	is	unusually	high,	especially	since	
the	PITCHf/x	classification	system	identifies	only	6.1%	of	observations	having	seven	or	more	pitch	
types.		The	high	number	of	pitch	clusters	in	this	analysis	is	likely	due	to	PITCHf/x	measurement	
differences	across	stadiums—especially	in	earlier	seasons	when	differences	were	more	
pronounced	[18]-[24],		[37].		Specifically,	72.8%	of	the	observations	with	7-9	pitch	clusters	
occurred	in	the	2012	or	2013	seasons	compared	to	only	27.2%	in	the	four	seasons	from	
2014-2017.		Moreover,	players	with	the	Detroit	Tigers	(11)	and	St.	Louis	Cardinals	(9)	had	the	
most	pitchers	with	seven	or	more	pitch	clusters.		In	2013,	these	two	teams’	stadiums	had	the	
largest	PITCHf/x	measurement	discrepancies	relative	to	the	rest	of	the	league	[37].		Future	
iterations	of	this	analysis	may	seek	to	control	for	these	PITCHf/x	park	effects.	

3.2.		Distance	Between	Pitch	Clusters	

Measuring	the	distance	between	pitch	clusters	is	one	way	to	quantify	differences	between	pitch	
types.		Any	measure	of	the	difference	between	pitches	must	account	for	natural	correlations	
between	measurement	axes—in	this	case	velocity,	horizontal	movement,	and	vertical	movement.		
Healey,	et	al.	[38]	demonstrated	why	the	Mahalanobis	distance	is	best	suited	to	measure	differences	
in	velocity	and	movement	between	pitches.		Gravity’s	effect	on	slower	moving	objects	causes	them	
to	drop	more	than	their	higher	velocity	analogues.		Velocity	and	vertical	movement	are	therefore	
highly	correlated	(r	=	0.68).		The	Mahalanobis	distance	accounts	for	this	by	dividing	the	
standardized	version	of	each	value	by	the	covariance	matrix	[39],	[40].		The	result	is	a	unitless	
measure	of	the	Mahalanobis	distance	(D)	for	each	point	(x)	defined	as:		
	

	 D	=	(x-m)T	C-1	(x-m)	 (1)	
	
where	m	is	the	vector	of	mean	variable	values	and	C-1	is	the	inverse	covariance	matrix	of	the	
variables	[28].	
		
When	calculating	Mahalanobis	distances,	separate	correlation	matrixes	are	used	for	left-handed	
and	right-handed	pitchers.		The	opposite	arm	angles	from	these	pitchers	result	in	natural	
differences	in	horizontal	movement.		Pitches	by	left-handed	pitchers	move	left	horizontally	(from	
the	catcher’s	perspective)	while	pitches	from	right-handed	pitchers	move	in	the	opposite	direction,	
with	the	effects	more	pronounced	at	lower	velocities	(Table	2).	
	
Table	2.		Velocity	and	Movement	Correlation	Matrixes	for	Left-	and	Right-Handed	Pitchers	

Left-Handed	Pitchers	 	 Right-Handed	Pitchers	
	 Velocity	 Horizontal	 Vertical	 	 	 Velocity	 Horizontal	 Vertical	
Velocity	 1.000	 0.523	 0.687	 	 Velocity	 1.000	 -0.574	 0.685	
Horizontal	 0.523	 1.000	 0.523	 	 Horizontal	 -0.574	 1.000	 -0.519	
Vertical	 0.687	 0.523	 1.000	 	 Vertical	 0.685	 -0.519	 1.000	

3.3.		Independent	Variables	

The	mean	velocities,	horizontal	movements,	vertical	movements,	and	pitch	release	points	for	each	
pitch	cluster	are	calculated	across	a	pitcher’s	group	of	pitch	types.		For	each	of	these	measures,	
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variables	are	created	to	indicate	the	minimum,	maximum,	and	range	of	the	cluster	means	for	every	
pitcher.		A	pitcher’s	maximum	velocity	is	therefore	the	highest	mean	cluster	velocity	among	a	
pitcher’s	pitch	types	rather	than	the	highest	velocity	single	pitch	thrown	that	season.		A	related	
variance	measure	also	calculates	the	size	of	the	interquartile	range	(IQR)	between	the	25th	and	
75th	percentiles	for	all	pitches	thrown	by	a	pitcher	for	each	of	the	above	measures—regardless	of	
pitch	type.			
	
Variables	identifying	pitch	release	points	are	included	based	on	pitch	tunneling	research	to	account	
for	visual	cues	signaling	the	velocity	or	movement	of	an	incoming	pitch	[41].		As	this	analysis	
examines	the	relationship	between	pitch	movements	rather	than	the	ordinal	direction	of	
movement,	measurements	are	not	separated	based	on	either	batter	or	pitcher	handedness.			
	
The	maximum	and	average	Mahalanobis	distances	between	all	pitch	clusters	are	also	measured.		A	
weighted	measure	of	the	Mahalanobis	distances	among	all	pitch	types	is	also	created	to	aggregate	
differences	between	pitch	types	into	a	single	variable.		The	cluster	with	the	most	pitches	(the	top	
cluster)	serves	as	the	anchor	from	which	all	pitches	are	measured.		The	Mahalanobis	distances	of	
each	pitch	cluster	from	the	center	of	the	top	cluster	are	weighted	by	pitch	frequency	and	added	
together	(Weighted	Mahalanobis	Distance	or	WMD):	
	

	 	WMD =	∑ 'D( )
*+

*,-,./
01(

2 		 (2)	
	
Where	D	=	Mahalanobis	distance	from	the	center	of	the	cluster	of	pitches	thrown	most	frequently,	k	
=	number	of	clusters,	and	n	=	number	of	pitches.		There	is	a	small	correlation	between	strikeout	
percentage	and	WMD	(r	=	0.16)	suggesting	that	the	most	frequently	thrown	pitch	serves	to	set-up	
the	remaining	pitches.	
	
An	entropy	variable	is	created	to	measure	uncertainty	caused	by	both	the	number	of	pitch	types	
and	the	frequency	with	which	each	is	thrown.		The	equation	introduced	by	Shannon	[42][43]	is	
used	to	calculate	each	pitcher’s	entropy	value:	
	

	 Entropy = 		∑ 𝑛𝑖

𝑛𝑡𝑜𝑡𝑎𝑙
)𝑙𝑜𝑔2

𝑛𝑖

𝑛𝑡𝑜𝑡𝑎𝑙
0𝑘

𝑖=1   
	

(3)	

Where	n	=	number	of	pitches,	k	=	number	of	clusters,	and	i	is	the	cluster	number.	
	
Since	strikeout	percentage	is	highly	correlated	with	strike	rate	(r	=	0.30),	pitchers	with	the	same	
pitch	characteristics	may	have	different	strikeout	percentages	simply	because	one	pitcher	throws	
more	strikes	than	the	other.		As	this	analysis	seeks	to	isolate	the	impact	of	differences	in	velocity	
and	movement	on	strikeout	percentages,	accuracy	differences	are	considered	by	including	a	
variable	identifying	pitcher	strike	rates.		Similarly,	an	indicator	variable	identifies	whether	pitchers	
played	in	the	National	League,	American	League,	or	both	each	season	since	National	League	
pitchers	generally	have	higher	strikeout	percentages	from	facing	opposing	pitchers	in	the	lineup.	
	
Finally,	cross-validation	within	the	training	data	reveals	that	logarithmically	transforming	the	
independent	variables	produces	the	lowest	in-sample	MAE.		Natural	logarithms	of	the	independent	
variables	are	therefore	used	to	improve	normality	and	increase	prediction	accuracy.	



	

	 6	

2019	Research	Papers	Competition		
Presented	by:	

3.4.		Models	Examined	

Thirteen	types	of	models	are	evaluated	using	strikeout	percentage	as	the	dependent	variable:	
multiple	linear	regression	without	(MLR)	and	with	(MLR+)	interaction	terms,	lasso	and	ridge	
shrinkage	regression	methods,	principal	components	(PCR)	and	partial	least	squares	(PLS)	
regressions,	polynomial	regression,	regression	splines,	generalized	additive	models	(GAM),	random	
forests,	boosted	tree-based	models,	neural	networks,	and	support	vector	machines	(SVM).		As	the	
dependent	variable	is	a	proportion,	predictions	below	zero	or	above	one	are	capped	to	ensure	
predictions	remain	within	an	acceptable	range.		None	of	the	predictions	in	the	test	set	fell	outside	
this	range.	
	
The	polynomial,	spline,	and	GAM	models	use	prediction	errors	from	k-fold	cross-validation	to	
identify	the	best	iteration	of	each	independent	variable	to	model.		For	example,	each	variable	is	
individually	tested	against	strikeout	percentage	in	a	simple	linear	regression	model	using	one	to	
five	polynomial	orders.		The	order	of	each	variable	with	the	lowest	in-sample	prediction	error	is	
used	in	the	polynomial	model.		The	spline	model	uses	the	same	technique	to	identify	the	optimal	
number	of	degrees	of	freedom	for	either	natural	or	smoothing	spline	variables.		The	GAM	model	
uses	either	the	polynomial,	natural	spline,	smoothing	spline,	or	local	regression	(LOESS)	version	of	
each	variable	with	the	lowest	in-sample	error.		Stepwise	AIC	selection	is	used	in	the	MLR,	MLR+,	
polynomial	regression,	regression	spline,	and	GAM	models	to	identify	independent	variables.		
Variables	with	high	multicollinearity	are	removed	from	each	model	to	ensure	all	variables	have	
variance	inflation	factor	values	less	than	10.		Finally,	several	models	use	k-fold	cross-validation	to	
identify	optimal	hyperparameters	including:	the	best	lambda	tuning	values	for	the	ridge	and	lasso	
regression	models;	the	number	of	trees	in	the	random	forest	model;	the	variable	interaction	depths	
and	number	of	trees	in	the	boosted	model;	the	number	of	components	used	in	the	PCR	and	PLS	
models;	the	number	of	hidden	layers	to	use	in	the	neural	net	model;	and	the	optimal	cost	and	
gamma	values	for	the	SVM	model.			

4. Results	
4.1.		Model	Results	

Many	statisticians	agree	that	fastball	velocity	and	strike	rates	affect	strikeout	percentages.		A	linear	
regression	model	with	these	two	independent	variables	is	used	as	a	standard/control	with	which	to	
measure	the	success	of	the	present	analysis	over	established	metrics.		Using	the	training	data	to	fit	
the	model,	and	strike	percentage	as	the	dependent	variable,	the	control	model	has	an	adjusted	r-
squared	value	of	0.2297	and	a	MAE	of	0.0331	against	the	test	set.	
	
The	models	in	this	analysis	have	MAE	values	between	0.0294	and	0.0324	against	the	test	set	(Table	
3).		The	random	forest	model	performs	the	best	with	a	MAE	of	0.0294—or	2.94%—which	is	0.0037	
points	(0.37%)	less	than	the	control	model.	
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Table	3.		Test	Set	Errors	for	All	Models	
Model	 MAE	

Random	Forest	 0.0294	
Multiple	Linear	Regression	 0.0298	
Principal	Components	Regression	 0.0299	
Boosted		 0.0300	
Ridge	Regression	 0.0300	
Lasso	Regression	 0.0301	
Regression	Spline	 0.0301	
Multiple	Linear	Regression	with	Interaction	Terms	 0.0304	
Partial	Least	Squares	Regression	 0.0305	
Polynomial	Regression	 0.0308	
Neural	Network	 0.0309	
Generalized	Additive	Models	 0.0310	
Support	Vector	Machine	 0.0324	
Control	Model:	Strike	Rate	+	Maximum	Velocity	 0.0331	
	

	 	
Figure	1.		Random	forest	model	variable	importance	plot	(top	ten	variables).	

	
Maximum	velocity,	strike	rate,	and	vertical	movement	IQR	have	the	greatest	impact	on	strikeout	
percentage	(Figure	1).		The	influence	of	high	pitch	velocity	and	the	ability	to	throw	strikes	on	a	
pitcher’s	strikeout	percentage	is	consistent	with	both	intuition	and	previous	research	[44],	[45].		
Somewhat	surprising,	however,	is	the	importance	of	vertical	movement	relative	to	other	pitch	
characteristics.		Vertical	movement	IQR	and	maximum	vertical	movement	are	more	important	
predictors	of	strikeout	percentage	than	the	ability	to	change	speeds	(i.e.,	velocity	range	and	velocity	
IQR).		In	fact,	the	correlation	with	strikeout	percentage	is	almost	as	high	for	vertical	movement	IQR	
(r	=	0.27)	as	it	is	for	a	pitcher’s	strike	rate	(r	=	0.29).			
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Conversely,	there	is	no	correlation	between	the	number	of	pitch	types	and	a	pitcher’s	strikeout	
percentage	(r	=	-0.01).		What	matters	more	is	the	maximum	velocity,	strike	rate,	and	vertical	
movement	of	a	pitcher’s	pitches.	
	

	
Figure	2.		Predicted	strikeout	percentages	
against	actual	test	set	values	

	

	
Figure	3.		Percentage	of	model	
predictions	within	error	ranges.	

	
Figure	2	shows	predicted	verses	actual	strikeout	percentages	in	the	test	set	with	an	adjusted	r-
squared	value	of	0.424.		A	large	number	of	predictions	are	within	five	percentage	points	of	their	
actual	values	(Figure	3).		Of	the	170	predictions,	147	(86.5%)	are	within	five	points	of	the	actual	
strikeout	percentages	with	a	median	of	2.47	percentage	points.		Table	4	lists	the	10	predictions	
with	the	lowest	errors	against	the	test	set	with	each	having	an	absolute	prediction	error	of	0.21	
percentage	points	or	less.	
	
Table	4.		Top	10	Random	Forest	Model	Predictions	
	 2017	Strikeout	Rates	(%)	

Player	 Prediction	 Actual	 Absolute	Error	
Chad	Kuhl	 21.05	 21.07	 0.02	
Cole	Hamels	 17.02	 17.07	 0.05	
Jhoulys	Chacin	 20.20	 20.13	 0.07	
Chris	Stratton	 19.84	 19.92	 0.08	
Trevor	Williams	 18.40	 18.28	 0.12	
Chad	Bell	 19.45	 19.59	 0.14	
Zack	Wheeler	 21.16	 20.98	 0.18	
Sam	Gaviglio	 15.42	 15.61	 0.18	
Daniel	Norris	 18.64	 18.82	 0.18	
Mike	Leake	 16.87	 16.67	 0.21	
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5. Conclusions	
The	factors	having	the	greatest	impact	on	a	pitcher’s	strikeout	rate	are	maximum	velocity,	strike	
rate,	and	differences	in	vertical	movement	among	pitches.		Vertical	movement	differences	are	more	
influential	than	differences	in	velocity,	horizontal	movement,	or	pitch	release	points	among	pitches.		
Moreover,	the	number	of	pitch	types	does	not	impact	a	pitcher’s	strikeout	percentage.		This	
suggests	a	pitcher	looking	to	increase	his	strikeout	percentage	should	prioritize	maximizing	the	
break	of	his	curveball	or	increasing	the	rise	on	his	fastball	before	looking	to	add	a	cutter	or	slider	to	
his	arsenal.		Similarly,	all	other	things	being	equal,	pitchers	with	a	plus	fastball	and	plus	curveball	
may	be	more	effective	at	striking	out	batters	than	those	with	plus	pitches	having	less	vertical	
movement.	
	
In	addition	to	identifying	the	pitch	characteristics	most	likely	to	increase	strikeouts,	the	insights	in	
this	analysis	may	be	used	to	identify	potentially	high	strikeout	pitchers	with	otherwise	
unremarkable	statistics.		Within	a	game,	this	analysis	may	also	help	managers	determine	when	to	
remove	a	pitcher.		As	a	pitcher	increases	his	pitch	count,	managers	can	monitor	the	variables	most	
likely	to	affect	that	pitcher’s	strikeout	rate.	
	
Going	forward,	several	additional	analyses	could	build	upon	these	findings.		Do	the	factors	
influencing	strikeout	percentage	change	based	on	a	batter’s	time	through	the	batting	order?		Which	
elements	are	most	indicative	of	a	relief	pitcher’s	strikeout	percentage?		To	what	extent	does	a	
batter’s	contact	rate	impact	the	efficacy	of	these	pitch	characteristics?		Understanding	these	effects	
would	further	the	understanding	of	how	relationships	among	a	pitcher’s	pitch	types	impact	his	
ability	to	strikeout	batters.		These	findings	could	also	be	used	to	identify	the	best	situational	
pitchers	and	adjust	pitching	strategies	based	on	the	match-up.	
	 	



	

	 10	

2019	Research	Papers	Competition		
Presented	by:	

References	
	
[1] Branch,	J.		(2015,	Oct.	4).		Baseball	talk,	and	all	that	stuff.		The	New	York	Times	(New	York	

print	ed.),	A1.	
[2] Sarris,	E.		(2018,	Jan.	23).		What	Jack	Flaherty	has	in	common	with	Clayton	Kershaw.		

Fangraphs.		Retrieved	from	https://www.fangraphs.com/blogs/what-jack-flaherty-has-in-
common-with-clayton-kershaw/.	

[3] Davis,	E.		(2016,	Aug.	11).		Greg	Maddux	was	a	power	pitcher	despite	the	low	velocity.		SB	
Nation	Beyond	the	Boxscore.		Retrieved	from	
https://www.beyondtheboxscore.com/2016/8/11/12423936/greg-maddux-velocity-
finesse-power-pitcher-no-hope-for-batters.	

[4] Rescan,	A.		(2017,	Oct.	12).	Kyle	Hendricks’s	greatness	is	about	more	than	control	and	
command:	His	velocity-less	success	depends	on	the	movement,	too.		Beyond	the	Boxscore.		
Retrieved	from	https://www.beyondtheboxscore.com/2017/10/12/16464244/kyle-
hendricks-cubs-game-five-nlds-velocity-control-command-movement.	

[5] Woolner,	K.	&	Perry,	D.		(2006).		Why	are	pitchers	so	unpredictable?		[In]	Baseball	Between	
the	Numbers,	Why	everything	you	know	about	the	game	is	wrong	(pp.	48-57).		Keri,	J.		(ed.).		
Basic	Books:New	York,	NY.		

[6] Albert,	J.		(2006).		Pitching	statistics,	talent	and	luck,	and	the	best	strikeout	seasons	of	all-
time.		Journal	of	Quantitative	Analysis	in	Sports,	2(1),	Article	2.		
https://doi.org/10.2202/1559-0410.1014.	

[7] Gray,	R.		(2002).		Behavior	of	college	baseball	players	in	a	virtual	batting	task.		Journal	of	
Experimental	Psychology:	Human	Perception	and	Performance.		28(5),	1131-1148.		
http://doi.org/10.1037//0096-1523.28.5.1131.	

[8] Ryan,	N.,	&	House,	T.		(1991).		Nolan	Ryan’s	pitcher’s	bible:	The	ultimate	guide	to	power,	
precision,	and	long-term	performance.		New	York,	NY:	Simon	&	Schuster.	

[9] Hale,	J.		(2013,	Oct.	30).		Baseball	ProGUESTus:	Is	speed	enough?:	A	PITCHf/x	look	at	the	
effect	of	fastball	velocity	and	movement.		Baseball	Prospectus.		Retrieved	from	
https://www.baseballprospectus.com/news/article/22139/baseball-proguestus-is-speed-
enough-a-pitchfx-look-at-the-effect-of-fastball-velocity-and-movement/.	

[10] Roegele,	J.		(2014,	Nov.	24).		The	effects	of	pitch	sequencing.		The	Hardball	Times.		Retrieved	
from	https://www.fangraphs.com/tht/the-effects-of-pitch-sequencing/.	

[11] Carleton,	R.	A.		(2015,	Feb.	3).		Baseball	therapy:	The	power	of	changing	speeds.		Baseball	
Prospectus.		Retrieved	from	
https://www.baseballprospectus.com/news/article/25494/baseball-therapy-the-power-
of-changing-speeds/.	

[12] Bonney,	P.		(2015,	Mar.	6).		Defining	the	Pitch	Sequencing	Question.		The	Hardball	Times.		
Retrieved	from	https://www.fangraphs.com/tht/defining-the-pitch-sequencing-question/.	

[13] Sarris,	E.		(2014,	Dec.	16).		Toward	a	pitching	arsenal	score	statistic.		Rotographs.		Retrieved	
from	https://www.fangraphs.com/fantasy/toward-a-pitch-arsenal-score-ranking-statistic/.	

[14] Schwartz,	D.		(2014,	Dec.	19).		Pitch	arsenal	score	part	deux.		Rotographs.		Retrieved	from	
https://www.fangraphs.com/fantasy/pitch-arsenal-score-part-deux/.	

[15] Jackman,	S.		(2015).		Pitch	arsenal	scores.		The	Hardball	Times.		Retrieved	from	
https://www.fangraphs.com/tht/pitch-arsenal-scores/.	

[16] Healey,	G.	&	Zhao,	S.		(2017c).		Using	PITCHf/x	to	model	the	dependence	of	strikeout	rate	on	
the	predictability	of	pitch	sequences.		Journal	of	Sports	Analytics,	3,	93-101.		
http://doi.org/10.3233/JSA-170103.	



	

	 11	

2019	Research	Papers	Competition		
Presented	by:	

[17] Sports	Reference	LLC.		(2018).		Baseball-Reference.com	-	Major	League	Statistics	and	
Information.		Retrieved	from	https://www.baseball-reference.com/.	

[18] Fast,	M.		(2010b,	June	17).		The	Internet	cried	a	little	when	you	wrote	that	on	it.		The	
Hardball	Times.		Retrieved	from	https://www.fangraphs.com/tht/the-internet-cried-a-
little-when-you-wrote-that-on-it/.	

[19] Fast,	M.		(2011,	Mar.	2).		Spinning	yarn:	How	accurate	is	PitchTrax?		Baseball	Prospectus.		
Retrieved	from	https://www.baseballprospectus.com/news/article/13109/spinning-yarn-
how-accurate-is-pitchtrax/.	

[20] Garik.		(2011,	Feb.	10).		Being	cautious	with	using	Pitchf/x	data	to	evaluate	stuff:	The	case	of	
Kyle	Drabek.		SB	Nation	Beyond	the	Boxscore.		Retrieved	from	
https://www.beyondtheboxscore.com/2011/2/10/1982529/being-cautious-with-using-
pitchf-x-data-to-evaluate-stuff-the-case-of.	

[21] Marchi,	M.		(2011,	Feb.	25).		Fine	tuning	PITCHf/x	location	data.		The	Hardball	Times.		
Retrieved	from	https://www.fangraphs.com/tht/fine-tuning-pitchf-x-location-data/.	

[22] Arthur,	R.		(2017,	Apr.	28).		Baseball’s	new	pitch-tracking	system	is	just	a	bit	outside:	As	
MLB	switches	from	PITCHf/x	to	Statcast,	the	new	tool	is	going	through	growing	pains.		
FiveThirtyEight.		Retrieved	from	https://fivethirtyeight.com/features/baseballs-new-pitch-
tracking-system-is-just-a-bit-outside/.	

[23] Kagan,	D.		(2018,	Jan.	23).		The	physics	of	RoboUmp.		The	Hardball	Times.		Retrieved	from	
https://www.fangraphs.com/tht/the-physics-of-roboump/.	

[24] Boyle,	W.,	O'Rourke,	S.,	Long,	J.	&	Pavlidis,	H.		(2018,	Jan.	29).		Robo	strike	zone:	It’s	not	as	
simple	as	you	think.		Baseball	Prospectus.		Retrieved	from	
https://www.baseballprospectus.com/news/article/37347/robo-strike-zone-not-simple-
think/.	

[25] Healey,	G.,	Zhao,	S.	&	Brooks,	D.		(2017a,	July	10).		Measuring	pitcher	similarity.		Baseball	
Prospectus.		Retrieved	from	
https://www.baseballprospectus.com/news/article/32199/prospectus-feature-
measuring-pitcher-similarity/.	

[26] Sidle,	G.	&	Tran,	H.		(2018).		Using	multi-class	classification	methods	to	predict	baseball	
pitch	types.		Journal	of	Sports	Analytics,	4(1),	85-93.	

[27] Trueblood,	M.		(2018,	Feb.	1).		Rubbing	mud:	The	Cubs	have	already	mined	these	tunnels.		
Baseball	Prospectus.		Retrieved	from	
https://www.baseballprospectus.com/news/article/37461/rubbing-mud-cubs-already-
mined-tunnels/.	

[28] Pane,	M.	A.,	Ventura,	S.L.,	Steorts,	R.C.,	&	Thomas,	A.C.		(2013).		Trouble	with	the	curve:	
Improving	MLB	pitch	classification.		arXiv:1304.1756v1	[stat.AP].		Retrieved	from	
https://arxiv.org/pdf/1304.1756.pdf.		

[29] Fraley,	C.,	Raftery,	A.E.,	Murphy,	T.B.,	&	Scrucca,	L.		(2012).		mclust	version	4	for	R:	Normal	
mixture	modeling	for	model-based	clustering,	classification,	and	density	estimation.		
Technical	Report	No.	597,	Department	of	Statistics,	University	of	Washington.		Retrieved	from	
https://www.stat.washington.edu/sites/default/files/files/reports/2012/tr597.pdf.	

[30] Fraley	C.,	&	Raftery	A.	E.	(2002).		Model-based	clustering,	discriminant	analysis	and	density	
estimation.		Journal	of	the	American	Statistical	Association,	97(458),	611-631.	

[31] Evans,	K.,	Love,	T.,	&	Thurston,	S.	W.		(2015).		Outlier	identification	in	model-based	cluster	
analysis.		Journal	of	Classification,	32,	63-84.		http://doi.org/10.1007/s00357-015-9171-5.	

[32] Cameron,	D.		(2017,	Apr.	4).		About	all	these	velocity	spikes.		Fangraphs.		Retrieved	from	
https://www.fangraphs.com/blogs/about-all-these-velocity-spikes/.	



	

	 12	

2019	Research	Papers	Competition		
Presented	by:	

[33] Nathan,	A.	&	Brooks,	D.		(2017,	Apr.	5).		Prospectus	Feature:	Estimating	Release	Point	Using	
Gameday’s	New	Start-Speed.		Baseball	Prospectus.		Retrieved	from	
https://www.baseballprospectus.com/news/article/31529/prospectus-feature-
estimating-release-point-using-gamedays-new-start-speed/.	

[34] Rousseeuw,	P.,	&	Van	Driessen,	K.		(1999).		A	fast	algorithm	for	the	minimum	covariance	
determinant	estimator.		Technometrics,	41,	212-223.		

[35] Hardin,	J.	&	Rocke,	D.M.		(2004).		Outlier	detection	in	the	multiple	cluster	setting	using	the	
minimum	covariance	determinant	estimator.		Computational	Statistics	&	Data	Analysis,	44,	
625-638.	

[36] Hardin,	J.	&	Rocke,	D.M.		(2005).		The	distribution	of	robust	distances.		Journal	of	
Computational	and	Graphical	Statistics,	14(4),	928-946.		
http://doi.org/10.1198/106186005X77685.	

[37] Roegele,	J.		(2013,	Sept.	13).		Basic	2013	PITCHf/x	velocity	park	effects:	Calculating	basic	
PITCHf/x	velocity	park	effects	and	discussing	the	sources	of	error	that	are	inherent	in	the	
numbers.		SB	Nation	Beyond	the	Boxscore.		Retrieved	from	
https://www.beyondtheboxscore.com/2013/9/13/4720852/basic-2013-pitchfx-velocity-
park-effects-error-sabermetrics.	

[38] Healey,	G.,	Zhao,	S.	&	Brooks,	D.		(2017b).		Measuring	pitcher	similarity:	Technical	details.		
viXra.org.		Retrieved	from	http://vixra.org/pdf/1705.0098v1.pdf.	

[39] Mahalanobis,	P.	C.		(1936).		On	the	generalized	distance	in	statistics.		Proceedings	of	the	
National	Institute	of	Sciences	of	India.	2(1),	49-55.	

[40] De	Maesschalck,	R.,	Jouan-Rimbaud,	D.,	Massart,	D.L.		(2000).		Tutorial:	The	Mahalanobis	
distance.		Chemometrics	and	Intelligent	Laboratory	Systems,	50,	1–18.	

[41] Pavlidis,	H.,	Judge,	J.,	&	Long,	J.		(2017,	Jan.	24).		Prospectus	feature:	Introducing	pitch	
tunnels.		Baseball	Prospectus.		Retrieved	from	
https://www.baseballprospectus.com/news/article/31030/prospectus-feature-
introducing-pitch-tunnels/.	

[42] Shannon,	C.	(1948a).		A	Mathematical	Theory	of	Communication.		The	Bell	System	Technical	
Journal,	27(3),	379-423,	27(4),	623-656,	July,	October,	1948.	

[43] Shannon,	C.	(1948b).		A	Mathematical	Theory	of	Communication	(continued).		The	Bell	
System	Technical	Journal,	27(4),	623-656.	

[44] Arthur,	R.		(2014,	Feb.	6).		Baseball	proGUESTus:	Entropy	and	the	eephus.		Baseball	
Prospectus.		Retrieved	from	
https://www.baseballprospectus.com/news/article/22758/baseball-proguestus-entropy-
and-the-eephus/.	

[45] Cameron,	D.		(2009,	Feb.	17).		Velocity	and	K/9.		Fangraphs.		Retrieved	from	
https://www.fangraphs.com/blogs/velocity-and-k9/.	

	


