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1. Introduction	

Bayesian	updating	about	an	unobserved	state	of	the	world	is	hard.	Especially	when	the	state	
of	the	world	(may)	also	be	changing.	While	various	systematic	biases	have	been	documented,	many	
questions	remain	regarding	variation	in	behavior	within	and	across	contexts.	An	important	issue	that	
has	received	relatively	little	attention	is	to	what	extent	experts	with	strong	incentives	are	subject	to	
the	most	well-known	systematic	biases.1	

We	 address	 this	 question	 by	 studying	 one	 of	 the	 most	 important	 strategic	 decisions	 in	
baseball:	when	(if	at	all)	to	make	the	“call	to	the	bullpen”	and	relieve	the	starting	pitcher.	In	baseball,	
there	are	two	types	of	pitchers,	starters	and	relievers.	Starters	 indeed	start	 the	game	and	usually	
pitch	 the	majority	 of	 the	 game.	Managers	 decide	when	 to	 “pull”	 the	 starter	 (replace	 him	with	 a	
reliever)	based	on	evidence	that	the	starter	is	tiring	and	other	new	information	used	to	update	beliefs	
throughout	the	game.	Managers	must	be	careful	not	to	pull	the	starter	too	soon	(replacing	him	with	
an	 inferior	 reliever	 and/or	 depleting	 reliever	 resources)	 or	 too	 late	 (after	 the	 damage	 has	 been	
done).2	

Various	psychological	factors	could	cause	biases	in	these	decisions.	A	conformity	heuristic	
could	cause	decisions	to	be	systematically	off-base	(in	either	direction);	for	an	example	of	this	type	
of	 behavior	 occurring	 in	 another	 sports	 setting	 see	 Romer	 (2006).	 The	 omission	 bias—	 the	 bias	
toward	favoring	errors	of	omission	and	not	commission	(in	our	context,	pulling	the	starter)	(Ritov	
and	Baron,	1990;	Bar-Eli,	Azar,	Ritov,	Keidar-Levin,	 and	Schein,	2007)—could	 lead	 starters	 to	be	
generally	 left	 in	games	too	 long.	 Inattention	could	cause	decisions	to	be	 insufficiently	sensitive	to	
available	information	(Gabaix,	2017).	A	recency	bias,	in	particular	the	hot-hand	bias,	a	bias	toward	
overestimation	of	persistence	of	particularly	“hot”	or	“cold”	performance,	could	cause	overreaction	
to	recent	information	(Benjamin,	2018).3	Confirmation	or	primacy	bias	could	cause	managers	to	pay	

																																																								
1	See	Benjamin	(2018)	for	an	excellent	review	of	the	literature	on	biases	in	formation	and	updating	of	beliefs	
under	uncertainty.	The	literature	on	beliefs	of	highly	experienced	and	incentivized	agents	outside	of	the	lab	is	
still	relatively	limited.	See	Green	and	Daniels	(2018)	for	evidence	of	Bayesianism	in	baseball	by	another	type	
of	expert	agent,	umpires.	However,	their	paper	studies	split-second	judgments	about	the	relatively	simple	issue	
of	calling	balls	and	strikes;	the	choices	that	we	study	(pulling	starters)	are	both	more	complex	and	reflective.	
2	We	provide	a	brief	summary	of	the	rules	of	baseball,	and	key	terminology,	in	Section	2.	
3	The	hot	hand	bias	is	closely	related	to	biases	causing	extrapolative	expectations	in	other	contexts,	such	as	
finances,	e.g.	diagnostic	expectations,	as	also	discussed	by	Benjamin	(2018).	It	is	also	worth	noting	that	the	fact	
that	managers	pull	starters	early	when	performing	poorly	and	leave	them	in	longer	when	performing	well	is	
prima	 facie	 evidence	of	 belief	 in	 cold	 and	hot	hands	 in	 this	 context,	 a	 controversial	 topic	 in	 other	 settings	
(Benjamin,	2018),	and	that	Stone	and	Arkes	(2018)	find	evidence	of	underreaction	to	hot	and	cold	hands. 
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too	much	heed	to	the	starter’s	typical	quality	or	quality	at	the	start	of	the	game	(Zhou,	Liu,	and	Ho,	
2015).	

The	 question	 of	whether	managers	 pull	 starters	 optimally	 has	 received	 surprisingly	 little	
attention	 in	prior	 academic	 literature.	We	are	aware	of	only	one	earlier	 study,	Ganeshapillai	 and	
Guttag	(2014).4	They	estimate	a	model	of	when	to	pull	a	starter	so	as	to	minimize	the	probability	of	
giving	 up	 at	 least	 one	 run	 in	 the	 current	 inning,	 and	 find	 that	 managers’	 decisions	 differ	 from	
estimated	optimal	choices	in	48%	of	late	close	game	situations.	Approximately	90%	of	these	mistakes	
were	leaving	the	pitcher	in	when	he	should	be	removed;	i.e.,	starters	seem	to	usually	be	pulled	too	
late.	

We	build	on	this	work	by	examining	the	optimality	of	pulling	starters	decisions	with	respect	
to	what	is	typically	the	ultimate	objective	for	each	game—winning—in	addition	to	runs	allowed	in	
the	current	inning.	We	do	this	by	first,	in	Section	3,	showing	that	in	a	simple	model,	optimal	decisions	
for	pulling	starters	imply	that	expected	runs	should	decline	in	the	inning	that	starters	are	pulled.	That	
is,	managers	should	not	pull	the	starter	when	the	manager	is	just	indifferent	between	the	starter	and	
reliever’s	 expected	 performance	 for	 the	 duration	 of	 the	 current	 inning,	 but	 when	 the	 reliever’s	
performance	is,	in	expectation,	strictly	better	for	that	inning.	This	is	because	using	a	reliever	in	the	
current	inning	yields	a	benefit	of	lower	expected	runs	in	the	current	inning	at	the	cost	of	a	depleted	
bullpen	and	greater	expected	runs	later	in	the	game.	Managers	should	wait	to	pull	until	the	marginal	
benefit	to	the	current	inning	from	pulling	is	as	large	as	the	marginal	benefit	to	future	innings	from	
delay.	 These	 results	 imply	 that	Ganeshapillai	 and	Guttag’s	 results	 are	 potentially	 consistent	with	
optimal	managerial	behavior.	

We	then	empirically	examine	the	effects	of	bullpen	decisions	on	both	outcomes	in	Section	4.	
We	use	linear	probability	models	to	estimate	the	effect	of	pulling	the	starter	on	the	probability	of	
winning	 the	 game	 using	 detailed	 controls	 for	 game	 situation	 and	 other	 relevant	 factors.	We	 use	
similar	models	to	estimate	this	effect	for	the	outcome	of	giving	up	at	least	one	run	in	the	inning.	While	
our	empirical	setting	does	not	offer	ideal	random	variation	in	managerial	decisions,	it	does	offer	a	
rich	array	of	observables	for	a	large	sample	(all	games	from	the	2008-	2017	seasons).	This	allows	us	
to	adjust	precisely	for	key	situational	factors	affecting	both	win	and	bullpen	usage	probability	with	
score-inning-baserunner-out	interactions,	and	to	include	proxies	for	a	large	array	of	additional	such	
factors.	We	argue	that	the	treatment,	pulling	the	starter,	is	plausibly	“as	good	as	random”	given	these	
controls,	and	so	if	teams	win	more	(less)	often	when	starters	are	pulled,	ceteris	paribus,	this	would	
imply	that	starters	are	generally	pulled	too	late	(too	soon).	We	therefore	refer	to	estimating	the	effect	
of	pulling	the	starter	on	outcomes	throughout	the	paper.	However,	given	the	lack	of	randomization,	
we	 acknowledge	 that	 this	 interpretation	 is	 ambiguous.	 Our	 estimates	 can	 of	 course	 more	
conservatively	be	interpreted	as	partial	correlations,	which	we	think	are	still	of	interest.5	

We	 find	 essentially	 no	 significant	 evidence	 that	 teams	make	 such	 systematic	mistakes	 in	
pulling	 starter	 decisions.	 Our	 results	 for	 the	 full	 sample	 are	 precisely	 estimated	 near-zero	 point	
																																																								
4	See,	e.g.,	Carleton	(2017)	and	Houston	(2018)	for	discussion	and	analysis	of	this	topic	outside	of	the	academic	
literature.	
5	In	addition	to	examining	wins	and	not	just	runs,	we	also	expand	on	Ganeshapillai	and	Guttag’s	work	by	using	
different	 empirical	 methods,	 additional	 control	 variables,	 examine	 different	 game	 situations,	 and	 obtain	
numerical	estimates	of	the	effects	of	pulling	as	starter	on	runs	and	win	probability.	We	also	use	a	larger	data	
set	 with	 more	 recent	 seasons	 (2008-2017	 vs.	 2006-2010).	 There	 is	 evidence	 that	 analytics	 have	 affected	
decision-making	in	the	last	two	seasons	of	our	sample	as	starters	are	pulled	somewhat	earlier	on	average	than	
in	the	rest	of	the	sample.	All	of	our	results	are	similar	when	we	restrict	attention	just	to	the	prior	seasons	(2008-
2015).	
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estimates,	with	our	preferred	model	yielding	a	95%	confidence	 interval	 for	the	marginal	effect	of	
pulling	a	starter	on	win	probability	of	-1.4	to	+1.8	percentage	points.6	Moreover,	we	find	the	results	
are	 largely	 stable	 when	 various	 proxy	 controls	 are	 removed,	 indicating	 lack	 of	 confounding	 by	
omitted	variables,	and	that	pulling	the	starter	does	significantly	decrease	the	chance	of	allowing	a	
run	 in	 the	 inning,	 consistent	 with	 the	 theory	 we	 present	 and	 Ganeshapillai	 and	 Guttag’s	 earlier	
results.	

It	is	possible	that	an	average	effect	on	win	probability	of	zero	could	mask	off-setting	biases	in	
different	 game	 situations.	 Our	 results	 largely	 suggest	 that	 this	 is	 not	 the	 case,	 as	 estimates	 for	
subsamples	restricted	to	various	game	situations	and	contexts	(score	difference,	outs,	men	on	base,	
and	league)	are	typically	small	and	insignificant.	We	also	fail	to	find	significant	evidence	of	recency	
biases	(managers	do	not	seem	to	jump	the	gun	and	pull	starters	too	soon	after	giving	up	walks,	hits,	
runs,	or	even	a	measure	of	 lucky	 runs	 that	we	construct).	We	corroborate	 these	 results	using	an	
alternative	measure	of	managerial	quality,	votes	for	the	Manger	of	the	Year	award.	

Our	results	might	therefore	seem	to	support	the	conclusion	that	managerial	experience	does	
largely	reduce	or	eliminate	bias.	We	note	that	bias	could	affect	both	belief	updating,	the	focus	of	our	
discussion	above,	and	other	factors	that	could	affect	the	optimality	of	the	complex	dynamic	problem	
of	when	to	call	the	bullpen,	discussed	further	in	Section	4.1.	However,	there	was	a	steady	downward	
trend	in	the	mean	time	that	starters	were	pulled	from	approximately	1970	through	the	early	2000s,	
most	of	which	occurred	before	the	so-called	“sabermetrics”	revolution	(Carleton,	2017;	Hakes	and	
Sauer,	2006).	Thus,	even	if	managers	have	learned	to	make	decisions	optimally,	this	learning	did	not	
take	place	over	the	course	of	just	their	careers,	but	also	the	careers	of	those	before	them.	This	learning	
was	made	 possible	 largely	 due	 to	 the	 stability	 of	 the	 sport	 over	 time—there	 have	 not	 been	 any	
substantial	rule	changes	since	1973	when	the	American	League	introduced	the	designated	hitter.7	
Our	 interpretation	 is	 therefore	 that	 yes,	 experience	 reduces	 bias,	 but	 the	 quantity	 of	 experience	
required	for	this	learning	to	occur	can	be	very	large,	and	is	likely	context-dependent.8	Similarly,	it	has	
taken	decades	for	NBA	teams	to	learn	the	value	of	the	three	pointer,	and	NFL	teams	have	gradually	
become	more	likely	to	“go	for	it”	on	fourth	down	since	Romer	(2006).9	

Moreover,	we	do	obtain	two	somewhat	more	puzzling	results.	One	is	well	known	to	baseball	
fans,	but	rarely	remarked	upon:	 in	99.3%	of	cases	starters	pulled	 in	our	sample,	 this	occurred	 in	
between,	 rather	 than	during,	 at	 bats.	 This	 is	 surprising	 since	managers	 could	obtain	 information	
during	an	at	bat	(from	individual	pitches)	that	indicates	that	pulling	the	starter	is	optimal	mid-at	bat.	
We	speculate	(but	lack	sufficient	data	to	test)	that	this	regularity	is	due	at	least	partly	to	convention.	
The	second	puzzling	result	reflects	another	type	of	conformity:	we	find	that	the	probability	of	pulling	
the	starter	increases	by	5.3	percentage	points	when	the	opposition	team	has	pulled	their	starter	first	
																																																								
6	See	Abadie	(2018)	for	recent	work	on	the	informativeness	of	results	in	which	the	null	is	not	rejected.	
7	Another	factor	(beyond	managerial	learning	from	experience	and	sabermetrics/statistical	analysis)	that	has	
contributed	 to	 changes	 in	 the	 usage	 of	 pitchers	 over	 time	 is	 that	 pitchers	 have	 become	more	 specialized,	
including	relief	pitchers	specializing	in	different	roles	within	the	bullpen	(however,	learning	has	also	driven	
changes	in	specialization	Carleton	(2018b)).	
8	Starters	were	pulled	even	earlier	on	average	in	the	last	two	years	of	our	sample	and	this	trend	has	continued	
since	 then	 (Carleton,	 2018a).	 We	 discuss	 this	 issue	 further	 as	 we	 proceed.	 See,	
https://shottracker.com/articles/the-3-point-revolution	 and	
https://www.nationalreview.com/2019/02/nfl-football-teams-fourth-down-plays/.	 See	 Fudenberg	 and	
Levine	(2016)	for	discussion	of	“slow	learning”	in	a	broader	range	of	game	theoretic	situations.	
9	See	Weinberg	(2015)	for	more	detail	on	the	rules	of	baseball	in	general	and	on	the	strategic	question	of	when	
to	pull	starters	in	particular. 
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(conditional	on	the	full	set	of	other	controls).	However,	we	do	not	find	significant	interaction	effects	
between	the	opposition’s	decision	and	the	 team’s	own	decision	on	game	outcomes.	This	suggests	
that,	on	average,	small	changes	in	when	the	starter	is	pulled	do	not	have	substantial	effects	on	win	
probability,	which	could	also	help	to	explain	our	failure	to	find	substantial	biases	in	these	decisions.	
	
2. Data	and	Empirical	Context	
We	provide	a	cursory	and	simplistic	summary	of	the	rules	and	terminology	of	baseball	most	relevant	
to	our	analysis	to	assist	readers	who	are	unfamiliar	with	the	sport.10	Baseball	games	consist	of	nine	
innings,	 each	 consisting	of	 two	half	 innings.	 In	 the	 first	 (top)	half	 of	 each	 inning,	 the	home	 team	
pitches	while	the	away	team	bats,	and	vice	versa	in	the	second	(bottom)	half	inning.	Each	batter	is	
pitched	to	repeatedly	until	he	either	records	an	out,	gets	on	base	(usually	via	a	hit	or	walk)	or	hits	a	
home	run	(a	ball	hit	out	of	the	park	causing	the	batter	and	any	men	on	base	at	the	start	of	the	at	bat	
to	 score).	 Base-runners	 (men	 on	 first,	 second,	 and/or	 third	 base)	 may	 also	 either	 be	 caused	 to	
advance	bases	or	score	(record	a	run	by	advancing	from	third),	or	record	an	out,	when	the	batter	
records	a	hit,	walk,	or	out.	A	half	inning	is	over	after	three	outs	are	recorded.	The	team	with	more	
runs	after	nine	innings	wins	the	game;	the	game	goes	to	extra	innings	if	there	is	a	tie	(continuing	as	
long	 as	 the	 game	 is	 tied	 after	 each	 complete	 additional	 inning,	 this	 happens	 in	 less	 than	10%	of	
games).11	
	
We	obtain	detailed	pitch-level	data	for	all	games	(162	per	season	for	each	of	the	30	teams)	for	the	
2008-2017	seasons	from	Baseball	Savant	(https://baseballsavant.mlb.com/).	The	data	include	pitch	
location,	type	(fastball,	curveball,	etc.),	and	velocity	for	the	large	majority	of	observations,	in	addition	
to	the	more	widely	available	data	on	the	outcomes	of	each	at	bat	(hits,	walks,	outs,	etc.).	We	aggregate	
the	data	to	the	at	bat	unit	of	observation	since	as	noted	earlier	over	99%	of	pitching	changes	in	our	
sample	are	made	in	between	at	bats,	but	still	exploit	the	data	we	have	on	individual	pitches,	using	
pitch	count	and	velocity	in	particular	to	account	for	the	starting	pitcher’s	actual	or	perceived	physical	
condition.	
	
Given	our	goal	of	assessing	the	effects	of	pulling	starters	on	game	win-loss	outcomes,	it	is	helpful	to	
restrict	our	sample	in	several	ways.	Starters	are	most	often	pulled	in	the	6th	and	7th	innings.	We	
restrict	our	sample	to	these	 innings,	plus	the	8th,	as	decisions	 in	that	 inning	have	relatively	 large	
effects	on	which	team	wins	the	game.	We	also	limit	the	sample	to	at	bats	in	which	the	current	score	
difference	is	at	most	one	run	to	maximize	variation	in	win	probability	and	potential	effects	of	bullpen	
decisions	on	win	probability.12	
	
While	winning	the	current	game	is	likely	the	main	objective	for	most	teams	in	most	games	throughout	
the	season,	it	is	certainly	plausible	that	teams	have	other	objectives	in	some	games	(e.g.,	development	

																																																								
10	See	Weinberg	(2015)	for	more	detail	on	the	rules	of	baseball	in	general	and	on	the	strategic	question	of	when	
to	pull	starters	in	particular.	
11	 See	 	 	 	 https://www.beyondtheboxscore.com/2017/8/5/16093390/extra-innings-time-how-long-how-
many-average-rule-change. 
12	Restricting	the	sample	to	observations	from	the	6th	inning	and	later	also	means	that,	for	the	vast	majority	of	
our	observations,	pitchers	will	be	facing	batters	for	at	least	the	third	time	in	the	game,	so	we	do	not	account	
directly	 for	 “third-time-through-the-order”	 in	 our	 regressions	 since	 this	 variable	 would	 have	 almost	 zero	
variation.	
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of	younger	players	for	teams	out	of	contention).	This	is	most	likely	true	late	in	the	season;	moreover,	
team	rosters	can	change	substantially	 late	in	the	season,	and	starting	September	1	the	roster	size	
expands,	so	we	restrict	our	sample	to	pre-September	games	to	minimize	the	influence	of	both	of	these	
issues.13	Since	the	season	begins	in	late	March	or	early	April	and	ends	in	late	September,	this	only	
causes	us	to	lose	around	one	sixth	of	our	sample.	Given	the	large	number	of	teams	and	games	per	
season,	our	final	sample	still	has	over	85,000	plate	appearance	level	observations	despite	the	various	
restrictions.	
	
As	noted	in	Section	1,	there	was	a	steady	decline	in	the	mean	number	of	innings	that	starters	are	kept	
in	per	game	beginning	in	the	1970s	through	the	early	2000s	(see	Figure	1).	This	change	has	been	
driven	by	a	variety	of	factors	including	increased	use	of	data	and	statistics,	“learning	by	doing”	and	
social	learning,	and	changes	in	specialization	and	development	of	players	(Carleton,	2018a).14	The	
trend	is	noisy	during	our	sample	time-frame	but	does	seem	to	dip	substantially	downward	in	the	last	
two	years;	we	use	the	full	sample	throughout	our	analysis	but	do	check	robustness	of	our	main	results	
to	dropping	the	last	two	seasons.	
	
3. Model	
As	noted	earlier,	 the	basic	trade-off	that	managers	face	when	deciding	when	to	pull	 the	starter	at	
“time”	t	(denoted	in	this	section	by	!"# ,	with	!"# = 1	(= 0)	referring	to	(not)	pulling	the	starter	at	t)	
is	the	benefit	of	a	relatively	fresh	reliever	versus	the	cost	of	either	depleting	the	bullpen	or	using	a	
relief	pitcher	who	is	lower	quality	than	the	starter.	Thus,	if	managers	tend	to	pull	starters	too	soon,	
we	would	expect	that	those	who	do	pull	starters	later	would	have	both	a	relatively	high	chance	of	
winning	 the	 game	 and	 (relatively)	 less	 expected	 runs	 allowed	 in	 the	 inning	 the	 starter	 is	 pulled.	
Similarly,	if	managers	tend	to	pull	too	late,	we	would	expect	a	higher	win	probability	and	less	runs	
for	cases	where	the	starter	is	pulled	sooner.	
	
However,	even	if	pulling	the	starter	reduces	(in	expectation)	runs	scored	in	the	current	inning,	this	
could	either	increase	or	decrease	the	chance	of	winning	the	game.		This	is	best	seen	with	a	simple	
model.	Suppose	time,	t,	 is	continuous	and	ranges	from	0	to	1,	and	the	starting	pitcher	has	a	“runs	
density	 function”	 of	 *(+),	 meaning	 that	 the	 expected	 runs	 the	 starter	 gives	 up	 from	 +,	 to	 +-	 is	
∫ *(+)/+#0
#1

.	We	assume	*2(+) > 0	(starters	tire	throughout	the	game,	on	average,	or	are	more	likely	to	
see	performance	decline	when	facing	the	batting	order	multiple	times),	and	normalize	*(0)	to	0.	It	is	
natural	to	assume	that	win	probability	is	strictly	decreasing	in	runs	allowed	for	the	game,	and	so	we	
use	runs	allowed	as	a	proxy	for	win	probability.	
	
The	quality	of	(i.e.,	runs	allowed	by)	relievers	may	decline	or	improve	throughout	games	for	various	
reasons.	The	relative	quality	of	a	reliever	brought	in	at	any	particular	point	in	the	game	is	ambiguous.	
However,	the	average	quality	of	the	bullpen	for	the	remainder	of	the	game	likely	declines	when	the	

																																																								
13	We	also	therefore	exclude	postseason	games;	strategic	decisions	in	these	games	are	fundamentally	different	
than	regular	season	games	due	to	the	limited	horizon,	and	while	it	would	be	ideal	to	examine	them	separately,	
we	are	not	able	to	do	so	due	to	relatively	small	sample	size.	
14	Changes	in	runs	scored	per	game	could	also	contribute	to	this	trend,	but	while	average	runs	did	increase	
from	the	70s	through	the	90s,	this	has	decreased	since	then	and	is	now	similar	to	what	it	was	in	the	70s	(see,	
e.g.,	https://tht.fangraphs.com/the-height-of-the-hill/).	
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bullpen	is	called	on	earlier,	both	due	to	fatigue	and	the	depletion	of	supply	of	higher	quality	relievers.	
For	example,	if	a	reliever	is	brought	in	in	the	6th	inning	and	left	in	until	the	8th,	his	performance	in	
the	8th	would	be	expected	to	be	worse	as	compared	to	the	same	reliever	being	first	used	in	the	7th	
inning.	Or	perhaps	he	would	be	relieved	in	the	7th	with	a	lower	quality	option	than	a	fresh	version	of	
himself.	Thus,	we	assume	that	it	is	the	average	runs	per	inning	of	bullpen	usage	(for	the	remainder	
of	the	game)	that	declines	when	the	bullpen	is	called	on	later	in	the	game.	
	
We	therefore	use	4(+)	to	denote	the	average	number	of	runs	per	unit	of	time	allowed	by	the	bullpen	
when	 the	bullpen	 is	 called	at	 time	 t,	 and	assume	 that	42(+) < 0,	 reflecting	 that	 the	quality	of	 the	
bullpen	(for	the	remainder	of	the	game)	increases	as	t	increases	(i.e.,	when	the	starter	is	pulled	later).	
Given	the	time	normalization,	when	the	bullpen	is	called	at	t,	it	is	used	for	(1 − +)	units	of	time,	so	the	
expected	runs	allowed	by	the	bullpen	equals	4(+)(1 − +).	It	is	technically	useful	and	without	loss	of	
generality	to	assume	422(+) < 0.	
	
Consequently,	 expected	 runs	 for	 the	 game	 when	 !"#7 = 1	 is	 equal	 to	 ∫ *(+)/+ + 4(+̂)(1 − +̂)#7

: .	
Differentiating	 with	 respect	 to	 +̂	 is	 *(+̂) + 42(+̂)(1 − +̂) − 4(+̂),	 with	 second	 derivative	 *2(+̂) +
422(+̂)(1 − +̂) − 242(+̂),	which	is	weakly	positive,	and	so	expected	runs	are	minimized	at	+∗	such	that:	
*(+∗) + 42(+∗)(1 − +∗) = 4(+∗).	Since	42() < 0,	the	following	is	implied:	
	
Proposition	3.1.	At	the	expected-runs	minimizing	time	to	pull	the	starter,	+∗,	*(+∗) > 4(+∗).	
	
This	 result	means	 that	we	 should	 expect	 a	 strict	 improvement	 in	 current	 pitching	 quality	 at	 the	
optimal	time	that	the	starter	 is	pulled.	Empirically,	 this	would	imply	 lower	runs	 in	 innings	where	
starters	are	pulled	as	compared	to	when	they	are	not	pulled,	ceteris	paribus.	This	is	because	of	the	
future	cost	of	pulling	the	starter	due	to	depleting	the	bullpen.	The	manager	should	wait	to	pull	the	
starter	until	there	is	a	marginal	benefit	in	the	present	(improvement	of	reliever	over	the	starter	in	
the	current	inning)	to	compensate	for	the	future	cost.	
	
Specifically,	given	that	*(+) ≥ 4(+),	the	marginal	cost	of	delay	in	!"# = 1	is	the	marginal	increase	in	
current	runs,	*(+) − 4(+),	while	the	marginal	benefit	of	delay	(decrease	in	future	runs)	is	42(+)(+ −
1).	If	the	starter	is	pulled	at	the	t	such	that	he	and	the	reliever	are	the	same	quality	(*(+) = 4(+)),	
then	the	marginal	cost	of	delay	is	zero,	while	the	marginal	benefit	of	delay	is	always	strictly	positive	
(if	+ > 1).	Thus,	the	total	marginal	effect	of	a	delay	would	be	strictly	positive,	and	so	t	could	not	be	
optimal.	Waiting	at	least	somewhat	longer	and	incurring	a	small	cost	of	higher	runs	in	the	current	
inning	 is	 outweighed	 by	 the	 benefit	 of	 a	 slightly	 fresher	 bullpen	 since	 this	 applies	 to	 the	 entire	
remainder	of	the	game.	
	
Figure	2	illustrates	these	points	for	the	simple	case	of	*(+) = +	and	4(+) = 1 − +.	The	top	graph	shows	
the	case	of	the	optimal	choice.	On	the	margin	(at	the	time	starters	are	pulled),	!"# = 1	does	not	affect	
win	probability	(total	expected	runs	for	the	game	is	exactly	equal	for	!"# = 0	and	!"# = 1),	but	does	
affect	 instantaneous	expected	runs	at	t.	 In	 the	second	graph,	 the	starter	 is	pulled	too	early,	when	
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*(+) = 4(+).	Runs	do	not	change	at	the	instant	the	starter	is	pulled,	but	are	higher	for	the	rest	of	the	
game.	The	third	graph	shows	the	case	of	a	starter	pulled	too	late.15	
	
The	key	assumption	driving	the	proposition	is	the	decline	in	average	runs	per	bullpen	inning,	and	not	
marginal	 (current)	 runs.	 If	4(+)	 were	 defined	 to	 be	 analogous	 to	 *(+)	 as	 current	 expected	 runs	
density,	and	declined	over	time,	then	at	the	optimal	time	to	pull	starters	*(+)	and	4(+)	would	be	equal.	
This	alternative	case	is	also	plausible	as	teams	may	tend	to	use	weaker	relievers	earlier	in	the	game	
in	general.	However,	if	longer	usage	causes	a	reliever’s	future	performance	in	the	game	to	worsen,	
this	would	support	the	original	(average	performance)	version	of	4(+).	It	is	also	worth	noting	that	
teams	may	pull	starters	for	relatively	stronger	relievers	in	more	difficult	situations	(i.e.,	with	men	on	
base).	This	would	exacerbate	the	result	stated	in	the	proposition	(we	would	expect	an	even	greater	
discontinuous	improvement	in	performance	at	the	optimal	time	that	!"# = 1).	
	

																																																								
15 As	an	alternative	illustration	of	ideas,	one	could	consider	an	even	simpler	case	in	which	the	starter’s	expected	
runs	equal	0.5	in	the	6th	inning	and	1.0	in	the	7th	inning.	Suppose	the	bullpen’s	average	runs	per	inning	for	the	
duration	of	the	game	equals	0.5	if	called	in	the	6th	and	0.25	if	called	in	the	7th.	If	the	bullpen	is	called	in	the	6th,	
then	 there	 are	 two	 expected	 runs	 for	 the	 remainder	 of	 the	 game	 for	 innings	 6-9	 (0.5	 per	 inning	 and	 four	
innings).	If	the	bullpen	is	called	in	the	7th,	then	expected	runs	in	innings	6-9	are	equal	to	0.5+0.25	3	=	1.25.	
Expected	runs	decline	in	the	current	inning	if	the	starter	is	pulled	in	the	7th,	which	is	optimal	(current	inning	
expected	runs	would	not	decline	if	the	starter	is	pulled	in	the	6th).	
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Figure	1:	Mean	number	of	outs	per	game	recorded	by	starting	pitchers,	reproduced	from	Carleton	
(2017)	
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Figure	2:	Expected	runs	(areas	of	light	gray	regions	equal	runs	allowed	by	starter	and	darker	regions	
are	runs	by	bullpen)	for	optimal,	too	early,	and	too	late	decisions	for	PS=1.	
	
4. Empirical	Strategy	
4.1. Empirical	Model	and	Identification	
	

The	model	implies	that	if	starters	are	pulled	at	the	optimal	time	on	average,	then	the	marginal	
effect	of	pulling	the	starter	on	win	probability	 is	zero,	but	runs	 in	the	current	 inning	may	decline	
(ceteris	paribus).	If	starters	are	pulled	too	soon	on	average,	then	teams	that	(randomly)	pull	starters	
later	would	be	more	likely	to	win	their	games.	Consequently,	not	pulling	the	starter	would,	ceteris	
paribus,	empirically	predict	a	higher	win	probability.	Conversely,	 if	starters	are	pulled	too	late	on	
average,	 then	 the	 “empirical	marginal	 effect”	 of	 pulling	 the	 starter	 on	win	 probability	 would	 be	
positive.	

We	 test	 these	 implications	 using	 straightforward	 linear	 probability	 models	 in	 which	 we	
estimate	the	effect	of	pulling	the	starter	on	the	conditional	mean	probability	of	1)	winning	the	game,	
and	2)	giving	up	at	least	one	run	in	the	inning,	for	both	our	full	sample	and	various	subsamples	for	
different	 game	 situations,	 controlling	 for	 a	 large	 array	 of	 characteristics	 of	 the	 teams	 and	 game	
situation.16	 Determining	 the	 appropriate	 controls	 is	 the	 key	 challenge,	 as	we	 discuss	 below.	 Our	
baseline	models	are	of	the	form:	
	

>? = @AB!"? + @CD? + @AB×C(!"? × D?) + @FG?H + IJ? .			 (1)	

>? 	is	one	of	the	two	outcomes	for	the	pitching	team	(for	at	bat	i),	either	Win	(>? = 1	if	the	pitching	
team	wins	the	game)	or	Runs	(>? = 1	if	one	or	more	runs	are	scored	in	the	inning	during	or	after	the	
current	at	bat).17	!"? 	is	a	dummy	for	whether	the	starter	is	pulled	at	the	start	of	at	bat	i	(so	!"? = 1	
for	at	most	one	observation	per	game),	D? 	is	a	set	of	covariates	interacted	with	!"? 	as	their	effects	
directly	depend	on	the	value	of	!"? 	(explained	further	below),	G?H	is	a	vector	of	additional	covariates	
(whose	 composition	 depends	 on	 the	 outcome	 Y),	 and	 IJ? 	 a	 fully	 saturated	 set	 of	 score-inning-
baserunner-outs	fixed	effects	(FEs).18	We	cluster	standard	errors	by	game	to	account	for	correlation	
																																																								
16	These	implications	are	motivated	by	the	model	of	Section	3	but	not	derived	directly.	An	alternative	empirical	
approach	would	be	a	dynamic	structural	analysis	of	the	pitching	change	decision,	which	can	be	thought	of	as	
an	optimal	stopping	problem.	Provencher	(1997)	discuss	the	relationship	between	structural	and	reduced	form	
analysis	of	optimal	stopping	problems,	and	conclude	 that	 “for	a	 large	class	of	optimal	stopping	problems	a	
reduced-form	model	which	closely	approximates	the	statistical	performance	of	 its	structural	counterpart	 is	
readily	found.”	Still,	a	structural	model	of	pulling	starters	is	likely	a	worthwhile	topic	for	future	research;	we	
note	 this	 again	 in	our	 concluding	 remarks.	 See	Goldman	and	Rao	 (2017)	 for	 a	 structural	model	of	optimal	
stopping	in	sports	(the	decision	of	when	to	shoot	in	basketball).	
17	We	obtain	much	more	precise	and	interpretable	results	when	examining	a	binary	runs	variable	rather	than	
a	variable	equal	to	the	total	number	of	runs	allowed,	and	since	we	examine	only	very	close	games,	the	marginal	
effect	on	win	probability	of	the	first	run	given	up	is	typically	largest,	so	the	dummy	for	runs	is	the	key	runs	
outcome	regardless.	 	Moreover,	 in	unreported	multinomial	 logit	analysis	we	confirm	that	effects	of	!"?	 are	
largest	on	the	first	run	allowed.	
18	Given	the	sample	restrictions,	there	are	three	score	differences,	three	innings,	eight	base-	runner	situations	
(none	on,	one	on	1st,	2nd,	or	3rd,	two	on	(1st	and	2nd,	2nd	and	3rd,	1st	and	3rd),	and	bases	loaded),	and	three	
outs,	there	are	3	3	8	3	total	permutations	of	these	variables. 
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of	observations	within	these	groups.	Implicitly,	we	use	!" = 0	observations	as	counterfactuals	for	
!" = 1	observations	(conditional	on	the	covariates),	and	assume	that	unobservables	randomly	drive	
variation	 in	 the	PS	 decision,	 and	are	not	 systematically	 correlated	with	both	PS	 and	Y.	 Thus,	 our	
primary	co-	efficient	of	interest	is	@AB;	if	@AB > 0	for	> = KLM,	this	would	imply	that	pulling	the	starter	
increases	win	probability	on	the	margin,	so	managers	wait	too	long	to	pull	starters	on	average,	and	
if	@AB < 0,	 this	would	 imply	managers	 pull	 starters	 too	 soon.	However,	 the	 coefficients	 for	 some	
interaction	terms,	@AB×C ,	are	also	of	interest	for	some	of	our	hypotheses,	as	we	discuss	below.	We	
examine	the	effects	of	removing	key	“proxy	controls”	(discussed	below)	to	assess	the	importance	of	
unobservables	that	are	likely	correlated	with	observables,	i.e.	we	use	“selection	on	observables	as	a	
guide	to	selection	on	unobservables”	(Altonji,	Elder,	and	Taber,	2005).	We	again	acknowledge	the	
lack	of	true	randomization	of	the	PS	treatment,	and	discuss	this	issue	further	below.	
	
4.2. Covariates	
FE	 fully	 accounts	 for	 four	 key	 confounding	 variables.	 Other	 categories	 of	 variables	 that	 could	
confound	the	estimated	effect	of	PS	on	both	Win	and	Runs	are	as	follows:	starter’s	overall	“quality”,	
current	 condition,	 and	matchups	with	 upcoming	 hitters,	 the	 starter’s	 team’s	 bullpen	 quality	 and	
condition,	and	the	overall	quality	of	the	opponent’s	hitting	and	that	of	upcoming	batters	in	particular.	
Runs	are	more	likely	scored	(and	winning	the	game	is	less	likely),	and	pulling	the	starter	more	(less)	
likely,	when	the	starter	(bullpen)	is	weaker	D? 	includes	measures	of	just	the	starter	and	starter’s	team	
bullpen	characteristics,	as	the	effects	of	each	of	these	variables	obviously	depend	directly	on	whether	
the	starter	has	been	pulled	yet	or	not	(!"? = 1	or	!"? = 0).	Thus,	it	is	crucial	to	include	interactions	
of	these	variables	with	!"? ,	and	the	coefficient	of	these	interaction	terms	are	not	expected	to	be	zero	
even	under	a	null	hypothesis	of	no	managerial	mistakes.	
	
Variables	used	to	control	for	the	starter’s	quality	and	condition	are	as	follows.	We	use	WHIP	from	the	
last	three	months	for	games	in	July	and	August,	and	the	previous	season’s	WHIP	otherwise,	to	control	
for	 the	 starter’s	 typical	 quality	 across	 games	 (Starter	WHIP).19	We	 use	WHIP	 from	 the	 first	 four	
innings	of	the	game	(First	4	WHIP)	and	runs	allowed	prior	to	the	start	of	the	current	inning	(Pre-
Inning	Runs)	to	account	for	actual	or	perceived	variation	in	starter	quality	for	the	current	game.	We	
use	Pitch	Count	and	Recent	Fastball	to	control	for	the	starter’s	current	physical	condition.	Pitch	Count	
is	equal	to	current	pitch	count	minus	the	starter’s	average	pitch	count	for	the	season	when	pulled,	
which	 accounts	 for	 variation	 in	 general	 durability	 across	 starters.	Recent	 Fastball	 is	 equal	 to	 the	
average	 fastball	 thrown	 in	 the	 last	 six	 at	 bats	minus	 average	 fastball	 velocity	 from	 the	 first	 four	
innings	of	the	game,	which	accounts	for	the	extent	to	which	the	starter	appears	to	be	tiring	in	the	
given	game.20	Starter-hitter	handedness	match-ups	(whether	the	pitcher	pitches	with	the	same	hand	
that	the	batter	hits	from)	are	often	considered	a	key	factor	in	baseball	strategy	(Weinberg,	2015).	We	
account	for	this	with	Next	3	Same	Hand,	equal	to	the	number	of	same-hand	matchups	the	starter	has	
with	the	next	three	scheduled	hitters.	

																																																								
19	WHIP	(walks	and	hits	per	inning	pitched	is	a	standard	statistic	used	to	measure	pitching	quality;	see,	e.g.,	Lee	
(2014).	We	replace	the	previous	season’s	WHIP	with	the	current	season’s	value	for	the	2008	season	since	the	
previous	season	is	not	in	our	data	set.	
20	We	use	the	last	six	at	bats	because	there	are	numerous	at	bats	where	no	fastballs	are	thrown	and	so	we	lose	
more	observations	when	we	use	a	smaller	number	of	recent	at	bats.	We	choose	six	as	it	is	the	number	of	at	bats	
that	would	occur	in	the	last	two	innings	if	there	were	no	men	who	reached	base,	but	admittedly	this	number	is	
somewhat	arbitrary.	
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To	account	for	the	overall	quality	of	the	pitching	team’s	bullpen	we	use	season-long	pre-	ninth	inning	
WHIP	 for	 non-starting	 pitchers	 excluding	 the	 current	 game.	 We	 cannot	 use	WHIP	 of	 the	 actual	
reliever	used	since	this	is	unobserved	for	all	observations	with	!"? = 0	and	it	cannot	be	assumed	that	
the	eventual	reliever	used	is	the	same	one	that	would	be	used	at	earlier	points	in	the	game.	To	account	
for	the	condition	of	the	bullpen,	we	include	variables	for	bullpen	pitch	count	in	the	previous	two	days	
(Lag	BP	Pitch	Ct,	2nd	Lag	BP	Pitch	Ct).	
	
We	de-mean	all	of	these	variables	that	are	not	calculated	as	differences	(i.e.,	all	except	Recent	Fastball	
and	Pitch	Count)	using	current	season	means	to	account	for	secular	changes.	This	allows	@AB	to	be	
interpreted	as	the	marginal	effect	of	!"? 	when	the	variables	comprising	D? 	are	equal	to	their	season-
means	or	 baselines	 for	 the	difference	 variables.21	An	 alternative	way	 to	 account	 for	 a	 number	of	
confounding	 factors	 referred	 to	 above,	 and	 some	 additional	 factors	 discussed	 below,	 is	 to	 use	
additional	fixed	effects.	Using	FEs	for	team-seasons,	opponent	team-seasons,	and	starting	pitcher	is	
appealing	because	it	avoids	many	measurement	issues.	This	leads	to	a	very	large	number	of	fixed	
effects	(over	1,300),	and	so	including	interactions	of	these	FEs	with	!"? 	is	computationally	difficult	
and	makes	interpretation	of	the	non-interacted	!"? 	term	more	difficult.	It	is	more	straightforward	to	
use	specifications	that	include	these	FEs	as	additional	controls,	but	excludes	interactions	of	these	FEs	
with	!"?;	we	do	examine	these	specifications.	
	
The	vector	GH	includes	controls	for	factors	not	interacted	with	PS.	For	both	Y	outcomes,	GH	includes	
controls	for	two	variables	accounting	for	quality	of	opponent	hitting:	season-mean	OPS	for	the	next	
three	(scheduled)	hitters	and	the	opponent’s	(overall)	OPS	for	the	season.22	GH	also	includes	controls	
for	home	status,	year	fixed	effects,	and	month	fixed	effects,	for	both	Y.	
	
For	 the	> = KLM	 outcome,	 there	 are	 several	 other	 categories	 of	 confounders:	 the	 starter	 team’s	
hitting	 quality	 and	 end	 of	 game	 (closer)	 bullpen	 quality,	 and	 the	 other	 team’s	 starting	 pitching,	
bullpen,	and	closer	quality.	We	again	use	team	OPS	for	the	season	to	account	for	team	hitting	quality,	
and	for	opponent	pitching	we	use	relevant	D? 	variables	for	the	opponent	(Starter	WHIP	and	Bullpen	
WHIP	(both	interacted	with	!"?),	Lag	Bullpen	Pitch	Counts,	and	Closer	WHIP).	
	
To	 account	 for	 biases	 potentially	 varying	 by	 game	 situation	 we	 present	 results	 for	 the	 main	
regressions	for	subsamples	defined	by	outs,	 inning,	men	on	base,	and	score.	We	also	estimate	the	
regressions	for	various	subsamples	to	examine	how	effects	may	depend	on	several	other	important	
contextual	 factors:	subsamples	for	each	half	of	 the	season	(pitchers	may	be	rested	more	 in	either	
half),	a	subsample	of	seasons	prior	to	2016	(as	noted	above,	there	seems	to	be	a	shift	in	when	starters	
are	 pulled	 in	 the	 2016	 and	 2017	 seasons),	 and	 subsamples	 for	 games	 played	 by	 National	 and	
American	League	teams	(pitchers	hit	in	the	National	League	only,	and	are	replaced	by	the	designated	
hitter	in	the	American	League).	
	
																																																								
21	We	de-mean	the	three	main	variables	that	vary	substantially	by	subsample	(WHIP,	First	WHIP,	Pre-Inning	
Runs)	when	we	conduct	different	analyses	by	subsample.	
22	OPS	=	On-base	Plus	Slugging	percentage	is	a	standard	baseball	statistic	used	to	measure	hitting	quality,	again	
see	Lee	(2014).	All	statistics	are	constructed	separately	by	home/away	status	and	use	data	only	from	games	
prior	to	September.	
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4.3. Recency	
To	account	for	recent	events	potentially	driving	biases,	we	examine	interactions	of	PS	with	several	
variables	measuring	events	that	occurred	in	recent	at	bats:	Last	T	WH	(walks	and	hits),	Last	T	Pitch	
Ct,	Last	T	Runs,	and	Last	T	Lucky	Runs.23	Last	T	refers	to	the	previous	T	at	bats;	we	present	results	for	
N = 3,	but	results	for	other	values	are	similar.	Further,	we	include	a	variable	indicating	whether	the	
opponent	has	already	pulled	its	starter	(Opponent	PS);	examining	this	variable	allows	us	to	assess	
possible	(undue)	influence	of	the	opponent’s	decision.	
	
The	“lucky”	variable	is	the	deviation	between	change	in	expected	runs	and	the	predicted	change	to	
expected	 runs	 based	 on	 pitch	 location	 and	 several	 other	 variables,	 summed	 over	 pitches	 that	
occurred	during	the	at	bat.	This	variable	is	intended	to	capture	the	possibility	that	hitters	or	pitchers	
may	get	lucky	via	incorrect	umpire	calls	or	good/bad	hit	outcomes	relative	to	pitch	quality,	and	that	
managers	may	not	properly	 account	 for	 luck	due	 to	outcome	bias	 (Brownback	 and	Kuhn,	 2019).	
Details	of	how	this	variable	is	constructed	are	provided	in	the	appendix.	
	
To	interpret	this	variable,	consider	the	following	example.	Suppose	a	two-strike	pitch	is	thrown	to	an	
area	of	the	plate	that	is	usually	advantageous	to	the	pitcher	(perhaps	low	and	outside	in	the	strike	
zone)	and	the	batter	manages	to	make	contact	and	get	a	single.	Now	compare	this	outcome	to	a	two-
strike	pitch	in	which	the	pitcher	threw	a	pitch	down	the	middle	of	the	plate	that	resulted	in	a	hitter	
getting	a	single.	The	latter	pitch	had	a	much	higher	expected	runs	effect	than	the	former	low-outside	
example.	In	this	case,	the	low-outside	pitch	single	would	be	considered	“luckier”	than	the	pitch	down	
the	middle,	as	the	expected	runs	were	much	lower	for	the	better	pitch.	In	other	words,	the	pitcher	
made	a	good	pitch	and	the	batter	was	lucky	enough	to	either	guess	correctly	or	throw	the	bat	at	the	
pitch	and	put	it	in	play,	rather	than	get	out.	Managers	may	have	the	ability	to	distinguish	whether	
pitchers	are	fatiguing	and	performing	worse	or	whether	they	were	unlucky	on	a	recent	at	bat	or	pitch,	
and	 integrate	 this	 information	 into	 their	 PS	 decision.	 If	 managers	 do	 not	 distinguish	 between	
deserved	and	lucky	outcomes,	they	may	pull	starters	too	soon	who	have	gotten	unlucky,	or	fail	to	pull	
starters	who	have	been	lucky.	
	
4.4. Alternative	Analysis	
In	a	complementary	final	analysis,	we	use	an	alternative	measure	of	managerial	quality,	votes	for	the	
Manager	of	the	Year	award	(3-year	moving	average),	MoY.	We	regress	PS	on	MoY	and	other	control	
variables	for	the	full	sample	and	key	subsamples,	estimating	

	
!"? = @PQHRS>? + @CD? + @FGT?U + IJ? .		 	 (2)	

The	coefficient	@PQH	is	the	estimate	of	interest.	If	@PQH	is	not	equal	to	zero,	this	would	suggest	that	
higher	quality	managers	are	more	or	less	likely	to	pull	starters	in	general	or	in	particular	situations,	
which	would	in	turn	suggest	that	other	managers	tend	to	pull	starters	too	late	or	early.	We	use	the	X	
and	> = KLM	control	variables	since	they	could	all	plausibly	affect	PS.	Similarly,	we	use	the	full	set	of	
score-inning-baserunner-outs	FEs,	and	consider	the	expanded	set	of	FEs	(which	we	discuss	further	
below).	We	do	not	interact	MoY	with	covariates,	just	using	subsamples	to	examine	how	effects	may	

																																																								
23	We	use	interactions,	rather	than	subsamples,	for	analysis	of	these	effects	because	changes	in	effects	of	the	
other	covariates	are	less	plausible	(and	less	of	interest)	in	this	context. 
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vary	by	context.	In	addition	to	allowing	us	to	address	our	paper’s	main	question	in	an	alternative	
way,	this	analysis	also	allows	us	to	assess	heterogeneity	in	pulling	starter	decision-making.	
	
	
5. Results	
5.1. Preliminary	Analysis	
Rather	than	present	summary	statistics,	we	present	results	from	the	following	regression	in	Table	1:	

	
!"? = @CD? + @FGVWUX + @VYZYU#[\]\M+? + IJ? 	 	 (3)	

with	 [\]\M+? 	 denoting	 the	 vector	 of	 “recent	 events”	 variables	 discussed	 in	 Section	 4.2.24	 This	
regression	provides	insight	into	the	information	used	by	the	manager	to	make	the	PS	decision,	and	
validation	of	the	covariates	used	for	the	main	analysis.	We	use	GVWUX	here	rather	than	GT?U	because	
the	variables	affecting	Runs	are	most	relevant	to	the	PS	decision,	and	in	the	interest	of	limiting	the	
number	 of	 variables	 included	 in	 the	 table.	 The	 table	 shows	 that	 nearly	 all	 of	 the	 variables	 are	
significant	 with	 the	 expected	 sign.	 Managers	 are	 sensitive	 to	 the	 relatively	 subtle	 variables	 of	
previous	 games’	 bullpen	 pitch	 counts,	 recent	 pitch	 count,	 current/next	 batter	 quality	 and	
handedness—and	even	the	seemingly	irrelevant	variable	of	Opponent	PS.	The	only	non-significant	
variable	is	Bullpen	WHIP.	At	first	glance	Last	3	Lucky	Runs	has	a	seemingly	questionable	coefficient	
sign:	the	negative	sign	indicates	that	starters	are	less	likely	to	be	pulled	when	recent	hitters	got	more	
lucky	runs.	However,	this	sign	is	appropriate	(consistent	with	rational	managerial	choice)	conditional	
on	the	inclusion	of	(total)	Last	3	Runs,	which	has	a	positive	sign.	The	combination	of	these	effects	
indicates	that	managers	have	some	ability	to	discern	whether	or	not	negative	outcomes	on	the	field	
are	 related	 to	 pitcher	 fatigue	 or	 underlying	 performance,	 and	 showing	 restraint	 when	 negative	
outcomes	may	be	more	due	to	luck.	
	
As	 an	 additional	 preliminary	 analysis,	 we	 regress	Win	 and	 Runs	 on	 (just)	 PS	 in	 various	 game	
situations	to	get	a	sense	of	basic	correlations	and	how	these	vary	by	situation.25	We	present	these	
results	in	Table	2.		Results	with	a	man	on	first	and	other	baserunner	situations	(other	than	none	on)	
are	 similar,	 and	we	 therefore	 pool	 these	 situations	 going	 forward.	 Correlations	 between	PS	 and	
outcomes	are	low	for	these	situations.	There	are	larger	and	statistically	significant	correlations	with	
none	on:	in	general,	!" = 1	predicts	a	team	being	less	likely	to	win	and,	consistent	with	Ganeshapillai	
and	Guttag	(2014),	more	likely	to	give	up	runs	(with	the	exception	of	one	or	two	out	situations,	where	
the	correlation	is	positive	for	Win).	There	are	substantial	differences	in	estimates	by	game	score	and	
inning,	so	we	examine	these	situations	separately	below	as	well.	
 
 
 
 
 
 
																																																								
24	For	 this	 regression,	we	cluster	 standard	errors	by	 team-game	since	correlation	across	 teams	and	within	
games	is	less	of	an	issue.	
25	Some	situations	are	pooled	to	smooth	samples	sizes.	For	example,	the	number	of	observations	declines	by	
inning,	so	we	pool	the	seventh	and	eighth	innings.	
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5.2. Main	Results	
In	 Table	 3	we	 present	 results	 for	 regressions	 using	 our	 full	 sample	 for	 both	 outcomes.	 For	 each	
outcome	we	present	the	baseline	specification,	equation	(1),	and	a	specification	with	the	additional	
FEs	(team-season,	opponent-season,	and	starter)	discussed	in	Section	4.2.	We	exclude	estimates	for	
the	Z	variables	and	the	lagged	bullpen	pitch	count	variables	given	limited	space,	and	to	make	some	
attempt	to	limit	the	burden	imposed	on	the	reader.	
	
PS	has	a	small	insignificant	and	precisely	estimated	effect	on	Win	 in	both	models.	The	model	with	
additional	FEs	 has	 slightly	 smaller	 standard	 errors,	 and	 yields	 a	 95%	 confidence	 interval	 for	 the	
marginal	 effect	 of	!"? 	 on	win	probability	when	other	 covariates	 are	 at	 their	mean	or	baseline	of	
[−0.014,	0.018].	Both	 specifications	also	yield	estimates	 significant	at	 the	5%	 level,	 implying	 that	
pulling	the	starter	reduces	the	probability	of	giving	up	at	least	one	run	in	the	remainder	of	the	inning	
by	approximately	two	percentage	points.	All	of	these	results	are	consistent	with	optimal	PS	choices.26	
For	 the	 remainder	 of	 the	 analysis	 we	 exclude	 the	 additional	 FEs	 to	 ease	 interpretation	 of	 other	
covariates,	 for	computational	simplicity,	and	because	 including	them	does	not	substantially	affect	
results	(for	any	of	the	analyses).	
	
Most	D? 	 variables	 are	 insignificant	 and	 those	 that	 are	 significant	 have	 the	 expected	 sign.	 (Given	
obvious	multiple	testing	issues	we	ignore	results	significant	at	10%	unless	they	are	at	least	robust	
across	 specifications.)	 	 For	 the	 Win	 models,	 the	 sum	 of	 coefficients	 for	 both	 Starter	 WHIP	 and	
!"? × "+^_+\_	K`a!,	and	Pitch	Count	and	!"? × !L+]ℎ	cSdM+,	are	less	than	zero,	implying	that	these	
variables	(that	increase	as	the	quality	of	the	starter	or	his	condition	decline)	have	negative	effects	on	
win	probability	even	when	!"? = 1,	but	 this	may	be	because	teams	are	 forced	to	remove	starters	
earlier	or	use	lower	quality	relievers	in	these	cases.	
	
Table	4	shows	the	effects	of	removing	various	proxy	controls.	Each	specification	assesses	sensitivity	
of	the	estimates	(of	particular	interest	is	the	estimate	of	@AB)	to	a	different	potentially	confounding	
factor	 approximated	 by	 one	 or	 more	 of	 the	 included	 covariate(s).	 These	 factors	 are,	 in	 order	
corresponding	to	the	models	presented	in	the	table:	pitcher’s	current	physical	condition,	starter’s	
quality	in	the	current	game,	starter’s	overall	quality,	bullpen	status,	bullpen	quality,	and	upcoming	
hitter	quality.	If	results	are	stable	when	these	proxy	controls	are	removed,	this	would	suggest	that	
results	would	 also	 not	 change	 substantially	 if	 unobservable	measures	 of	 these	 factors	were	 also	
accounted	 for.	 Note	 the	 proxy	 controls	 do	 not	 include	 the	 score-outs-baserunners-inning	 fixed	
effects,	since	these	are	all	observed	(and	controlled	for)	without	any	measurement	error.	The	point	
estimates	 of	 @AB	 indeed	 vary	 minimally,	 ranging	 from	 -0.009	 to	 0.005	 across	 specifications,	
suggesting	that	bias	due	to	omission	of	better	measures	of	these	factors	is	minimal.	
	
	
	
	
	

																																																								
26	Sample	sizes	are	slightly	smaller	for	the	Win	models	because	there	is	a	small	amount	of	missing	data	for	GT?U	
as	compared	to	GVWUX.	Note	that	Bullpen	WHIP	is	not	collinear	with	team	fixed	effects	because	it	excludes	the	
current	game’s	performance,	and	because	 it	 is	calculated	separately	 for	home	and	away	games	(for	a	given	
team)	in	each	season.	
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In	Table	5	we	estimate	the	Win	models	separately	by	subsamples	defined	by	key	values	of	the	FE	
variables	(score,	inning,	outs,	men-on).	Most	PS	estimates	are	insignificant.	Two	are	significant	at	the	
5%	level	(for	subsamples	with	at	 least	one	man	on	base,	and	with	at	 least	one	out)	but	 the	point	
estimates	are	still	somewhat	small:	each	is	less	than	four	percentage	points.	Starter	WHIP	and	Pitch	
Count	 are	 again	 the	most	 important	 covariates.	 It	 is	 difficult	 to	 know	how	 to	 interpret	 the	 other	
significant	estimates	due	to	their	inconsistency.	Using	a	stronger	standard	of	0.5%	for	significance	as	
is	perhaps	now	becoming	more	common	(given	multiple	testing	issues	and	another	concerns	about	
type	I	errors),	we	would	simply	ignore	all	of	these.	In	unreported	results,	we	examine	more	narrowly	
defined	subsamples	motivated	by	these	results	and	find	limited	additional	significant	evidence.	We	
also	present	results	for	the	additional	subsamples	discussed	in	Section	4.2	(defined	by	league	and	
seasons	prior	to	2016)	and	find	results	are	mostly	consistent	with	those	of	the	full	sample.	
	
In	Table	6,	we	replicate	the	models	from	Table	5	replacing	Win	with	the	Runs	dependent	variable.	
The	results	are	strongest	for	the	same	subsamples.	There	is	one	other	estimate	of	interest	with	a	p-
value	of	approximately	0.005,	the	coefficient	on	!"# × %&'(	3	"+,&	-+./,	which	is	estimated	to	be	-
0.041.	This	means	that	pulling	the	starter	reduces	run	probability	more	when	the	upcoming	batters	
have	the	same	hand	as	the	starter,	which	is	supposed	to	be	to	the	starter’s	advantage,	indicating	that	
managers	overestimate	this	advantage	(they	should	pull	starters	more	often	even	when	they	have	
this	advantage).	
	
In	Table	7	we	examine	whether	the	PS	decision	is	unduly	influenced	by	recent	events	in	the	game	
(results	 from	 the	 last	 three	batters	 and	 the	 opponent’s	 value	 of	PS	 each	 interacted	with	PS).	We	
present	 results	 for	models	with	 the	various	 interactions	 included	separately,	 and	one	model	 that	
includes	all	Last	3	interactions	together,	to	account	for	possible	correlations	between	these	variables.	
Results	are	almost	entirely	insignificant,	and	point	estimates	and	standard	errors	are	again	small.	It	
is	especially	interesting	to	note	that	the	Opp	PS	interaction	is	insignificant,	since	we	know	that	this	
variable	does	influence	the	PS	decision.	Apparently,	this	 influence	does	not	affect	win	probability.	
Table	 8,	 which	 presents	 analogous	models	 for	Runs,	 provides	 some	 evidence	 that	 recent	 hitting	
performance	is	overreacted	to.	Specifically,	teams	that	pull	starters	when	the	opponent	has	drawn	
more	walks	or	hits	are	significantly	(5%)	more	likely	to	give	up	a	run	in	the	current	inning	in	the	
model	with	 all	 interactions,	 but	 this	 is	 offset	 by	 a	 negative	 coefficient	 for	 the	 Last	 3	 Lucky	 Runs	
variable.	The	interpretation	that	these	results	suggest	is	that	managers	actually	overreact	more	to	
non-lucky	hits	 (as	evidence	of	decline	 in	 the	starter’s	ability).	But	again,	 the	significance	of	 these	
results	is	somewhat	marginal	and	magnitudes	are	small.	
	
In	the	final	table,	Table	9,	we	examine	Manager	of	the	Year	(MoY)	votes	as	an	alternative	measure	of	
managerial	quality.	MoY	has	no	significant	effects	on	PS.	We	also	present	models	with	a	dependent	
variable	of	Win	(and	include	the	interactions	of	0# 	and	!"#)	and	show	that	the	point	estimates	for	
MoY	are	consistently	positive	and	significant,	supporting	the	validity	of	MoY	as	a	measure	of	
decision-making	quality.	These	results	also	demonstrate	the	ability	of	an	additional	regressor	to	
predict	changes	in	win	probability	despite	the	large	set	of	additional	controls,	the	analog	to	a	
standard	placebo	test	for	an	analysis	with	null	results	for	the	main	effect.	
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6. Concluding	Remarks	
We	 show	 that,	 under	 reasonable	 assumptions,	 current	 inning	 pitching	 performance	 immediately	
improves	when	starters	are	pulled	at	the	optimal	time	with	respect	to	maximizing	the	probability	of	
winning	the	current	game.	We	provide	empirical	evidence	consistent	with	this	prediction.	We	also	
show	 that,	 empirically,	win	probability	does	not	 change	substantially	when	starters	are	pulled	 in	
general,	and	in	a	range	of	situations.	Finally,	we	show	that	managers	more	successful	in	manager	of	
the	year	voting	do	not	tend	to	pull	starters	particularly	early	or	late.	
	
We	 interpret	 these	 results	 to	 imply	 that	managers	make	decisions	 to	pull	 starters	approximately	
optimally	in	between	at	bats.	Richard	Thaler’s	take	(“Hindsight	bias	illustrated”)	regarding	the	claim	
made	in	the	tweet	quoted	at	the	start	of	our	paper	(that	managers	typically	remove	starters	too	early)	
turns	out	to	indeed	be	consistent	with	our	results.	However,	a	caveat	is	that	the	randomization	of	our	
treatment	 (pulling	 starters)	 is	 unclear,	 and	 to	 the	 extent	 that	 these	 decisions	 have	 been	
approximately	optimal	 in	recent	years,	 this	 is	 likely	due	 to	a	period	of	 learning	over	many	years.	
Moreover,	our	analysis	also	suggests	that	decisions	may	be	improved	by	making	more	within-at	bat	
pitching	changes.	In	relation	to	past	work	on	manager	decision	making,	we	also	show	that	doing	so	
is	 consistent	with	 allowing	 run	expectations	 to	be	higher	 in	 the	 current	 inning,	making	 clear	 the	
importance	of	properly	defining	a	decisionmaker’s	objective	function.	Finally,	we	note	that	a	dynamic	
structural	analysis	of	pitching	changes	may	uncover	subtleties	that	our	reduced	form	analysis	misses.	
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Appendix	
A.1	 Construction	of	Lucky	Runs	Variables	

Expected	runs	created	for	a	given	pitch,	!"# ,	are	derived	from	Marchi	and	Albert	(2013)	using	
2008	play-by-play	files	from	retrosheet.org	and	called	pitch	values	from	Albert	(2010).	This	method	
calculates	the	change	in	expected	runs	score	for	the	remainder	of	the	inning	from	before	a	given	play	
(pitch)	to	after	the	result	from	this	outcome.	From	this	calculation,	the	expected	run	contribution	is	
equal	to	the	ending	run	expectancy	state	–	determined	by	men	on	base,	the	number	of	outs,	and/or	
the	count	–	minus	the	starting	run	expectancy	state,	plus	the	number	of	runs	actually	scored	as	a	
result	of	the	play.	For	example,	with	a	man	on	first	base	and	two	outs,	the	average	number	of	runs	
scored	in	the	rest	of	the	inning	across	2008	MLB	games	was	about	0.214,	or	approximately	one	run	
scored	 every	 five	 times	 this	 situation	 occurs.	 However,	 the	 expected	 runs	 scored	 will	 change	
depending	on	the	batter’s	output	at	the	plate	in	the	subsequent	pitch	or	at	bat.	If	the	batter	causes	
the	third	out,	the	expected	remaining	runs	scored	will	move	to	zero,	but	if	they	hit	a	home	run,	2	runs	
have	 scored,	 plus	 the	 inning	 continues	with	 an	 additional	 expectation	 equal	 to	 the	 average	 runs	
scored	in	bases	empty,	two	out	situations	(about	0.095	runs).	The	contribution	for	the	batter	causing	
the	third	out	would	then	be	−0.214	(RC	=	0	−	0.214),	while	the	contribution	when	hitting	a	home	run	
would	be	1.881	(RC	=	2	+	0.095	−	0.214).	Albert	(2010)	performs	a	similar	exposition	at	the	ball-
strike	count	and	pitch	level,	and	we	use	changes	to	these	values	as	given	by	Mills	(2014)	for	pitches	
not	put	in	play.	

We	identify	“lucky”	outcomes	for	hitters	using	a	spatial	model	of	the	strike	zone,	estimating	
the	expected	changes	to	expected	additional	runs	created	dependent	on	pitch	location,	pitch	type,	
batter	stance,	pitch	velocity,	and	the	current	ball-strike	count.	The	spatial	model	is	estimated	as	a	
semiparametric	 generalized	 additive	model	 (GAM)	with	 restricted	maximum	 likelihood	 and	 two-
dimensional	penalized	regression	splines	for	the	horizontal-vertical	location	of	the	pitch	as	it	crosses	
home	plate	(Wood,	2011;	Wood,	2017).	These	models	have	been	used	in	past	work	to	evaluate	spatial	
baseball	data	and	deviations	from	expected	outcomes	across	the	strike	zone	plane	(Mills	and	Salaga,	
2018).	We	interact	the	regression	splines	for	coordinate	location	with	the	season	year,	batter	stance,	
and	ball-strike	count,	due	to	changes	to	the	called	strike	zone	and	hitter	productivity	across	time	and	
the	strike	zone	space	(Mills,	2017a;	Mills,	2017b).	The	model	is	estimated	using	all	pitches	in	the	data,	
but	separately	for	umpire-called	pitches	and	pitches	at	which	the	batter	swings	as:		
	

!"# = %&((#, *#) + %-((#, *#) + %.((#, *#) + ∑ 012#3
145 + 65789:# + ;# .	

	
!"# 	represents	the	expected	runs	resulting	from	the	pitch,	and	%&(),	%-(),	and	%.()	represent	

the	pitch-location-interacted	smooth	parameters	for	the	batter’s	handedness,	ball-	strike	count,	and	
season,	respectively.	012# 	identifies	the	various	pitch	types	and	their	respective	effects	on	expected	
changes	to	runs	created,	while	789:# 	is	the	velocity	of	the	pitch	in	miles	per	hour.	We	note	that	for	
computational	simplicity,	this	specification	assumes	run	expectations	shift	linearly	with	pitch	type	
and	pitch	velocity	once	controlling	for	other	factors	in	the	spatial	estimation,	and	that	additional	pitch	
type,	handedness,	count,	season,	velocity,	and	locational	interactions	provide	only	marginal	gains	in	
model	performance.	;# 	is	the	error	term	for	each	pitch.	We	take	the	difference	in	the	actual	change	in	
!"# 	and	the	estimated	!"# 	for	each	pitch	to	calculate	the	Last	T	Lucky	Runs	variable.	Positive	values,	
in	which	 the	 actual	 runs	 created	 are	 larger	 than	expected,	 are	 considered	 luckier	outcomes	 than	
negative	values,	where	actual	runs	created	are	lower	than	expected.	These	values	are	then	aggregated	
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over	the	last	T	at	bats	for	the	starting	pitcher,	and	is	 included	in	the	central	regression	models	to	
detect	and	control	for	managerial	ability	to	identify	luckiness	in	recent	pitcher	outcomes.		
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A.2	 Supplemental	Tables	
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