
	

	 	 	
	

	

Learning	Feature	Representations	from	
Football	Tracking	

	
Michael	Horton1	
Sportlogiq	

Michael.horton@sportlogiq.com	
	

1 Introduction	
In	this	paper,	we	present	a	flexible	neural	network	framework	that	accepts	as	input	the	raw	trajectory	
data	produced	by	the	player	tracking	systems	deployed	in	many	professional	sports	and	learns	an	internal	
representation	of	the	individual	and	coordinated	movement	of	all	involved	players.		The	framework	
eliminates	the	necessity	to	manually	engineer	features,	deals	with	trajectories	of	variable	time	duration,	
and	does	not	require	an	ordering	of	players	in	the	input.		

Player	tracking	systems,	introduced	in	many	elite	sports	competitions	in	recent	years,	provide	rich	
datasets	for	analyzing	player	and	team	performance.		A	de-facto	format	for	the	data	generated	by	such	
systems	has	emerged,	where	player	movements	are	captured	as	trajectories—a	sequence	of	time-stamped	
(𝑥, 𝑦)-coordinates—and	the	game	state	is	recorded	in	event	logs—a	sequence	of	time-stamped	player	
actions	and	match	events.	

Concurrently,	machine	learning	methods	have	been	applied	to	address	many	sports	analytic	questions.		
These	methods,	and	in	particular	deep	neural	networks,	have	been	shown	to	be	effective	over	a	broad	
range	of	problems,	and	often	require	less	effort	to	develop	than	bespoke	algorithms	for	the	same	task.		
The	methods	place	some	constraints	on	the	structure	of	the	input	they	accept,	typically	requiring	that	
each	input	is	a	predefined	shape,	and	that	the	values	within	the	inputs	are	consistently	ordered.	

However,	there	is	a	fundamental	mismatch	between	the	data	generated	by	player	tracking	systems	and	
the	implied	structure	of	inputs	to	standard	neural	network	models.			Tracking	data	is	fundamentally	
temporal,	and	the	interval	between	events	is	also	variable,	resulting	in	variability	in	the	temporal	
dimension	of	inputs,	henceforth	referred	to	as	the	variable	duration	problem.		Furthermore,	teams	make	
personnel	decisions	resulting	in	differing	distributions	of	player	roles	between,	or	within,	games.		In	some	
cases,	even	the	number	of	players	may	vary,	such	as	in	power-plays	in	hockey	or	red-card	situations	in	
soccer.		There	is	thus	no	intrinsic	ordering	of	players	in	a	given	interval	of	play	that	persists	from	interval	
to	interval,	or	game	to	game.		This	is	the	player-ordering	problem.	

The	variable	duration	and	player	ordering	problems	are	intrinsic	to	tracking	data,	and	they	are	
inconsistent	with	the	input	structure	requirements	of	many	standard	machine	learning	models,	and	to	
date,	there	is	no	canonical	neural	network	architecture	that	accepts	raw	tracking	data	as	input.		This	
mismatch	is	typically	circumvented	by	introducing	a	preprocessing	step	where	the	raw	tracking	data	is	
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transformed	into	structured	feature	representations	designed	for	the	task	at	hand.		For	example,	the	
variable	duration	problem	has	previously	been	dealt	with	by	considering	player	locations	at	only	a	fixed	
number	of	times	[1]	[2]	or	through	neural	network	architectures	that	support	variable	dimensionality	of	
inputs,	such	as	convolutions	and	adaptive	pooling	[3]	or	recurrent	neural	network	models	[4]	[5]	[6].	

The	player	ordering	problem	has	been	addressed	by	a	variety	of	techniques	,	such	as	treating	all	players	as	
a	bag-of-words	[7],	learning	a	role-based	ordering	[4],	ordering	by	proximity	to	an	anchor	point	like	the	
ball	[1]	[8],	or	by	randomly	permuting	the	order	[9].	

However,	the	drawbacks	of	having	to	construct	feature	representations	are	obvious:		It	is	time-consuming	
to	design,	implement	and	process	the	structured	feature	representation;	and	the	feature	representation	
will	necessarily	omit	some	of	the	information	available	in	the	raw	tracking.		The	framework	presented	in	
this	paper	obviates	the	need	for	such	preprocessing	by	directly	addressing	the	variable	duration	and	
player	ordering	issues,	and	by	learning	an	internal	feature	representation	directly	from	the	raw	tracking	
data.	

In	particular,	we	deal	with	the	variable	duration	problem	by	using	convolutions	and	adaptive	pooling	[3],	
and	the	player	ordering	problem	is	addressed	by	using	the	Deep	Sets	network	architecture	[10]	that	treats	

Figure	1.	Illustration	of	predictions	made	when	a	pass	is	thrown.		The	solid	lines	show	the	predicted	
trajectories	of	the	ball	to	the	expected	reception	locations	for	each	of	the	eligible	receivers.		The	
annotation	for	each	pass	shows	the	probability	the	pass	will	be	successful,	and	the	expected	air-
yards	gained.		The	trajectory	for	the	targeted	receiver	is	shown	in	orange.	A	visualization	of	the	
prediction	output	is	available	here	https://youtu.be/A9khHSAOXI8.		



	

	 	 	
	

	

the	input	players	as	an	unordered	set,	and	learns	the	same	internal	representation	of	the	play	regardless	
of	the	order	of	the	player	trajectories	in	each	example.	

We	evaluate	the	framework	by	implementing	neural	network	models	for	several	prediction	problems,	
where	the	task	is	to	determine	outcome	of	a	future	event,	based	only	on	the	information	available	up	to	
the	current	moment.	For	example:	At	the	time	that	the	pass	is	thrown,	we	may	wish	to	make	a	prediction	
whether	a	pass	will	be	successfully	caught;	or	predict	at	the	time	the	player	first	receives	the	ball	which	
defender	is	most	likely	to	tackle	the	ball-carrier,	see	Figure	1	for	an	example.		

Accurate	prediction	of	future	events	such	as	this	have	several	use-cases.		For	example,	in	player	and	team	
performance	analysis	the	ability	to	accurately	predict	the	probability	of	success	of	a	pass	allows	the	skill	of	
the	quarterback	and	catcher	in	executing	the	pass	to	be	isolated	from	the	situational	context	in	which	the	
pass	was	made,	such	as	the	play	run	and	the	defensive	formation.		A	further	use-case	is	in	in-game	sports	
betting,	where	a	key	problem	for	the	sports	book	is	to	be	able	to	decide	when	to	close	the	line	on	an	in-
game	proposition.	

The	prediction	models	are	experimentally	evaluated	using	the	football	tracking	dataset	provided	by	the	
NFL	for	the	Big	Data	Bowl	competition	in	2019.		The	dataset	contained	full	tracking	data	for	all	the	games	
played	in	the	first	six	weeks	of	the	2017	NFL	season.		The	competition	had	three	themes,	including	the	
identification	of	the	best	receiver-route	combinations,	and	yielded	several	contributions	that	are	relevant	
to	this	work:	Chu	et	al.	identified	routes	using	a	center-based	clustering	method	where	candidate	centers	
were	Bezier	curves	[11],	Yurko	et	al.	used	a	recurrent	neural	network	to	continuously	predict	the	
expected	yards	gained	on	the	play	during	the	play	[6],	and	Deshpande	and	Evans	constructed	a	feature-
based	Bayesian	model	to	make	predictions	about	the	value	of	passes	to	all	eligible	receivers	[8].	

In	the	remainder	of	this	paper,	we	detail	the	structure	of	the	input	dataset	in	Section	2.		The	theoretical	
basis	and	architecture	of	the	framework	is	outlined	in	Section	3.		The	experimental	model	used	to	evaluate	
the	framework	is	outlined	in	Section	4,	along	with	the	results.	

2 Data	
The	set-learning	framework	is	designed	to	accept	as	input	trajectory	and	event	data,	without	the	need	for	
an	intermediate	step	of	calculating	hand-designed	features.		The	input	requirements	a	sufficiently	general	
to	support	the	standard	tracking	data	sources	in	a	variety	of	sports,	such	as	NFL’s	Next	Gen	Stats,	
ChyronHego’s	soccer	tracking	data,	or	Sportlogiq’s	multi-camera	hockey	tracking	data.	

Each	input	example	contains	three	component	tensors:	player	tracking	data,	player	metadata,	and	game-
state	metadata;	and	models	a	single	play,	see	Figure	2.		

Trajectory	Tensor	The	trajectory	of	a	single	player	is	represented	as	a	sequence	of	time-stamped	frames	
where	each	frame	is	a	vector	containing	the	x-	and	y-coordinate	of	the	player	at	that	point,	and	possibly	
additional	information	such	as	the	orientation,	speed	and	direction	of	the	player.			Frames	are	captured	at	
uniform	intervals,	e.g.	every	tenth	of	a	second,	for	every	player	participating	in	the	play.			



	

	 	 	
	

	

The	player	trajectories	for	a	single	play	i  ∈ 1…N	can	thus	be	represented	as	a	𝑀track × 𝑆 × 𝑇(7)	
dimensional	tensor,	where	𝑀track	is	the	length	of	the	player	trajectory	vector,	S	is	the	number	of	players	
tracked	in	the	play,	and	𝑇(7)	is	the	number	of	frames	within	the	play	i.	

Player	Tensor	For	each	player	involved	in	the	play,	a	vector	of	player	attributes	is	captured,	such	as	their	
position,	weight,	height,	age,	and	whether	they	are	on	the	offensive	or	defensive	team.		The	information	
for	all	players	participating	in	the	play	is	represented	as	a	𝑀player × 𝑆	dimensional	tensor,	where	𝑀player	is	
the	length	of	the	player	attribute	vector.	

Play	Tensor	The	context	of	each	play	is	captured	as	a	vector	of	play	attributes,	such	as	the	down,	yards	to	
first	down,	yard-line,	game	clock	and	score.	This	is	represented	as	an	𝑀play		dimensional	tensor,	where	
𝑀play	is	the	length	of	the	play	attribute	vector.	



	

	 	 	
	

	

3 Framework	

3.1 Framework	Design	
The	fundamental	design	objective	of	the	model	was	that	the	framework	accepts	raw	trajectory	data	as	
input,	without	the	need	for	an	intermediate	step	of	feature	engineering.		In	this	section,	the	design	
challenges	that	this	requirement	presented	are	described.	

3.1.1 Variable	Play	Lengths	
From	an	analytic	perspective,	football	has	a	convenient	property	in	that	the	game	is	segmented	into	
downs,	i.e.	short	sequences	of	play	that	all	have	a	discrete	start	point—the	snap—and	where	the	players	
are	consistently	spatially	arranged—the	line	of	scrimmage.			From	this	point,	most	plays	unfold	in	a	linear	
manner	with	minimal	branching	of	the	main	events,	e.g.	snap—pass/handoff—reception—tackle/out-of-
bounds/touchdown.	

However,	the	duration	of	each	play	is	variable,	and	even	for	similar	plays,	the	timing	of	the	critical	events	
will	vary.		This	issue	manifests	itself	in	the	prediction	problems	we	describe	in	this	paper	by	the	variable	
interval	between	the	time	of	the	snap	and	the	time	that	the	pass	is	thrown	for	the	pass	outcome	prediction	
problems,	and	between	the	time	of	the	snap	and	the	tackle/out-of-bounds	for	the	tackle	prediction	

 

Figure	2.		The	trajectory	learning	framework	architecture.	The	model	accepts	input	examples	
containing:	the	trajectories	of	the	players—up	to	the	point	the	prediction	is	made;	the	roster	
details;	and	the	play	details.	

 

	

	



	

	 	 	
	

	

problems.		Thus,	for	each	play	example	i,	described	in	Section	2,	the	value	of	𝑇(7)	varies	from	play	to	play.		
There	are	several	design	options	to	deal	with	this,	such	as	recurrent	models	such	as	LTSM,	or	using	
convolutional	and	pooling	layers,	which	is	the	approach	taken	here.		

3.1.2 Set-based	Learning	
The	crucial	design	challenge	for	learning	directly	from	player	trajectories	is	that	there	is	no	natural	
ordering	of	the	players	from	play	to	play,	such	that	the	same	player	will	always	occupy	the	same	rank	
between	plays,	as	detailed	in	Section	1.		To	overcome	this	issue,	we	relax	the	requirement	of	imposing	an	
ordering	along	the	player	dimension	of	the	trajectory	and	player	tensors,	and	use	a	neural	network	
architecture	designed	to	accept	set-based	inputs	[10].			

The	framework	is	thus	robust	to	personnel	choices	made	in	each	play:	The	model	can	learn	from	plays	
where	the	offense	runs	two	wide-receivers	and	then	make	predictions	on	a	play	with	three	wide-
receivers,	without	having	to	deal	with	the	issue	in	a	rigid	ordering,	where	one	of	the	wide-receivers	would	
need	to	be	aligned	with	a	player	of	some	other	position	in	the	input	examples.		

The	set-based	learning	framework	is	implemented	as	neural	network	layers	that	have	the	property	of	
being	either	invariant	or	equivariant	to	the	order	along	the	player	dimension.		Roughly	speaking,	a	
network	layer	is	invariant	if	it	instantiates	a	function	that	accepts	a	set	of	features	for	each	player	as	input	
and	returns	a	scalar	response	that	is	the	same	regardless	of	the	order	of	the	players	in	the	input.		For	
example,	the	pass	prediction	model	yields	an	estimate	of	the	probability	the	pass	will	be	successful	and	
will	produce	the	same	estimate	regardless	the	position	of	the	receiver	in	the	input.			

On	the	other	hand,	a	network	layer	is	equivariant	if	it	accepts	a	set	of	feature	vectors	for	each	player,	and	
outputs	a	set	of	response	values,	one	for	each	input,	that	are	the	same	regardless	of	the	order	of	the	input.		
For	example,	in	the	tackle	model,	we	assign	a	probability	of	making	the	tackle	to	each	defensive	player,	
and	the	assigned	probabilities	should	be	the	same,	regardless	of	the	order	of	the	players	in	the	input.	

Formally,	let	𝑋  ∈  R?×@	be	an	input	matrix	where	𝑆	is	the	set	dimension,	and	let	𝑃 ∈ R@×@	be	any	
permutation	matrix	over	𝑆.		Consider	the	following	functions:	Let	finv: R?×@ →  𝑅	be	a	function	that	maps		
𝑋	to	a	scalar;	and	𝑓eq: R?×@ → R@	be	a	function	that	maps	X	to	a	S-dimensional	vector.		Then	we	say	that	
𝑓inv	is	permutation	invariant	if		

	 𝑓inv(𝑋 ⋅ 𝑃) ≡ 𝑓inv(𝑋)	 	

and	𝑓eq	is	permutation	equivariant	if	

	 𝑓eq(𝑋 ⋅ 𝑃) ≡ 𝑃 ⋅ 𝑓eq(𝑋)	 	

	

3.1.3 Conditioning	
The	player	trajectory	information	is	the	main	source	of	information	for	the	model,	but	it	seems	obvious	
that	simple	meta-information	about	the	players	and	the	play	will	be	relevant.		When	trying	to	predict	the	
probability	of	a	pass	being	completed,	the	(relative)	heights	of	the	receiver	and	the	defender	in	coverage	



	

	 	 	
	

	

would	be	significant.		Similarly,	the	down	and	the	yards	to	first	down	will	influence	the	decisions	made	by	
players.	

We	thus	wish	to	condition	the	learned	representations	of	player	movements	with	details	of	the	players,	
and	further	we	want	to	condition	the	aggregate	behavior	of	all	players	during	the	play	with	details	of	the	
play	state.		Fortunately,	the	set-based	learning	model	we	use	[10]	allows	for	conditioning	information	to	
be	incorporated	into	the	model	in	a	straightforward	fashion,	for	example,	by	using	vector	concatenation	or	
bilinear	transformations.	

3.2 Framework	Implementation	
The	framework	used	here	is	a	multi-layer	neural	network	consisting	of	three	layers,	see	Figure	2.	

3.2.1 Trajectory	Layers	
The	trajectory	layers	operate	on	the	player	trajectory	tensor	and	deals	with	the	variable	duration	of	each	
play.		This	consists	of	several	interleaved	convolutional,	pooling	and	nonlinear	layers,	followed	by	an	
adaptive	pooling	layer.	The	layers	accept	a	player	trajectory	tensors	of	variable	duration	dimension	and	
output	a	tensor	with	fixed	duration	dimension	𝑇.		In	aggregate,	the	trajectory	layers	encode	a	function:	

	 ftraj: R?traj×@×K
(L) → R?traj

M ×@×K 	 	

	
In	this	design,	the	x-	and	y-coordinates,	along	with	the	other	features,	are	treated	as	separate	channels	in	
the	initial	convolutional	layer,	and	a	1	 × 𝑘	dimension	kernel	“slides”	along	each	of	the	22	player	
trajectories	in	the	input	and	detects	various	features	such	as	spatial	location,	changes	in	direction,	changes	
in	speed	or	acceleration.		The	adaptive	pooling	layer	then	standardizes	the	duration	dimension	by	pooling	
the	output	of	the	convolution	to	a	sequence	of	the	most	germane	features.		The	output	thus	can	be	
considered	a	fixed-length	summary	of	each	player	trajectory.	

3.2.2 Player	Interaction	Layers	
The	transformed	fixed-length	trajectory	representation	tensor	that	is	output	by	the	trajectory	layers	is	
then	conditioned	by	performing	a	bilinear	transformation	with	the	player	metadata	tensor,	and	the	result	
is	passed	through	a	series	of	permutation	equivariant	layers.		These	layers	are	intended	to	detect	high-
level	actions	such	as	route	run,	and	interactions	between	subsets	of	players,	such	as	collisions,	coverage	
and	evasive	actions.	

The	output	from	the	player	interaction	layers	is	a	vector	representing	the	player	movements	and	
interactions,	one	for	each	player.		The	player	interaction	layers	thus	encode	the	following	permutation	
equivariant	function:	

	 𝑓player: R?traj
M ×@×K × R?player×@ → R?player

M ×@	 	

	



	

	 	 	
	

	

3.2.3 Scene	Interaction	Layers	
The	scene	interaction	layers	are	intended	to	aggregate	the	set	of	representation	vectors	for	each	player	
into	a	single	representation	vector	that	describes	the	play	in	aggregate.		The	output	tensor	from	the	player	
interaction	layers	is	aggregated	along	the	player	dimension	using	a	permutation-invariant	linear	
transform	followed	by	a	non-linear	transform.		The	output	from	this	transform	is	then	conditioned	with	
the	play	metadata	by	applying	a	bilinear	transformation,	followed	by	a	series	of	interleaved	linear	and	
non-linear	transformations.		The	layers	thus	implement	a	permutation	invariant	function:	

	 𝑓scene: R?player
M ×@ × R?scene → R?sceneM 	 	

3.2.4 Task-Specific	Layers	
Finally,	layers	designed	for	the	particular	tasks	can	be	stacked	directly	on	the	player	interaction	or	scene	
interaction	layers	as	required.		These	will	typically	be	dense	layers	followed	by	the	required	activation	
function.	

4 Experiments	
4.3 Experimental	Networks	
The	framework	described	in	Section	3.2	was	used	to	create	two	neural	network	models	to	make	
predictions	about	pass	receptions	and	about	tackles.		Both	networks	are	multi-task,	in	that	they	make	
multiple	predictions	simultaneously.	

The	pass	model	makes	predictions	about	the	pass	reception	on	passing	plays,	evaluated	at	the	time	that	
the	pass	was	thrown.		The	input	trajectory	tensor	contains	player	trajectory	details	from	2	seconds	prior	
to	the	snap	until	the	moment	the	pass	is	thrown.		The	model	then	makes	predictions	on	the	following	
properties	of	the	reception:	

• Pass	completion:	the	probability	that	the	pass	will	be	successfully	caught	by	the	targeted	receiver.	

• Air-yards:	the	expected	number	of	yards	gained	when	the	catch	is	made.	

• Reception	location:		the	(𝑥, 𝑦)-coordinates	of	the	expected	location	where	the	pass	is	received.	

See	Figure	1	for	an	illustration	of	the	predictions	made	when	the	pass	is	thrown.	

The	tackle	model	makes	predictions	about	the	tackle	and	is	evaluated	at	the	established	play	direction	
(EPD)	time,	which	is	moment	that	the	receiver	catches	the	pass	on	passing	plays,	or	the	moment	that	the	
ball-carrier	cuts	up-field	on	rushing	plays.		The	model	accepts	all	player	trajectories	from	2	seconds	prior	
to	the	snap	until	the	EPD	time,	and	makes	the	following	predictions	about	the	tackle:	

• Likely	tackler:	determine	the	probability	distribution	over	the	eleven	defensive	players	that	each	
player	will	be	the	first	to	attempt	a	tackle	on	the	ball-carrier.	



	

	 	 	
	

	

• Yards	until	tackle:	the	expected	yards	gained	implied	by	the	location	of	the	first	tackle	attempt	or	
where	the	ball-carrier	runs	out	of	bounds.	

• Tackle	location:		the	(𝑥, 𝑦)-coordinates	of	the	expected	location	where	the	first	tackle	is	attempted,	
or	the	ball-carrier	runs	out	of	bounds.	

The	model	makes	predictions	about	the	first	opportunity	for	a	defensive	player	to	make	a	tackle,	which	is	
distinct	from	the	point	where	the	tackle	is	actually	made	for	the	play.		The	identity	of	the	player,	and	the	
location	of	this	tackle	opportunity	are	determined	using	a	simple	criterion	of	the	first	point	that	a	
defender	was	within	2	yards	of	the	ball-carrier	and	was	not	blocked.	

4.4 Evaluation	Dataset	
The	models	were	evaluated	on	the	NFL	dataset	provided	for	the	2019	Big	Data	Bowl2.	This	dataset	
contains	the	tracking	and	event	information	from	the	games	in	the	first	six	weeks	of	the	2017	NFL	regular	
season.			The	dataset	contained	6,963	eligible	passing	plays	and	11,558	eligible	passing	and	running	plays.		
The	examples	were	randomly	partitioned	into	training	and	evaluation	sets	with	an	4:1	ratio.		The	number	
of	examples	is	relatively	small	for	the	task,	and	the	experience	of	training	these	models	suggested	that	
additional	data	would	improve	model	performance,	however	the	models	showed	encouraging	results	in	
these	tasks.	

4.5 Evaluation	Method	
The	pass	and	tackle	neural	networks	were	implemented	using	the	PyTorch	deep	learning	framework.		The	
loss	function	for	the	classification	tasks	(pass	completion	and	likely	tackler)	was	binary	cross-entropy,	
and	for	the	remaining	regression	tasks	mean-squared	error	was	used.		Hyper	parameter	selection	was	
carried	out	by	evaluating	the	models	on	the	evaluation	dataset,	using	accuracy	as	the	criteria	for	the	
classification	tasks	and	mean-squared	error	for	the	regression	tasks.	

The	networks	were	bench-marked	against	existing	model	implementations	that	accept	hand-designed	
features	are	input.	

4.6 Results	
Experimental	results	for	the	model	presented	in	this	paper—henceforth	called	the	trajectory	learning	
model—showed	that	the	trajectory	learning	models	generally	outperformed	existing	models	that	rely	
hand-crafted	features,	demonstrating	the	ability	of	the	framework	to	learn	directly	from	tracking	data.	

4.6.1 Pass	Model	
The	pass	completion	classification	task	obtained	an	accuracy	score	of	73.1%	on	the	evaluation	dataset	and	
outperformed	two	models	that	used	the	hand-crafted	features	as	input:	a	logistic	regression	model	and	a	
dense	multi-layer	perceptron	(MLP)	model.	

	

																																																								
2	https://operations.nfl.com/the-game/big-data-bowl/2019-big-data-bowl/	



	

	 	 	
	

	

	

	 Accuracy	 Precision	 Recall	

Logistic	Regression	 0.694	 0.803	 0.694	

MLP	 0.722	 0.761	 0.826	

Trajectory	Learning	 0.731	 0.732	 0.672	
	

For	the	task	of	predicting	the	air-yards,	the	trajectory	learning	model	was	able	to	predict	yards	gained	
with	a	relatively	small	error.		Figure	3(b)	is	a	scatter	plot	of	actual	vs.	predicted	air-yards.		The	predicted	
air-yards	are	highly	correlated	with	the	actual	air-yards,	with	a	Pearson	correlation	of	0.977.			The	model	
also	outperformed	the	feature	based	MLP	regressor,	shown	in	Figure	3(a).	

	 	

(a) MLP	Model	 (b) Trajectory	Learning	Model	

Figure	3.	Scatterplot	showing	correlation	between	actual	and	predicted	air-yards.	
The	trajectory	learning	model	predicts	the	reception	location	with	high	fidelity:	The	Pearson	correlation	
coefficient	between	actual	and	predicted	𝑥	and	𝑦	coordinates	are	0.94	and	0.89	respectively.		Figure	4	
shows	the	predicted	locations	for	a	random	sample	of	passes,	and	pass	prediction	policy	inferred	by	the	
model	is	apparent:	the	model	tends	to	successfully	predict	passes	in	the	center	of	the	field.		The	model	is	
less	successful	for	passes	near	the	end-zone	and	the	edges	of	the	field.		Furthermore,	the	confidence	of	the	
model	in	predicting	passes—shown	by	the	area	of	the	dots	in	the	figure—also	decreases	towards	the	end-
zone	and	sidelines.	

4.6.2 Tackle	Model	
The	tasks	that	the	tackle	model	is	designed	to	solve	are	inherently	more	difficult	than	those	for	the	
passing	model,	as	there	is	more	inherent	uncertainty	in	the	tackler	and	location	of	the	tackler.		Regardless,	
the	model	shows	promising	results,	and	outperformed	the	benchmark	models.	



	

	 	 	
	

	

The	likely-tackler	classification	task	evaluated	the	probability	of	all	11	defensive	players	being	the	first	to	
tackle	the	ball-carrier.		On	the	evaluation	dataset,	the	trajectory	learning	model	correctly	chose	the	first	
tackler	48%	of	the	time,	see	the	table,	below.		This	model	outperformed	the	benchmark	models:	a	simple	
rule-based	model,	and	a	permutation	equivariant	neural	network	that	used	hand-crafted	features.	

	 Accuracy	 Precision	 Recall	

Logic	Model	 0.417	 0.423	 0.385	

Set	Play	 0.461	 0.461	 0.461	

Trajectory	Learning	 0.481	 0.482	 0.480	
	

The	trajectory	learning	model	was	also	able	to	make	reasonable	predictions	on	the	yards	until	the	tackle,	
see	Figure	5(b).			The	Pearson	correlation	between	the	actual	and	predicted	locations	is	0.780,	and	while	
the	majority	of	the	predictions	are	close	to	the	actual	result,	there	are	two	clear	groups	of	outliers:	where	
the	actual	gain	is	approximately	zero	yards,	and	the	predicted	gain	is	much	larger;	and	the	converse	case	
where	the	predicted	gain	is	near	zero,	and	the	actual	gain	is	larger.		These	would	suggest	cases	where	the	
model	misclassified	the	likely	tackler,	and	thus	predicted	a	tackle	location	that	was	different	from	the	
actual	location.		Again,	the	trajectory	learning	model	shows	improved	performance	over	the	benchmark	
MLP	regressor	using	hand-crafted	features,	shown	in	Figure	5(a).	[12]	

	

Figure	4.		Predicted	locations	pass	receptions	for	150	randomly	selected	plays	from	evaluation	
dataset.	The	offense	is	playing	from	left	to	right	in	all	plays,	and	the	area	of	the	marker	is	
proportional	to	the	evaluated	pass	completion	probability.		Blue	denotes	successful	passes	and	
yellow	are	unsuccessful.	



	

	 	 	
	

	

	

	

	 	

(a) Feature-based	Model	 (b) Trajectory	Learning	Model	

Figure	5.	Scatterplot	of	correlation	between	actual	vs.	predicted	yards	to	first	tackle	attempt.	
Figure	6	shows	examples	of	the	actual	and	predicted	tackle	locations	for	a	random	sample	of	plays.		In	this	
sample,	some	of	the	error	modes	of	the	predictions	made	by	the	model	are	apparent,	for	example,	the	
model	will	often	fail	to	predict	situations	where	the	ball-carrier	has	a	route	to	the	side-line	but	predicts	an	
earlier	tackle	further	in-field.		Moreover,	the	model	performs	better	at	correctly	predicting	the	likely	
tackler	towards	the	sidelines,	where	there	are	fewer	candidate	tacklers.			Predicting	the	identity	and	
location	of	the	tackler	at	EPD	time	is	clearly	a	difficult	task,	however	even	in	its	failed	predictions,	the	
model	shows	some	understanding	of	the	dynamics	of	the	game.	

5 Conclusion	
In	this	paper	we	present	a	flexible	neural	network	framework	that	accepts	as	input	the	raw	trajectory	data	
that	is	the	standard	output	of	the	player	tracking	systems	used	professional	sports.		Furthermore,	we	
demonstrate	the	effectiveness	of	the	framework	by	implementing	models	for	six	football	prediction	tasks.	

The	framework	eliminates	the	need	for	typical	preprocessing	tasks	such	as	feature	engineering	and	
trajectory	ordering	and	is	able	to	accept	player	trajectories	of	variable	duration.		The	framework	consists	
of	set	of	neural	network	layers	that	learn	an	internal	feature	representation	of	the	coordinated	movement	
of	all	players	(and	the	ball).		This	simplifies	the	design	of	models	to	specifying	the	higher-level	task-
specific	layers.	

	



	

	 	 	
	

	

	

Figure	6.		The	actual	and	predicted	tackle	locations	for	50	random	plays	from	the	evaluation	
dataset.		The	marker	for	the	actual	locations	is	a	circle	and	the	predicted	locations	are	marked	by	a	
square.		Plays	where	the	identity	of	the	tackler	was	correctly	predicted	are	in	blue,	and	incorrectly	
identified	plays	in	yellow.		In	all	plays	the	offense	is	targeting	the	right	endzone.	
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