
	 	 	

	 1	

Extracting	Player	Tracking	Data	from	Video	Using	Non-
Stationary	Cameras	and	a	Combination	of	Computer	

Vision	Techniques	
Neil	Johnson	

	
ESPN	Analytics	

johnson.4205@osu.edu	|	@neilmjohnson	
Basketball	and	Open	Source	

1548747	
	

Abstract	
	
This	research	paper	looks	at	the	feasibility	of	parsing	player	tracking	data	from	a	single	non-
stationary	camera	like	the	one	typically	used	in	sports	broadcasts.	Parsing	player	tracking	data	
from	broadcast	video	opens	up	a	plethora	of	applications	that	allows	the	technology	to	be	scaled	
downwards	and	across	sports	in	addition	to	capturing	events	that	could	otherwise	not	be	captured.	
This	approach	uses	an	array	of	open	source	computer	vision	applications	including	pose	estimation	
and	template	matching.	Early	tests	show	the	accuracy	of	this	new	method	in	placing	players	within	
a	foot	of	their	true	location	at	94.5%.	Making	player	tracking	data	more	accessible	lowers	the	
barrier	of	entry	and	increases	the	timespan	for	which	advanced	methods	of	analysis	can	be	
practiced.	Additionally,	the	pose	estimation	data	itself	provides	an	additional	new	frontier	of	data	
analysis	that	can	increase	the	fidelity	of	analysis	that	relies	of	player	tracking	data.	
	
1. Introduction	
	
Player	tracking	datasets	have	been	a	game	changer	for	a	number	of	sports	over	the	past	decade.	
Knowing	the	exact	location	of	each	player	on	the	field	as	well	as	the	ball	is	extremely	powerful.	
Unfortunately	the	fiscal	costs	to	create	player	tracking	data	provides	a	barrier	that	prevents	fans,	
academics	and	outsiders	from	gaining	access	to	these	immensely	valuable	datasets.		
	
Additionally,	while	the	industry	leading	tracking	systems	do	an	exceptional	job	at	providing	data	for	
the	games	their	systems	are	set	up	to	capture,	the	methodology	prohibits	the	operators	from	being	
flexible	and	agile	with	what	games	they	want	to	capture.		
	
The	player	tracking	data	methodology	presented	in	this	paper	aims	to	augment	current	tracking	
system	methods	by	focusing	on	a	new	approach	that	is	inherently	modular	and	not	dependent	on	
significant	financial	backing.	This	approach,	called	CV	Trackingi,	uses	open	source	computer	vision	
libraries	on	a	non-stationary	camera	video	feed	like	the	one	used	in	television	broadcasts.	This	
approach	allows	anyone	to	create	their	own	player	tracking	data	for	any	game	with	adequate	
source	video.	
	

																																																								
i		CV	stands	for	Computer	Vision	



	 	 	

	 2	

There	have	been	attempts	in	the	past	to	create	player	tracking	data	from	video.	Back	in	2006	Beetz	
et	al	[1]	created	ASPOGAMOii,	or	Automated	Sport	Game	Analysis	Model,	which	was	a	system	used	
to	derive	player	tracking	data	from	the	2006	FIFA	World	Cup	broadcasts	as	a	part	of	a	competition	
held	during	the	2006	RoboCup.	Their	approach	was	extremely	novel	and	way	ahead	of	its	time,	and	
created	player	tracking	data	by	estimating	the	camera	parameters	and	identifying	players	by	
detecting	blobs	that	did	not	match	the	field	color.	Football	inherently	appears	to	be	one	of	the	
easier	sports	to	create	player	tracking	data	given	how	large	and	homogenous	the	playing	surface	is	
and	what	kind	of	perspective	the	broadcast	camera	must	use	to	capture	the	game.		
 
2. Approach	
	
The	first	requirement	to	create	this	data	is	to	have	video	from	a	game.	This	paper	will	use	a	
basketball	game	in	its	explanation	but	this	technique	can	be	applied	to	any	sport.	Since	this	method	
is	fairly	modular	the	minimum	acceptable	video	quality	will	vary	depending	on	the	implementation.		

In	order	to	create	player	tracking	data	from	video,	we	must	first	break	the	video	up	into	distinct	
continuous	shots	of	action.	Depending	on	your	source	video,	the	camera	angle	may	never	change	or	
may	change	very	frequently.	For	this	process	we	want	to	break	down	the	source	video	into	smaller	
video	segments	that	are	distinct	continuous	shots	of	action	that	in	aggregate	show	as	much	of	the	
contest	as	the	source	video	contains.	Video	that	does	not	show	game	action	or	does	not	show	
enough	of	the	playing	surface	or	players	in	it	can	be	discarded.	For	the	explanation	of	this	
methodology	I	will	focus	on	applying	CV	Tracking	to	one	video	of	continuous	action,	which	can	then	
be	applied	to	every	video	segment	that	compromises	the	entire	video	available	for	this	given	game.	

Once	a	series	of	videos	is	created	that	compromises	the	duration	of	the	game,	we	will	then	apply	
three	computer	vision	techniques.	The	output	of	all	three	methods	will	be	combined	and	
transformed	to	create	a	rough	version	of	player	tracking	data.	Each	method	can	be	replaced	with	a	
different	implementation	than	the	ones	described	in	this	paper.	From	there	a	series	of	automated	
and	manual	scrubbing	techniques	will	be	applied	to	create	the	final	version	of	player	tracking	data.	

2.1.	Parsing	Player	Information	
	
The	first	computer	vision	technique	identifies	where	each	player	actively	participating	in	the	game	
is	in	each	video	frameiii.	To	do	that,	we	will	apply	a	computer	vision	technique	called	pose	
estimation	which	identifies	specific	body	parts	which	compromise	the	pose	of	a	person.	

To	do	that,	we	must	use	a	multi-person	pose	estimator.	There	are	numerous	open-source	multi-
person	pose	estimators,	but	after	some	testing	the	one	that	worked	best	for	this	application	was	
AlphaPose	[2].	AlphaPose	is	a	python-based	multi-person	pose	estimator	that	can	run	in	real-time,	
and	has	a	PyTorch	implementation	that	makes	it	easy	to	set	upiv.	

																																																								
ii	The	project	page	for	ASPOGAMO	is	still	online:	http://www9.cs.tum.edu/projects/aspogamo	
iii	A	video	frame	consists	of	a	single	image	taken	from	the	video.	
iv	AlphaPose	is	available	to	download	here:	https://github.com/MVIG-SJTU/AlphaPose	



	 	 	

	 3	

Using	the	pre-trained	models	that	come	with	AlphaPose,	the	first	step	is	to	execute	AlphaPose	
frame-by-frame	on	our	video	segmentv.	Depending	on	your	installation,	you	can	utilize	CUDA-
enabled	graphics	cards	to	speed	up	the	process	as	well	as	utilize	command-line	parameters	to	
further	optimize	performance.	Without	the	use	of	a	CUDA-enabled	graphics	card,	running	
AlphaPose	can	take	a	significantly	long	time	for	a	video	that	is	only	a	few	minutes	in	length	and	is	of	
typical	720p	quality.		

	

Figure	1	is	a	cropped	still	from	a	processed	video	frame	showing	the	pose	estimation	overlays	as	well	as	their	unique	identification	numbers.	

Once	AlphaPose	completes,	it	will	output	a	JSON	file	which	consists	of	every	pose	it	discovered	for	
every	frame	within	the	series	of	video	frames.	It	can	also	be	configured	to	output	the	video	frames	
with	the	pose	superimposed	onto	the	image,	as	seen	in	Figure	1,	which	can	help	you	interpret	the	
JSON	output.		

Since	each	video	frame	is	processed	independently,	we	must	then	run	the	AlphaPose	output	
through	PoseFlow	[3].	PoseFlow	is	AlphaPose’s	pose	tracking	software	which	tracks	people	frame-
by-framevi.	PoseFlow	can	also	track	people	when	they	leave	the	video	frame	or	are	occluded	by	
other	people.	

	

	

	

	

	

	

																																																								
v	To	extract	frames	from	a	video,	I	simply	used	another	free	and	open-source	software	called	FFmpeg	to	
extract	images	from	the	video	file	at	15	frames	per	second.	
vi	PoseFlow	is	available	to	download	here:	https://github.com/MVIG-
SJTU/AlphaPose/tree/master/PoseFlow	



	 	 	

	 4	

	

	 	 	

Figures	2,	3,	and	4	are	cropped	video	frames	outputted	from	PoseFlow	sampled	roughly	one	second	apart	to	show	the	unique	
identification	number	for	each	player	persisting	over	video	frames.	

Once	PoseFlow	completes	it	will	output	a	new	JSON	file	that	attaches	unique	identification	numbers	
to	each	pose	it	finds	within	the	series	of	video	frames.	Additionally	PoseFlow	can	also	output	
processed	frames	with	pose	overlays	as	seen	in	Figures	2,	3,	and	4.		

Using	that,	we	can	manually	map	those	numbers	to	our	own	identifiersvii	for	each	player,	so	we	
know	who	each	player	is	and	what	team	they	belong	to.	There	are	some	potential	methods	to	
automate	the	identification	of	each	player,	but	for	now	this	process	is	done	manually.	At	this	point,	
you	will	notice	some	players’	poses	are	not	identified	in	every	single	frame.	The	only	poses	you	
want	to	map	are	ones	that	are	definitively	identifying	the	players	of	interest.	Small	gaps	in	data	are	
to	be	expected	and	will	not	cause	an	issue.	

Once	you	have	identified	all	of	the	players	within	the	PoseFlow	output	JSON	file,	you	can	now	
transform	that	JSON	file	into	one	that	excludes	all	other	poses	and	maps	each	pose	to	the	player’s	
unique	identifier.	Additionally	we	can	add	center-of-mass	calculations	for	each	player’s	pose.	To	do	
this	my	calculation	aims	to	provide	the	average	coordinate	value	of	each	players’	ankles,	but	your	
definition	of	center-of-mass	may	differ.	For	instance,	Second	Spectrum’s	center-of-mass	appears	to	
be	an	average	coordinate	value	of	hip	location,	but	their	method	is	proprietary	and	this	is	just	
speculation.	Regardless	of	your	definition	of	center-of-mass,	you	can	calculate	it	using	the	body	
parts	each	pose	estimation	provides.	The	pose	estimation	data	consists	of	an	x-coordinate,	a	y-
coordinate,	and	a	confidence	interval.	

	

	

	

	

	

	

																																																								
vii	For	my	unique	identifiers	I	just	simply	used	letters.	



	 	 	

	 5	

	

	 	

Figures	5	shows	which	body	parts	the	pose	estimations	from	AlphaPose	provides.	Figure	6	shows	the	center	of	mass	calculations	for	players	
by	depicting	a	red	dot	and	a	confidence	interval.	

2.2.	Parsing	Court	Information	
	
We	want	to	know	where	specific	parts	of	the	court	(also	known	as	court	features)	are	within	the	
video	so	we	can	then	take	the	coordinates	of	the	court	and	the	people	in	the	video	to	transform	that	
into	the	standardized	coordinate	system	typically	used	for	basketball	player	tracking	data.	
	
To	do	this,	CV	Tracking	will	apply	a	fairly	basic	computer	vision	algorithm	called	template	
matching.	Template	matching	“is	a	technique	for	finding	areas	of	an	image	that	match	(are	similar)	
to	a	template	image.”	OpenCV	[4]	implemented	a	template	matching	function	that	is	very	easy	to	
use	for	this	process.		
	

	
Figure	7	is	taken	from	the	OpenCV	documentation	and	visualizes	the	template	matching	algorithm.	

	
To	create	template	images	we	must	find	unique	court	features	within	the	playing	surface.	To	
maximize	effectiveness,	what	must	be	done	first	is	prepping	the	video	frames	by	applying	a	pre-
processing	method.	An	effective	pre-processing	method	helps	distinguish	the	lines	on	the	playing	
surface	from	everything	elseviii.	This	only	needs	to	be	done	once,	and	will	work	across	multiple	
broadcasts	with	varying	video	quality.	For	this	example,	I	created	a	batch	script	which	called	the	
photo	editing	software	Gimpix	which	converted	the	image	to	black-and-white,	where	every	color	
close	to	white	was	converted	to	true	white	and	everything	else	was	converted	to	black,	as	seen	in	
Figure	8.	
	

																																																								
viii	One	thing	to	note	is	that	this	process	must	be	done	once	for	each	unique	playing	surface.	
ix	Gimp	is	a	free	and	open-source	photo	editor	available	at	https://www.gimp.org/	



	 	 	

	 6	

	

	
Figure	8	shows	the	output	from	the	pre-processing	batch	script.	

	
Once	that	has	been	completed	and	every	video	frame	has	been	transformed,	we	must	identify	
template	image	candidates.	Typically	the	paint	area	and	the	center	court	circle	on	basketball	courts	
are	good	candidates.	While	this	paper	explains	the	approach	for	one	template,	ideally	you	would	
want	to	identify	a	series	of	template	images	within	each	video	frame	to	maximize	accuracy.	
	

	 	
Figure	9	and	10	are	two	examples	of	template	images.	

	
Once	you	have	created	template	images,	you	must	apply	the	template	matching	function	using	
those	templates	on	each	video	frame.	The	result	will	be	the	coordinate	locations	of	the	template	
image	within	each	video	frame.	This	function	will	return	its	best	guess,	even	if	its	confidence	
interval	is	extremely	low	because	the	template	image	does	not	exist	in	the	source	image.		
	
Using	this	you	can	re-visualize	the	video	with	the	outline	of	each	template	image	superimposed	
onto	each	video	frame.	This	can	help	you	confirm	the	template	matching	function	is	working	and	
help	you	identify	a	minimum	acceptable	confidence	interval	threshold	for	each	template	image.	For	
this	paper,	I	created	seven	template	images,	applied	them	to	each	video	frame,	and	then	created	a	
mapping	file	which	consists	of	the	templates	that	were	correctly	found	by	the	script	using	their	
confidence	value.	Then	another	script	eliminates	any	remaining	erroneous	template	matches,	
recompiles	the	video	visualization,	and	allows	us	to	confirm	this	process	has	been	completed	
successfully.	Figure	11	shows	an	example	of	the	video	visualization,	showing	two	templates	being	
correctly	identified	within	the	frame.	
	
	
	
	
	
	
	
	
	
	
	



	 	 	

	 7	

	

	
Figure	11	shows	two	template	images	being	matched	within	the	video	frame	by	overlaying	their	outlines	onto	the	original	image.	

	
	
2.3.	Parsing	Game	Context	
	
Parsing	game	context	simply	requires	applying	optical	character	recognition	(OCR)	to	the	on-screen	
scoreboard.	If	you	are	using	video	that	is	not	from	a	broadcast	you	might	not	be	able	to	capture	this.	
	

	
Figure	12	shows	step-by-step	how	OCR	can	help	parse	game	context	from	broadcast	video.	

	
For	each	video	frame,	crop	the	image	so	that	only	the	relevant	information	is	shown:	game	clock,	
shot	clock,	and	period.	Any	OCR	library	should	work,	but	PyTesseract	was	used	for	this	paper.	
Accuracy	of	the	OCR	function	depends	on	the	optimization	parameters	and	the	font	used	on	the	
scoreboard	overlayx.	A	simple	script	can	transform	the	OCR	output	text	into	serialized	game	clock,	
shot	clock,	and	period	information.	Given	the	structure	of	game	clock	and	shot	clock	time	–	both	
start	at	a	certain	time,	decrement	and	always	use	numbers	with	a	consistent	format	–	scrubbing	out	
erroneous	OCR	output	is	fairly	trivial.		
	
	
	

																																																								
x	Some	fonts	are	easier	to	interpret	than	others.	



	 	 	

	 8	

	
	
2.4.	Compiling	Player	Tracking	Data	
	
Once	the	previous	three	sections	are	complete,	you	have	everything	to	create	player	tracking	data	
for	the	video	segment:	player	location	data,	court	location	data,	and	game	context	data.		
	
Since	we	are	working	with	two	independent	planes	–	the	video	frame	plane	and	the	player	tracking	
data	plane	–	we	can	simply	create	a	function	to	convert	a	set	of	coordinates	from	one	plane	to	the	
other.	Since	we	know	the	exact	locations	of	the	court	features,	we	can	use	that	to	create	a	series	of	
affine	transformation	functions	that	we	can	then	apply	to	the	player	location	data,	thus	giving	us	
player	tracking	data	that	is	in	our	player	tracking	coordinate	system.	
	

	
Figure	13	shows	the	coordinate	system	range	for	a	video	frame.	

	

	
Figure	14	shows	the	layout	of	the	coordinate	system	typically	used	for	

basketball	player	tracking	data.	
	

	
The	standard	player	tracking	coordinate	system	is	as	follows:	center	court	is	(0,	0)	and	each	unit	in	
this	coordinate	system	represents	one	square	foot	in	real	life.	The	standard	NBA	and	college	
basketball	court	is	94	feet	by	50	feet,	so	that	gives	our	player	tracking	coordinate	system	a	range	of	
-47	to	47	on	the	x-axis,	and	-25	to	25	on	y-axis.	
	
Using	that	coordinate	system,	we	can	map	the	distinct	court	features	within	our	input	video	to	what	
their	exact	locations	are	in	the	output	player	tracking	data.	For	instance,	if	you	use	the	outline	of	the	
paint	on	the	right	side	of	the	court	as	one	of	your	template	images,	you	can	map	the	four	corners	of	
the	paint	to	their	exact	coordinates	within	that	template	image	to	their	values	in	the	output	player	
tracking	data	coordinate	system,	which	would	be	the	coordinates	(8,	28),	(8,	47),	(8,	-47),	(8,	-28).	
In	Figure	15	those	map	to	A,	B,	C,	and	D	respectively.	
	
	
	



	 	 	

	 9	

	
Figure	15	visualizes	the	affine	transformation	of	coordinate	data	from	the	input	video	frame	coordinate	system	to	the	output	player	tracking	

data	coordinate	system.	
	
Using	coordinate	mappings	with	each	court	feature	creates	a	series	of	affine	transformation	
functions	for	each	template	image	to	be	applied	across	all	video	frame.	Each	available	affine	
function	can	then	be	applied	to	each	player’s	center-of-mass	coordinate.	Once	that	is	complete	you	
can	output	your	results	into	a	JSON	file,	which	is	the	very	first	draft	of	player	tracking	data	for	this	
given	video	segment.	

	
Figure	16	shows	the	center-of-mass	coordinates	being	translated	from	the	input	coordinate	system	to	the	output	coordinate	system.	

	
The	first	draft	of	the	output	player	tracking	data	is	going	to	be	fairly	noisy	and	missing	chunks	of	
player	location	data.	To	improve	this	we	need	to	apply	a	series	of	scrubbing	methods.	
	
The	first	step	is	to	apply	a	Kalman	filter	to	remove	the	jitter	a	player	experiences	on	any	given	
trajectory.	This	was	accomplished	by	using	PyKalman	and	it	is	recommended	to	configure	the	
function	to	ensure	optimal	output.	
	



	 	 	

	 10	

	
Figure	17	shows	the	raw	player	trajectories.	

	
Figure	18	shows	what	player	trajectories	look	like	after	

applying	a	kalman	filter.	
	
For	gaps	in	a	player’s	trajectory	simply	applying	a	linear	fit	between	the	two	known	points	around	
the	gap	and	using	a	time	series	function	between	those	two	known	points	produces	surprisingly	
good	approximations.		

	
Figure	19	shows	player	trajectory	with	observations	in	red,	blue,	and	black	and	approximations	in	pink,	cyan,	and	grey	respectively.	

	
Unless	your	source	video	captures	all	ten	players	on	the	court	for	all	live	game	action	there	will	be	
gaps	in	the	observations	for	a	given	player.	The	typical	nature	of	a	basketball	game	broadcast	
requires	that	the	camera	focus	on	the	most	important	parts	and	thus	means	that	the	data	that	is	
approximated	is	less	critical	than	the	data	that	is	observed.	
	
At	this	point	in	the	process,	some	manual	intervention	will	likely	occur	to	help	ensure	the	data	
quality	is	up	to	your	desired	standards.	The	process	of	creating	player	tracking	data	for	this	video	
segment	is	complete,	and	the	process	can	be	repeated	on	the	remaining	video	segments	until	the	
entire	game	is	processed.	As	mentioned	before	in	the	player	parsing	section,	there	will	often	be	
gaps	in	observations.	Fortunately	in	most	instances	the	gaps	are	not	for	long	periods	of	time	thus	
the	linear	interpolation	between	the	two	known	points	tends	to	work	well	and	can	even	be	used	to	
automatically	suppress	anomalies	in	the	observed	data	that	could	not	physically	happen.	
	
	
3. Results	
	
The	results	of	CV	Tracking	is	a	player	tracking	data	file	produced	only	using	open	source	python	
software.	Given	the	modular	nature	of	this	method	the	data	file	results	can	vary	in	quality,	but	if	you	



	 	 	

	 11	

have	adequate	source	video	which	comes	from	a	camera	that	stays	on	the	main	action	for	the	entire	
duration	of	the	game	and	you	have	enough	processing	power	to	apply	the	aforementioned	
computer	vision	techniques	in	a	timely	manner	then	the	resulting	data	is	on	par	with	industry	
standard	player	tracking	systems	and	is	reasonably	feasible	to	produce.	
	

	
Figure	20	shows	one	of	the	images	shown	in	the	accuracy	test.	

While	it	is	difficult	to	find	an	ideal	way	to	
evaluate	the	accuracy	of	this	system	it	is	
probably	best	to	still	attempt	to	find	one.	The	
first	test	I	did	was	poll	a	random	sample	of	
colleagues	and	friends.	Using	still	frames	that	
visualized	the	player	tracking	data	alongside	
the	original	frame	I	simply	asked	the	group:	
were	the	dots	presenting	each	player	
approximately	within	one	square	foot	of	where	
they	truly	were	given	what	you	can	see	in	the	
video	frame?	After	nearly	300	samples,	the	poll	
results	determined	that	the	player	tracking	
data	created	from	CV	Tracking	was	within	one	
square	foot	of	the	ground	truth	94.5%	of	the	
time.		
	
Using	the	exact	same	video	frames,	I	mapped	
them	to	the	Second	Spectrum	player	tracking	
data	and	I	asked	the	group	the	same	question.	
To	my	surprise,	the	results	were	that	after	
nearly	300	samples	the	player	tracking	data	
from	Second	Spectrum	was	within	one	square	
foot	of	the	ground	truth	92.1%	of	the	time.	

	
Now	I	will	mention	that	CV	Tracking	is	extremely	unlikely	to	be	better	at	creating	player	tracking	
data	than	a	system	that	has	at	least	six	stationary	cameras	constantly	recording	during	the	course	
of	a	game.	To	me	this	speaks	to	the	likelihood	that	300	samples	is	too	small	of	a	sample	size	to	
produce	meaningful	results.	Ideally	the	amount	of	samples	evaluated	would	probably	need	to	be	
ten	times	that,	if	not	more,	but	finding	people	to	voluntarily	evaluate	600	samples	already	took	over	
a	month	and	was	the	amount	I	could	get	before	having	to	complete	this	research.	
	
For	the	sake	of	transparency	and	due	to	the	lack	of	ample	resources	to	do	thorough	testing,	I	
implore	all	readers	to	download	the	raw	data	created	as	an	example	for	this	paper	and	to	look	at	
the	results	for	themselves.	The	zip	file	at	the	following	url	contains	the	player	tracking	data	from	a	2	
minute	video	segment,	player	mapping	information,	a	moving	dot	animation	video,	and	the	actual	
raw	source	video	itself	that	the	player	tracking	data	was	created	from:	
http://espnanalytics.com/cv-player-tracking	
	
	
	
	



	 	 	

	 12	

	
4. Next	Steps	
	
While	the	method	to	create	player	tracking	data	in	this	paper	lays	the	foundation	for	an	agile,	
modular,	and	low	cost	approach	there	are	numerous	fronts	on	which	it	could	be	improved.	
	
The	biggest	missing	piece	is	obviously	tracking	the	ball.	Through	the	research	done	to	develop	CV	
Tracking	it	became	fairly	clear	that	identifying	the	ball	is	a	more	difficult	problem	due	to	a	number	
of	a	factors.	By	nature,	the	ball	moves	vertically	on	the	court	significantly	more	than	players.	This	
means	correcting	the	raw	tracking	data	from	a	one	camera	perspective	is	much	more	likely	to	be	
skewed	and	will	require	more	rigorous	corrective	measures.	Additionally	the	ball	is	much	more	
frequently	occluded	by	players	since	it	is	a	smaller	object.	I	believe	the	approach	to	parsing	ball	
tracking	data	will	have	to	be	significantly	different.	A	potential	approach	that	may	be	effective	is	
utilizing	pre-existing	player	tracking	data	that	includes	the	ball	combined	with	CV	Tracking	data	so	
that	an	algorithm	can	be	developed	to	interpret	the	poses	of	all	10	players	on	the	court	and	infer	
where	the	ball	is	given	the	input	pose	estimations.	
	
The	process	of	pose	estimation	will	identify	everyone	in	a	video	frame,	including	all	of	the	fans	in	
the	shot.	A	simple	improvement	to	this	process	would	be	to	eliminate	poses	that	could	be	classified	
as	“sitting”	and	otherwise	eliminate	poses	that	a	player	would	not	be	in	while	participating	in	the	
game.	
	
Using	a	linear	function	between	two	known	points	for	a	given	player	to	approximate	their	location	
for	the	time	they	are	missing	from	the	player	tracking	data	works	surprisingly	well,	but	could	still	
be	improved.	The	“Bhostgusters”	model	introduced	by	the	Siedl	et	Al	[5]	does	a	good	job	at	
mimicking	realistic	player	movement	given	the	input	from	five	players	on	one	side	of	the	ball.	Using	
their	approach	one	could	create	a	series	of	models	to	approximate	the	locations	of	missing	players	
given	the	amount	of	known	player	locations.		
	
The	process	of	mapping	pose	estimation	to	player	information	is	the	most	tedious	manual	part	of	
CV	Tracking.	To	help	minimize	this	one	could	develop	an	array	of	methods	to	automatically	identify	
people.	Using	the	pose	estimation	data	you	could	attempt	to	find	distinct	gaits	for	each	person	as	
well	as	attempt	to	identify	the	numbers	on	their	jersey	whenever	they	are	directly	facing	toward	or	
away	from	the	camera’s	perspective.		
	
One	new	area	for	development	is	to	utilize	the	pose	estimation	data	itself.	This	can	help	increase	the	
fidelity	of	analysis	in	numerous	areas	such	as	identifying	contested	shots,	identifying	defensive	
stances,	and	much	more.	
	
	
	
	
	
	
	
	
	



	 	 	

	 13	

References	
	
[1]	Beetz,	M.,	Gedikli,	S.,	Bandouch,	J.,	Kirchlechner,	B.,	Hoyningen-Huene,	N.,	Perzylo,	A.	Visually	
Tracking	Football	Games	Based	on	TV	Broadcasts.	International	Joint	Conferences	on	Artificial	
Intelligence	Organization.	2007.	
	
[2]	Fang,	H.,	Xie,	S.,	Tai,	Y.,	Lu	C.	RMPE:	Regional	Multi-person	Pose	Estimation.	International	
Conference	on	Computer	Vision.	2017.	
	
[3]	Xiu,	Y.,	Li,	J.,	Wang,	H.,	Fang,	Y.,	Lu,	C.	Pose	Flow:	Efficient	Online	Pose.	British	Machine	Vision	
Conference.	2018.	
	
[4]	“Template	Matching.”	OpenCV	2.4.13.7	Documentation,	
https://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_ma
tching.html.	
	
[5]	Siedl,	T.,	Cherukumudi,	A.,	Hartnett,	A.,	Carr,	P.,	Lucey,	P.	Bhostgusters:	Realtime	Interactive	Play	
Sketching	with	Synthesized	NBA	Defenses.	MIT	Sloan	Sports	Analytics	Conference.	2018.	 	



	 	 	

	 14	

Appendix	
	
Using	video	demonstrations	is	the	most	effective	way	to	show	results,	but	in	the	absence	of	that	
here	are	some	images	of	real	comparisons	between	the	source	video	and	the	output	player	tracking	
data	that	was	created	during	the	research	done	for	this	paper.	

	
	

	
	

	
	

	
	

	


