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1 Introduction

In the absence of intervention by the league, there is significant path dependence in a sports franchise’s
performance. Teams who perform well in one year have more opportunities to collect attendance and
TV revenue. With this additional revenue, they can bid for better players. Over the long-term, without
re-distributive mechanisms, leagues may end up with a handful of dominant teams and a set of weak
teams that are not financially viable. For a business that relies on a large and engaged fan base for
revenue, this is not a desirable outcome. As a result, to ensure that in the long-term there is some
balance in team performance, sports leagues have instituted draft allocation mechanisms that favor
the lowest ranked teams in the league. These mechanisms, however, can provide incentives for teams
to purposely lose games in order to have a better chance of receiving a draft pick, a practice known as
‘tanking’. If teams do tank as a result of league policies, then league revenue can be impacted through
drops in game attendance and TV revenues.!

Both the NHL and the NBA currently allocate top draft picks through a rank-order lottery, but have
changed lottery probabilities frequently in attempt to minimize tanking while still favoring the lowest
ranked teams. The NFL and the MLB simply allocate drafts based on reverse rank from the previous
season. In all four leagues, which collectively produce over 30 billion dollars of revenue, there is fre-
quent discussion in the media and among fans of teams purposely losing games in order to increase
the expected value of their draft allocation for the year.? This shirking behavior has been documented
empirically in Taylor and Trogdon (2002). We use NBA data for the applications in this paper, but
the analysis is easily adapted to other sports leagues. Some of the general principles derived are also
related to more general re-distributive settings, such as financial aid or food stamp allocation.

*We thank Edward Lazear, Mohammad Akbarpour, Andrzej Skrzypacz and Brad Ross
for helpful comments and discussions. Code for the analysis in the paper is available at
http://github.com/evanmunro/draft-policy.

fGraduate School of Business, Stanford University. Email: mbanchio@stanford.edu

*Graduate School of Business, Stanford University. Email: munro@stanford.edu

For an example of this, see discussion of the Golden State Warriors in 2012:
https://bleacherreport.com/articles/1160424-golden-state-warriors-why-the-warriors-tanking-is-
hurting-the-nba

2Just in 2019, for example, commentators have argued frequently that the Golden
State Warriors in the NBA and the Miami Dolphins in the NFL either are, or should be
tanking: (https://www.si.com/nba/2019/11/14/golden-state-warriors-tanking-steve-kerr,
https://www.sbnation.com/nfl/2019/9/15/20861089 /miami-dolphins-tanking-2019-draft-picks-
cap-space).
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Currently, the NBA bases the draft probability lotteries on final rankings only. Our contribution
highlights the importance of the dynamic aspects of the repeated two player games that occur during
a sports season, in two different ways. First, we show that any re-distributive policy that relies on final
rankings only to allocate draft picks can provide incentives for a team to lose in some possible history of
a season. This negative results forces us to look at mechanisms that adapt the draft probabilities over
time. We set up the optimization problem of the league as a central planner and we show that comput-
ing an optimal solution is not feasible. The objective is to maximize the probability that the first draft
pick is assigned to the worst team, with the constraint that the mechanism cannot provide incentives
for teams to tank. Then we propose a rule which, while not necessarily globally optimal, is optimal for
a large subset of incentive compatible rules and is easy to implement. Our proposed rule adjusts the
lottery draft probabilities after each game, to match the probability each team will be ranked last after
all the games have been played, conditional on the games so far. This adjustment process is ended be-
fore incentive-compatibility would be violated if it continued. This means that in practice, the lottery
probabilities are determined dynamically in each season, and depend on a restricted set of games. We
show that not only does this process incentivize effort in every game, it is also approximately optimal
in the sense that it maximizes the probability the draft pick is given to the worst team in any given
season, conditional on a subset of results for that season.

There is existing work which has proposed alternative allocation systems. Gold (2010) proposes
allocating the top pick to the team with the highest the number of wins after elimination from the play-
offs while Lenten (2016) and Lenten et al. (2018) suggest the team that is eliminated first from playoff
contention should receive the top pick. Though the authors of existing work have provided empiri-
cal evidence that their proposals would reduce tanking, there has not been a systematic theoretical
evaluation of draft allocation policies. Our work provides the theory to determine if an optimal rule
for draft allocation exists that satisfies the league’s parity objectives while eliminating incentives for
teams to lose. Under our framework neither rule is fully incentive compatible. Furthermore, Gold’s
rule would not favor the worst teams, so does not target our assumed league objective. Dagaev and
Sonin (2018) model a different type of failure in incentive compatibility. When there are multiple
tournaments played sequentially (e.g. pool play before playoffs), there can sometimes be incentives
for teams to obtain a worse seed in the first round to obtain a better draw in the second round. In our
model we disregard these types of incentive issues in favor of those arising from the misspecification
of the draft allocation rule.

Our work is most closely related to the existing literature on tournament theory. Lazear and Rosen
(1981) design a prize allocation system that incentivizes optimal effort for workers, where a worker’s
ranking in output, rather than their actual output, determines their prize allocation. The prizes de-
crease as rankings decrease. The workers have a single choice of effort, which depends on their ability
and the the prize allocation system. Rosen (1986) investigates sequential elimination contests, where
the prize structure must take into account how incentives change as a team progresses in the tourna-
ment. Our setting is different in a few important ways. As in Rosen (1986), we have a sequential series
of games with repeated choices of effort and incentives that change over time. However, we do not
have elimination, so even a team that loses games continues to play. At each game, teams know their
past performance and make a choice to exert effort which is conditional on their past performance,
their future schedule of games, and the prize allocation. Another important difference is that prizes
are not increasing in rank. In the sports setting the league controls only the allocation of a secondary
prize, a draft pick. The value of the secondary prize is taken as given by the planner, since it’s deter-
mined by the skill of the newly eligible players participating in the draft that year. The maximization of
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the league’s objective requires that this secondary prize is allocated with higher probability to teams
with the lowest rank. This structure, without a correct allocation policy that decouples prizes from the
final ranking of the teams, will explicitly incentivize teams to intentionally lose games.

For readers who are not familiar with U.S. sports leagues, we provide some brief background of
the draft allocation system in the NBA in Section 2. Section 3 defines the theoretical model of team
decision making that we use to prove that the current allocation rule is not optimal and to introduce
our draft allocation system. In Section 4, we show the results of our draft policy applied to simulated
seasons and to real data from the NBA in the 1980s.

2 Background

Among the four U.S. sports leagues, the ‘tanking’ problem is considered most serious in the NBA.3 As
a result, our empirical section focuses on the NBA, and we provide additional background for readers
who are not familiar with league rules. In the current system, the NBA regular season begins in the
last week of October and ends in the middle of April. There are thirty teams competing in each season,
divided in two conferences. Each team plays eighty-two games in a single regular season, and each
team plays every other team during the regular season, at least once at home and once away. At the
end of the regular season, the teams are ranked by the number of wins. The top eight teams in each
of the two conferences advance to the playoffs. The playoffs are an elimination tournament and the
winner takes the championship. The remaining fourteen teams participate in the annual NBA draft
lottery.

During the draft, teams can select players who are eligible and wish to join the league. An eligible
player is at least nineteen years old and one year removed from their high school graduation date. The
teams pick sequentially, according to a prescribed ordering, the player they value the most out of the
remaining pool of eligible draftees. The first to fourth draft picks are considered the most valuable,
and those are allocated using a lottery system. In Appendix A we include the draft probabilities for the
first pick for systems from 1990-2019.

After the first four picks are allocated according to the outcome of the lottery, the remaining picks
are allocated according to the following reverse order system: the lowest ranked team that didn’t get
one of the first four picks will get the fifth pick, the lowest ranked team that didn’t get one of the first
five picks will get the sixth pick, and so on. Once all thirty teams have received a draft pick in the first
round, the second round begins and an additional thirty players are drafted according to the inverse
ranking in the regular season. Players that go undrafted in the two rounds of draft picks are free to try
out for any team. Teams are also allowed to sell their draft picks to other teams.

3 Designing a Draft Allocation Mechanism

3.1 Defining League and Team Objectives

First, we define some variables and notation. A season S is made up of a total of m games, each be-
tween two teams. There are a total of n teams in the season and teami € I = {1,...,n} has ability
a; € [0,1]. Sy € I denotes the home team for game ¢, and S;» € I denotes the away team for game

3See, for example, https://www.sbnation.com/2014/1/10/5266770/nba-draft-lottery-tanking-
gm
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t € {1,...,m}. A season is a pair of sequences S = {{Stl}?;l, {Stg}?;l} that identifies the two con-

testants in every game. hta t-length vector that encodes the history of the season up to and including
game t. A history is defined recursively as follows:

R =0
Bt =Rl U if team ¢ wins game ¢

Feasible full histories include any h™ such that ET € {Ss1, Ss2} Vs. Let the set of feasible histories
be H. A season with m games will have || = 2™. For some history &', the total number of wins for
team ¢ for that history is:

vi(h™) = 1(R = i)
s=1
The team with the k-th most wins after the season is played is v(*) (ﬁm) For instance, the team with
the most wins given a season’s result is:

v (™) = arg max v;(h™)
and the team with the least wins given a season’s result is :
o™ (R™) = arg min v;(h™)

We assume that there is a primary prize V with value that is at least 7" for every team, and is
allocated to the top £* teams. For example, currently in the NBA, the top sixteen teams make the play-
offs.* In the NBA setting, 7" represents the minimum expected additional revenue from the playoffs
that a team receives from playing in additional high-stakes games, and the related media exposure and
merchandise sales. There is also a single secondary prize D. In the NBA setting it represents the first
draft pick and has value of at most 7, which represents the maximum increase in long-term expected
revenue that a team expects to receive from drafting the top eligible player. We assume 7” < 7V The
secondary prize is allocated based on a league’s policy yi(l_it), which assigns a probability that team ¢
gets the draft pick given a history h. See Appendix B for a brief discussion of how to extend the model
to the allocation of multiple draft picks.

In general, a draft allocation mechanism will be a rule

y: I x H —[0,1]™"

such that y;(h') is the probability that team 4 will receive the draft pick given the history up to game
t. The mechanism is restricted in the following ways. Since y;(h') represents the expected lottery
probabilities conditional on information up to game ¢, the probabilities at time ¢ must be dynamically
consistent with the probabilities conditional on information up to game ¢ — 1:

(1) = pa(Q)ys (WP UW) + (1 = piela))ys (A" UL) Vi, h'™! (DC)

*It is actually the top eight teams in each conference that make the playoffs, but we do not model
divisions and conferences in this paper.
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Moreover, the lottery probabilities at any history need to add up to one:
n
D yih'y =1 Vih! (PROB)
i=1

Let the space of all draft allocation mechanisms that satisfy DC and PROB be ). For all U.S. sports
leagues currently, y;(h"™) depends on a team’s final ranking only. The final ranking is defined as follows:

ri(R™) = kifo® (™) =i

See Table A2 in Appendix A for the current probabilities for 2019, and Table A1 for a history of how
the lottery mechanism has changed since 1966.

Each team makes a single strategic choice in each game, which is how much effort to exert. e;; €
[0, 1] will denote the choice of effort by team i. A team exerting full effort in a game has e;; = 1, while
a team that is tanking has e;; = 0. For our basic model specification, we assume that win probabilities
for a team in game ¢ against opponent j are generated by the following process:

e Each team independently draws a realization from the random variable z;; distributed according
to
zip ~ N(a; + e, 1)

 the probability that a team ¢ wins against opponent j in game ¢ is:

—Q; + €t — 6it>
V2

N
m@mqmszN%>%0=1—@<J (1)

where @ is the standard normal cumulative distribution function

See Appendix B for a brief discussion of alternative methods for calculating win probabilities. In
the current NBA system, a team makes the playoffs if it is in the top 16 teams at the end of the season.
The probability a team makes the playoffs depends on what has happened so far, and the probability
of every possible outcome in future games. For team ¢ who plays against opponent j in game ¢ + 1,
W =14and L = j indicates team ¢ wins. W = j and L = 7 indicates the opposing team wins and team
i loses. We denote the probability of winning the primary prize in the season for team ¢ given a history
h' as qi(ﬁt). These probabilities can be defined recursively.

gi(h™) = 1(r;(A™) < k¥)
qi(h') = pigi(@)qi(h' UW) + (1 = pigi1(a))as (R U L)
We suppress the dependence of p; ;1 on e; ;11 and e; ;1 because we focus on incentive compati-
ble mechanisms for secondary prize allocation, where the effort chosen is always 1 and therefore the

dependence on effort choice of each team disappears. In order to derive the mechanisms that dis-
incentivize effort, we first explicitly define the team’s and league’s objectives:

Team Objective In gamet, teami € {5y, Si2} chooses an effort level e;; to maximize their expected
payoff given the results in the games played so far, h'~!. For team i playing against team j € {S;1, Sy2}:

Problem 1.
max  [py (e, 0, @) (q(h P UW) ¥ + yy(BL U W)xP)

€it

+(1 = pirleir, eje, ) (@ (U L)nY 4y (R U L)nP))
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No-Tanking Condition (NTC) The objective function can easily be rewritten as:

+ K

pit(€it, €jt, @) [(qi(ﬁtl UW) 7Y + (R U W) TP — (i U L)a” 4 g (b U L)xP)

where K is constant with respect to the decision variable. Notice that the derivative of the probability
of winning with respect to a team’s own effort is positive. This means that if the term in the square
brackets is positive, the team will choose the maximum e;; possible. Therefore, a necessary condition
for team ¢ to exert maximum effort in game ¢ is that the following inequality is satisfied:

v

g(B UW) — (R U L)} gy R [yz‘(ﬁtfl UL)— (k" UW) (NTC)

If this inequality is satisfied, it is optimal for team 7 to exert maximum effort in the game: the
inequality implies that the derivative of the objective with respect to effort is increasing everywhere.
NTC has a clear interpretation. If the team’s increase in probability of receiving the secondary prize
when they lose a certain game is less than the change in probability of receiving the primary prize,
scaled by the ratio of the minimum value of winning the primary vs the secondary prize, then the team
will exert maximum effort in a game (e;; = 1). If this condition does not hold for some team in some
game, then the team will not exert maximum effort in that game (e;; < 1). We want to find a draft
allocation mechanism that ensures NTC holds in every game. Note that we assume that if the team is
indifferent between exerting effort and tanking, they will exert effort, since winning a game should be
preferred to losing a game in the short-term, in the absence of long term incentives. In this setting, we
don’t need an explicit cost of effort. Instead, the cost of effort is implicit in the model and is a result of
specific draft rules that make certain teams better off if they lose rather than win.

Another implication of NTC is that any allocation policy that is incentive compatible should not
change the probability that a team receives the secondary prize in games where they are already out
of the primary prize contest, since at that point the change in probability of receiving 7" from winning
in all future games is always zero. That is not the case for any of the weighted lottery rules that the
NBA has implemented that depend only on the final season ranking. This leads us to our first result:

Theorem 1. The only secondary prize allocation policy that is a non-increasing function only of a team’s
final ranking r;(h"™) and satisfies NTC for any history h'™ is a uniform lottery, which assigns equal prob-
ability to every team that does not receive 7"’

Proof. Suppose thaty; (ﬁm) is chosen before the season starts, and assigns a fixed probability of getting
the secondary prize to every position in the final ranking. Suppose that the probability of getting the
secondary prize for team ranked b + 1 is greater than the probability for team ranked 6. Consider a
history such that before the very last game where they play each other, two teams are tied at position
b and they are mathematically out of the contest for the primary prize. It is easy to see that in this
scenario, NTC cannot hold. Since both teams are already eliminated from primary prize contention:

G(RTUW) — (R U L) =0

However,
yi(KPU L) — gy (AU W) £0

If team ¢ loses the game against team j and clinches the b + 1-th ranking, then he receives a higher
probability of getting the secondary prize than if he wins the game and is ranked b. The only way to
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restore NTC for a lottery that is non-decreasing in rank is if the the secondary prize probabilities are
equal for the b-th and b+ 1-th teams. Since b and b+ 1 were chosen arbitrarily, this must hold for every
position b > k*, where teams in position 1 to k* receive at least V. Therefore, only a uniform lottery
satisfies NTC for every possible history in a season.

O]

This means that no matter how carefully the league chooses the weighted lottery used to assign
the secondary prize, unless the weights are equal for all teams that did not win the primary prize
in the season, there will sometimes be incentives for teams to tank once they have been eliminated
from contention. We also briefly comment on a related incentive issue with the two proposed rules
from Gold (2010) and Lenten et al. (2018). For those rules to satisfy NTC in every possible game in a
season, they implicitly require that teams will always exert effort before they are eliminated from the
playoffs. However, in our model, for teams that lose many games at the beginning of a season and have
a high probability of elimination, NTC may be violated before the teams are actually mathematically
eliminated.

In order to design a better rule, we need to define what the league’s preferred secondary prize al-
location policy is. If it was not possible for teams to choose to lose games purposely, we assume the
league would simply assign the secondary prize to the team with the lowest rank at the end of the
season. This assumption is derived from qualitative statements made by sports leagues when draft
policies have been introduced or modified; for example, the NFL directly justified the introduction of
its draft in 1935 as a means of ensuring long-term financial viability of all franchises in the league
and many other professional leagues followed.> Without a re-distributive draft allocation system, the
best new player each year was signing with the team that offered the most money. But the team that
could offer the most money was generally the team that had won in previous years, reinforcing the gap
between the best and the worst teams. In general, re-distributive policies enacted in sports leagues
aim to maintain competitiveness of all teams over multiple seasons to increase fan engagement and
revenues, see Coutinho da Silva and las Casas (2017) and Kendall and Lenten (2017). A model that in-
corporates fans that have a strong enough preference for year-over-year competitiveness in the league
could justify a re-distributive draft as maximizing expected league revenue. However, the scope of this
paper is limited to studying incentive issues, dynamics, and objectives within a single season. Where
possible, we abstract from the interaction of fan preferences and long-term league revenues. In our
setting the league only can influence its revenue through the secondary prize allocation. The league
objective as stated below is justified as long as the leagues long-term expected revenue increases as
the the rank of the team that receives the prize decreases.® We also ignore other complementary poli-
cies that leagues might use to maintain competitiveness year-over-year, such as salary caps and lump
sum transfers.

League Objective The league objective is to maximize the probability that it assigns the secondary
prize to the team with the worst record at the end of the season, while maintaining NTC in every game.

Problem 2. .
max & [Z (1™ =1 -m(ﬁm))] (2)

i=1

Shttps://operations.nfl.com/the-players/the-nfl-draft/

®When teams have heterogeneous abilities, the team that is the lowest rank is also the team with
the lowest ability in expectation
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14
G(R™LUW) — (A1 U L)} %D > [yi(hf—l UL)—y(Rtuw)] e, R (NTC)
- 1
If oy = C Vi, y;(h°) = = Vi (FAIR)
n

The league wants to maximize the probability that the lowest performing team that year gets the
secondary prize, while holding true the NTC condition so that no teams have an incentive to tank.
Furthermore, if team abilities are assumed equal, the probability that any given team receives the sec-
ondary prize should be equal at the beginning of any given season (FAIR) and the probabilities should
be dynamically consistent (DC), or equivalently, satisfy Bayes’ rule.

This maximization problem is a convex program, and is theoretically solvable by backward induc-
tion. However, the optimal backward induction solution is not at all computationally feasible. For a
standard NBA season the game tree is of size 2™, where m = 1, 230 and the decision problem requires
a decision variable for each team at each node of the infeasibly large game tree. The recursive restric-
tions on probabilities add to the computational infeasibility. We propose a rule that is analytically
feasible and satisfies NTC in any possible history while still targeting the problem (2) directly.

3.2 An Incentive-Compatible Allocation Mechanism

Theorem 1 indicates that a lottery that has a higher weight to teams with the worst records in a sea-
son will not satisfy NTC. We propose instead a weighted lottery based on teams’ win-loss records for
the first t* games in a season; both the subset of games that count and the weights are determined
dynamically as the season progresses. We call this mechanism the No Tanking Draft Allocation Rule
(R-NTD).

Let Pr(v(™ (k™) = i|h') be team i’s probability of having the lowest number of wins after all m
games have been played, given the results from the first ¢ games. The probability team i receives the
secondary prize after game ¢ in R-NTD is
Pr(v™ (B™) = i|ht) ift < t*(h?) 3)

hm

RfNTD ht — !
Y (" Pr(v™(h™) = i|ht") if t > t*(ht)

which is the probability team i ends up last given the results of all games up to t*(h!). ¢*(h') is the
smallest s < ¢ such that inequality (4) holds true: given a history h*, NTC would be violated at time
s+ 1if the draft probabilities continued to be adjusted based on the probability that a team comes last.
If the following condition does not hold true for any s < ¢ — 1, then t*(ﬁt) =1.

- — 7rV
(aFuw) — (i v L) 5 ”
< [Pr(v<n>(ﬁm) = i|h* UL) — Pr(o™ (™) = ilh* UW)

Intuitively, this is how the rule works. When abilities are equal, a team’s probability of receiving the
secondary prize before the season begins is % since each team has an equal probability of coming last.
As wins and losses are recorded in each game, a team'’s probability of getting the secondary prize ad-
justs based on how their probability of coming last changes. For example, when a team loses multiple
games early in the season, they increase their probability of coming last and their probability of re-

ceiving the secondary prize increases. This adjustment process permanently stops the first time NTC
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would be violated for any team playing in any game, which is the first time any team might want to
start tanking.

Let us now provide some intuition on why this mechanism is a good approximation to the opti-
mum. With no information, if we didn’t take into account the wins and losses from any games, then
the policy that would maximize (2) in expectation when teams have equal ability is a uniform lottery.
If we condition the allocation policy on more wins and losses, the expected value of the objective func-
tion increases. To illustrate this, if we ignore NTC, we can condition on the full history k™, which is the
result of every game in the season. With a stopping time of m, R-NTD would allocate the draft pick to
the lowest-ranked team with probability 1, since Pr(v™(h™) = i|h™) = 1, which is the maximum pos-
sible value of the league objective. However, taking into account NTC, we end up in the middle between
the no information case and the full information case; we maximize (2) in expectation, conditional on
as much information as we can take into account without violating NTC.

Theorem 2. R-NTD satisfies NTC, DC, FAIR and PROB. Moreover, the allocation rule maximizes the ex-
pected value of the league objective, conditional on the history up to time t*(h™).

Proof. First, we show that the rule satisfies each of the constraints on the league objective.

e PROB is satisfied by definition, since yi(ﬁt) are the probabilities that team ¢ is ranked last in the
season, which satisfy PROB.

¢ DC: The secondary prize probability change from time ¢ — 1 to ¢ is either:

- Pr(o™ = i|ht1) = py(@)Prw™ =ik U W) 4+ (1 — py(a))Pr(o™ = i|ht=1 U L) if
t<t*

- Pr(v®™ =i|h™) = pu(a)Pr(v™ =i h*) + (1 — py(a))Prv® = i|ht*) if t > t*

After probabilities are fixed, DC holds since (1 — p;(a)) + piz(«) = 1. The first equality holds
by definition; if draft probabilities do change, they correspond to an update in the conditional
probability of the team ending up last in the season, and this conditional probability is DC.

¢ FAIR: In our model, at the start of the season if abilities are assumed equal, the prior probability

that any team wins a given game is % Before any games are played, each team has an equal

chance of being ranked last at the end of the season, and yi(ﬁo) = %

e NTC: Suppose by contradiction that NTC was violated at some time ¢. This is equivalent to in-
equality (4) being satisfied at time ¢. But then, R-NTD fixed the secondary prize probabilities at
some time s < ¢, which implies that at time ¢, the secondary prize probabilities are no longer
being adjusted, and the RHS of the inequality is zero. Since the LHS is always weakly positive, it

cannot be that NTC was violated.

Now we turn to optimality. The statement follows after a careful examination of the objective function
of the league. After ¢ games have been played, the expected value of the league’s objective is:

> (1™ = i) (i)

n Et]
=1

E

Notice that this conditional expectation can be simplified to

3 (Pre®™ @) =il - yi(im))

i=1
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Both Pr(v(™ (k™) = i|ht) and y;(h™) are probabilities and constrained to sum to 1. As a result, this
objective is maximized when it is a sum of squares. The optimal secondary prize probability condi-
tional on the history up to time ¢ must have y;(h™) = Pr(v(™ (h™) = i|h"), which is the value under
R-NTD. R-NTD maximizes the expected value of the league objective conditional on any history up to
when the adjustment process must stop to prevent violation of NTC. O

We do not claim that this rule is globally optimal for the league objective. There may be other in-
centive compatible rules that improve the league objective; these might, for example, allow the league
to change the secondary prize probabilities after ¢* (ﬁm), or prescribe smaller changes in probabilities
in the first games of the season. The way to find a global optimum is to optimize the league objective
by an exhaustive backwards induction process, but this is infeasible as discussed previously. Our rule
is optimal conditional on a limited history, and has theoretical guarantees that each team has the in-
centive to exert effort in every game. For certain histories, the game after which the rule stops taking
wins and losses into account can be theoretically very early in the season. In the next section we show
how the mechanism works in practice and find that in simulations and in real data, it takes a large
proportion of the games in a season into account before freezing the draft lottery probabilities.

4 Examining the Rule in Practice

4.1 Simulations

We start with a simple setting of N = 3 teams which is the smallest number of teams such that there
are incentive issues. With N = 2 teams, there are no incentive issues since a team that is eliminated
from primary prize contention gets the secondary prize for sure. In the three team setting, if lottery
weights are strictly decreasing in rank, the bottom two teams would prefer to be ranked last than
second last, so they have an incentive to lose after they are eliminated from primary prize contention.
Incentives to lose appear when winning a game increases the chance of a team of ending up in a middle
rank that is inferior in terms of prize allocation to the lowest ranks.

We examine some of the incentive issues described more closely through simple simulations. First,
we simulate a season with three teams, who play a total of 60 games. Each team plays 40 games, 20
against each opponent. Only the first place team receives 7". The abilities of the team are assumed
equal. We assume for the rest of this section that ;—Z = 10, so that the value of winning is at least 10
times the value of receiving the draft pick for every team. We randomly simulate a single season and
show how the draft probabilities under R-NTD change for each team compared to their win records in
Figure 1.

The final ranking of the season is Team 3 (23 wins), Team 2 (21), and Team 1 (16). Their respective
probabilities of receiving the first draft pick according to R-NTD are 0%, 35%, and 65%. The lowest
ranked team receives the draft pick with the highest probability, which is significantly higher than a
uniform lottery, which would assign probabilities of 50% to Team 1 and Team 2. Examining Figure 1
shows how these probabilities are derived. At the beginning of the season, since abilities are treated
as equal, each team has an equal probability of being ranked last after the season concludes, so their
draft probabilities are equal. After 20 games, all three teams are tied, so draft probabilities are still
close to equal. In the next 10 games, Team 1 has a long losing streak, which raises its draft probability
to over 70%, as the chance they come third in the season increases. During another losing streak
between 35 and 40 games, Team 1 is sufficiently behind Team 3 that they no longer have a meaningful
probability of winning the primary prize. As a result, Team 1 no longer has an incentive to win and
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would violate NTC if probabilities continued to be adjusted. The draft probabilities are fixed at this
point going forward. Team 2 also has not performed well and has a meaningful chance of coming third
at this point, so has a draft probability of 35%. Team 2 then has a lengthy winning streak at the end
of the season that results in him ending the season with only 2 wins less than Team 3, but the losing
streak does not affect his draft probability since it comes after the probabilities have been frozen.

Our draftallocation rule takes advantage of how incentives change over time during a season. Panel
b) of Figure 1 shows the maximum amount that Team 1’s draft probability can change at each game
in the season without violating NTC. R-NTD adjusts the probability a team receives the draft during
the initial period in the season when Team 1 still has a chance at winning the primary prize and the
incentive to win is high, but game results still provide information about who will end up as the worst
team after the season concludes. As the incentive to win decreases, the draft probability adjustment
is eventually stopped to avoid giving Team 1 the incentive to lose intentionally.

(a) Draft Probabilities (b) Dynamics of Incentives to Win for Team 1
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Figure 1: Allocation mechanism for simulation with :—Z =10

In Section 3, we proved that our draft allocation rule is optimal in a restricted sense; it maximizes
the expected value of the league objective given game results up to the stopping time at which IC first
fails. How late this stopping time is realized depends on the assumed lower bound for :—; for any team.
For example, if :—; = 1, then NTC will fail very early in the season, whenever a team has a game such
that if they win, the probability of winning the primary prize increases by less than the probability of
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winning the secondary prize increases if they lose. As :—; — 400, then NTC will hold until the first
team is mathematically eliminated from contention for the primary prize. Any team that can increase
their probability of winning the primary prize by winning will have an incentive to win, no matter how
small this increase is. To illustrate this, we calculate the expected gain of the league objective compared
to a uniform lottery in a simple setting with N = 3 teams who play a total of 9 matches against each
other. We enumerate all possible outcomes in a season, and calculate how the expected value of the
league objective varies with :—‘; This requires enumerating all possible outcomes of a season and
calculating the draft rule for each possible outcome. Figure 2 shows how the expected stopping time
t*, as a percentage of all matches, and the expected improvement of the league objective over a uniform
lottery depends on the ratio in prize values. If :—; = 1, then NTC binds very early in the season, so R-
NTD cannot take into account more than one or two games, and does not improve meaningfully on
the uniform lottery. As the ratio of the value of the primary prize compared to the secondary prize
increases to 7, the expected gain increases rapidly, such that the lowest ranked player is expected to
receive the secondary prize with a probability of over 75%. Illustrating the proof of Theorem 1, even
as ;% increases from 10 to 20, the expected gain does not approach 50% and the average percentage
of games taken into account does not approach 100%. Even with a secondary prize of negligible value,
there are always some histories such that NTC fails if every game is taken into account.

Expected Gain over Uniform Lottery Games Taken Into Account
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Figure 2: Gain over Uniform Lottery in Simulations Depends on B = Z—‘;

The importance on the lower bound of :—; also provides some insight on why the problem of ‘tank-
ing’ might be more serious in basketball rather than baseball. In basketball, a top draft pick like Lebron
James could turn a team into a title contender. In contrast, in baseball, the teams are much larger and
a single player impacts a team'’s prospects less. The model also explains why in some years, there is
an increased incentive for teams to choose a tanking strategy. If an especially valuable draft pick is
available in a certain year, the value of that draft pick might be greater even than the value of making
the playoffs that year, with 2—5 < 1. In those years, R-NTD would indicate that a near to uniform lottery
might be the only lottery that satisfies NTC.

4.2 Improving the NBA Lottery

From 1985 to 1989, the NBA had a uniform lottery system, where each non-playoff team received the
first draft pick with equal probability. Under our model, teams under this system did not have an
incentive to intentionally lose games. As a result, the league records in these seasons provide a real
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world setting to examine the performance of our incentive-compatible rule and how it compares to a
uniform lottery.

We calculate the draft probabilities based on our rule in 1987. In Table 1 we show the draft prob-
abilities for our rule compared to the uniform lottery in place at the time. Teams are ordered by their
final ranking. The draft probabilities in this season were not adjusted after the 266th game, which is
when, based on simulations of the remainder of the season to approximate the win probabilities g;,
that we estimated that NTC would fail if lottery adjustment continued. The lowest ranked team, the
L.A. Clippers, receives the pick with a 28.5% probability. This is much higher probability than in the
uniform case, but the allocation mechanism does not violate NTC. The draft probabilities are mostly
decreasing in the ultimate final ranking, except that the Kings have a sightly higher probability than
the Spurs. This is because the probabilities were determined based on each team’s probability of com-
ing last conditional on the first 266 games of the season, when the Kings were ranked lower than the
Spurs. Overall, though, in 1987 the teams that had performed badly after 266 games were largely the
same teams that performed poorly over the whole season.

In this particular season, after 266 games, some of the teams that ultimately made the playoffs still
had anon-zero probability of being last in the season. As a result, the mechanism described in Section 3
assigns small probability in the draft to teams that are playoff teams. We address this by adjusting the
rule described in Section 3 without violating NTC; in Table 1 and Table 2 we redistribute the small
probability assigned to teams that do make the playoffs uniformly to the teams that ultimately do not
make the playoffs. This removes all probability from teams that make the playoff and increases the
draft probability for each of the non-playoff teams by around 1%.

Rank Team Wins NBA Lottery R-NTD Lottery
23  Los Angeles Clippers 12 14% 28.5%
22 New Jersey Nets 24 14% 25.5%
21  New York Knicks 24 14% 21.0%
20  San Antonio Spurs 28 14% 9.0%
19  Sacramento Kings 29 14% 12.0%
18  Cleveland Cavaliers 31 14% 2.0%
17  Phoenix Suns 36 14% 2.0%

Table 1: Allocation Policy from 1987 Season, Adjustment Cutoff at 266th Game

We repeat the analysis for 1989, when there were two more teams in the NBA than in 1987, and
summarize in Table 2. This time, the draft probabilities are adjusted until the 332nd game. The Miami
Heat, the team ranked last in the season, had a poor enough start to the season that their draft probabil-
ity is 45.5% when the NTC condition binds. Some other teams, though, performed better in the latter
half of the season than the first half. As a result, the team ranked 24th has a lower draft probability
than the team ranked 20th, since more of the Charlotte Hornets’ losses occurred after draft probabili-
ties were frozen compared to the Indiana Pacers’ losses, which occurred closer to the beginning of the
season.

For both the 1987 and the 1989 season, the proposed draft allocation results in a lottery that al-
locates the most probability to the team ranked last in the season: this probability is as high as 45%
in the 1989 season. In both years, R-NTD favors the worst team more than the alternative incentive-
compatible uniform lottery. The empirical results confirm our theoretical insight, which is that it is
possible to design a draft lottery that favors the worst teams in a season, without providing incentives
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Rank Team Wins NBA Lottery R-NTD Lottery
25  Miami Heat 15 11% 45.5%
24 Charlotte Hornets 20 11% 7.5%
23 San Antonio Spurs 21 11% 9.5%
22 Los Angeles Clippers 21 11% 3.5%
21  New Jersey Nets 26 11% 2.0%
20  Sacramento Kings 27 11% 12.0%
19  Indiana Pacers 28 11% 18.5%
18  Dallas Mavericks 38 11% 0.5%
17  Portland Trail Blazers 39 11% 0.5%

Table 2: Allocation Policy from 1989 Season, Adjustment Cutoff at 332nd Game

for teams to tank.

5 Conclusion

We show that any re-distributive draft lottery based on the final ranking will provide incentives for
teams to lose intentionally, unless that lottery has equal weight on all non-playoff teams. Our main
contribution is the proposed decoupling of the final ranking from the draft allocation rule. This would
result in a rule that dynamically adjusts each season, taking into account teams’ performance and in-
centives as the season evolves. It ensures that teams do not have an incentive to purposely lose games
but is still optimal among all rules that take into account the results of games up to the stopping time ¢*.
This results in a draft allocation rule that maintains incentives to compete throughout the season while
still redistributing draft picks to the lowest-ranked team with higher than uniform probability. Using
simulations and empirical data on season records from the 1980s in the NBA, we show the outcome
of our rule results in very sensible draft allocation policies in practice that improve on the uniform
lottery without introducing incentive issues. To our knowledge, this is the first paper to examine the
draft allocation problem using the theory of tournaments and incentives in a mathematical model of
team decision making.

The insights gained in the more simple setting of sports leagues may also be helpful for understand-
ing more general settings with incentive issues when there are allocations to the lowest performing
individuals. The results in the sports setting suggest that in government welfare policy-making, if eli-
gibility is determined based on an individual’s cumulative performance before their application, then
a re-distributive program will provide incentives to shirk. Kleven and Kopczuk (2011) indicate why
having complexity in the application process can be optimal in social programs. This work indicates
a certain kind of complexity that can be introduced to directly address incentive issues. For example,
in college financial aid allocation, taking into account the path of an individuals bank account bal-
ances rather than the balance at time of application would reduce the incentive to spend or transfer
assets immediately before college applications. Incentive issues that appear impossible to address in
a static setting may be more simple to resolve in a dynamic setting. The sports setting indicates that
IC constraints have more slack in earlier periods, where there is still substantial uncertainty about an
individual’s end period outcome, compared to later periods, where final outcomes are close to deter-
mined. When present, the dynamic incentives that appear in a contest need to be taken into account
in order to implement a re-distributive prize structure.
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A Existing Draft Allocation Policies

Year Mechanism
1966-1984 Coin flip between conference losers
1985-1989 Uniform lottery
1990-Present | Weighted lottery, modified in 1994, 2005, 2010, 2019

Table Al: History of the NBA Draft Allocation Policy

Rank | 2019- | 2010-2018 | 2005-2009 | 1996 - 2004 | 1994 | 1990 - 1993

30 14.0 25.0 25.0

29 14.0 19.9 17.8 22.5

28 14.0 15.6 17.7 22.5

27 12.5 11.9 11.9 15.7 25.0 16.7
26 10.5 8.8 7.6 12.0 16.4 15.2
25 9.0 6.3 7.5 8.9 16.4 13.6
24 7.5 4.3 4.3 6.4 16.3 12.1
23 6.0 2.8 2.8 4.4 9.4 10.6
22 4.5 1.7 1.7 2.9 6.6 9.1
21 3.0 1.1 1.0 1.5 4.4 7.6
20 2.0 0.8 0.9 1.4 2.7 6.1
19 1.0 0.7 0.7 0.7 1.5 4.6
18 1.5 0.6 0.6 0.6 0.8 3.0
17 0.5 0.5 0.5 0.5 0.5 1.5

Table A2: Draft Lottery Probabilities for the First Draft Pick

B Extensions

Multiple Secondary Prizes In our setting we assumed there is a single secondary prize 7, and the
objective of the league is to assign it to the worst performing team. In practice, the major sports leagues
assign multiple secondary prizes, with value decreasing in rank. How does this change our mecha-
nism? Suppose that there are J secondary prizes to be assigned to the worst j performing teams. The
incentive problem looks similar, but there are more terms in the right-hand side of the NTC condition.
The change in probability of getting one of the secondary prize has to be weighted by the value of that
secondary prize, and the sum of those changes needs to be smaller than the change in probability of
winning the primary prize weighted by the value of the primary prize. One way to set up the league
problem is to add to the league objective some additional terms:

S5 (1 = yz<ﬁm>)]

Jj=11i=1

max E

where yf (ﬁm) is the probability that team ¢ gets the secondary prize j at the final history h™. More-
over, we need to incorporate another constraint, in addition to the modified NTC, which is a version
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of (PROB) for the additional secondary prizes. The problem is fairly similar, and a rule similar to R-
NTD can be imagined such that it stops at the first instance of the season in which the modified NTC
is violated. The simplest version would be a rule R-NTD-]J such that each y/ (f_it) is adjusted according
to the probability of ending up in position n — j at the end of the season. There is no clear cut way
to determine whether the expected ¢* will be skewed towards the beginning or the end of the season,
even when fixing a specific rule. To see this, suppose there were enough prizes such that at the end
of the season every team receives one prize, whether it is the primary or a secondary prize. Then the
incentive compatibility condition should get more slack, because losing a game will affect the expected
final payoffless than in our benchmark case. Instead, with only two secondary prizes it’s easy to imag-
ine a situation in which the incentive compatibility binds earlier than in our benchmark, because the
two secondary prizes have increased the incentives to lose disproportionately.

Alternative Models for Win Probability Estimation Inthe paper, we assumed abilities were known
and generally treated as equal. If abilities are assumed equal, then each team, when both teams exert
effort, wins with probability %, so every team has an equal chance of winning or losing the season be-
fore it starts. In practice, abilities are not likely to be known, especially at the beginning of the season
before games are played. It is possible to use existing models to estimate win probabilities instead
of the basic model described in the text. Leagues, betting websites, and others have a wide variety
of sport-specific models for estimating team win probabilities based on their existing records.” These
may incorporate additional predictors of win probability for a team such as how many games they have
played recently, whether the game is at home or away, and aggregated measures of player statistics.
Our results on the optimal draft policy are robust to replacing a team’s win probability p;(e;, €j¢, )
with any kind of sport-specific scoring model that estimates win probabilities and team specific factors
«;. The derivation of NTC depends only on the derivative of the win probability with respect to effort
being positive, which must be true for any model. If NTC is satisfied by the draft rule, then effort can be
ignored in the calculation of win probabilities since it is assumed equal for every team. Adjusting the
draft rule and calculating NTC depends only on forecasts of a team’s probability of winning different
games, and their resulting probability of making the playoffs or coming last in the league. In the paper,
we use the simple general model presented in Section 3 for such forecasts, but note that it is feasible
to replace the win probability calculation with a variety of alternative situation-specific models.

’For example, the website FiveThirtyEight uses an adapted version of the ELO
system, originally used to score chess players, to analyze team abilities in the NBA
(https://fivethirtyeight.com/features /how-we-calculate-nba-elo-ratings/).
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