

- → Digital Neuromorphics
- **→** Dynamic Dataflow
- → In-memory Compute

BIOLOGY BLUEPRINT

FOR HUMAN

INTELLIGENCE

- Highly connected 3D neurons network
- Computation in network vs 'CPU'
- Event-based processing upon spike
- Analog processing with infinite resolution
- Communication by 'one-bit' spikes

DIGITAL **NEUROMORPHICS**

Neuromorphic Technology **Blueprint**

Artificial Intelligence

Digital design and packet-switched connectivity

→ Repeatable, shrinkable, scalable, economic

Sparsely connected neural networks

→ Practical in silicon and most algorithms

Valued events instead of spikes

→ Established programming model

Event-Packet Format

SPARSITY PRINCIPLE

As dimensionality of data gets higher, the number of regions occupied by the same number of data points gets larger >

data gets sparser

Only process and propagate sparse change **events**

- → Lower system latency
- → Lower power consumption

Memory Wall or Von Neumann Bottleneck

Bottleneck

Processor

Memory Array

IN-MEMORY

COMPUTE

>10x **Memory Access Speed**

<0.01x Memory Access **Power**

Enables scalability to large core counts

Enables sparsity via persistent neuron mem

AUTONOMOUS

NAVIGATION

Steering control in dynamic environments

Latency < **20**μs

Keywords

COGNITIVE **VOICE & VIDEO** ASSISTANT

Latency < 10μs

Hand Gestures

Understanding of human speech and gestures

Latency < 1μs

GrAl Matter Labs announces ...

GrAIFIOW

GrAIFLOW SDK

Key Features

Conventional Programming & Machine Learning **Direct Network Import Integrated Simulator Graphical Editor**

RNN IN GRAIFLOW

Graphical Editor for RNN programming and simulation

3- Converting the RNN to a gfgraph

(for instance as part of a smart listening device).

step 1: gfgraph library and guidelines

In [5]: import gfgraph as gfg

Browse through hierarchies of RNN model

Jupyter Notebook with RNN template

Gfgraph is the low-level API that deals with creating neurons, synapses and networks aggregated into a single .gfgraph protobuffed topology that can later

BUSINESS

Fabless Semiconductor

FOUNDED

2016

FUNDED

Private

GrAl Matter Labs

