
Case Study
GitGuardian Internal Monitoring

reviewer1692456

DevSecOps Engineer at a computer
software company with 1,001-5,000
employees

Review by a Real User

Verified by PeerSpot

What is our primary use case?
Mainly we use GitGuardian to keep secrets out

of our source code. That is something that we

wanted to get serious about getting our hands

around. This was the main driver because I had

tried other tools like TruffleHog. It was

cumbersome to manage the unwieldy Git history

and to figure out. When you run TruffleHog, you

have no way of knowing what's in the current

branch versus your Git history. Hence, it's tough

to decipher what secrets are still possibly valid.

How has it helped my
organization?
We didn't have a secret detection tool in place

before GitGuardian, so we had no solution that

could detect when secrets were committed and

sourced. With GitGuardian, we get an instant

notification every time a secret is committed, so

we can immediately triage it.

GitGuardian has absolutely supported our shift-

left strategy. We want all of our security tools to

be at the source code level and preferably

running immediately upon commit. GitGuardian

supports that.We get a lot of information on

every secret that gets committed, so we know

the history of a secret. For example, if there are

SMTP credentials that get used and reused, we

can see where the secret may have traveled, so

GitGuardian may give us a little more

information about that secret because it can tie

together the historical context and tell you

where the secret has been used in the past. You

can say, "Oh, this might be related to some

proof-of-concept work. This could be a low-risk

secret because I know it was using some POC

work and may not be production secrets." 

© 2022 PeerSpot | www.peerspot.com



I don't know how to quantify how much time it

has saved our security team because we didn't

have anything similar in place before

GitGuardian. I can say that tracking down a

secret, getting it migrated out of source code,

getting the secret rotated, and cleaning the Git

history took much longer from commit until the

full resolution before GitGuardian. We weren't

notified until it was too late, but with

GitGuardian, we know almost instantly. 

We have standard operating procedures for

every notification. We know how to rotate the

secret. We know how to remove it from the

source code. We have documented procedures

for how to do that. We can rip it from the code,

rotate it, and clean the Git history in a couple of

hours. If something gets committed, it sits there

for a while before we notice it.

Overall, GitGuardian has also helped us develop

a security-minded culture. We're serious about

shift-left and getting better about code security. I

think a lot of people are getting more mindful

about what a secret is. It's like back in the day

before campaigns like Cofense PhishMe

became a big thing. People were clicking

phishing links all the time. Now you have these

training programs where people see these

things, and they're more aware of it. 

It's a similar situation when you're writing code

as well. I think people are getting more aware of

secrets. What is a secret? Does this belong in

the source code? Sometimes they even come

out and ask, "Is this a safe thing to commit to the

source?" before they even commit it. They don't

want to be "yelled at" by the GitGuardian. I think

that it has had a positive impact on the culture

itself.

You're only as good as the software you write,

and you're in for a world of hurt if you put the

keys to the castle inside of that source code that

could be somehow reverse-engineered. By

separating the two, the source code and the

keys, you're one step ahead of that. I think it's

essential.

What is most valuable?
The most valuable thing about GitGuardian is

the speed with which it works. If you accidentally

commit a private key to a public repo, you need

to know that instantly. GitGuardian has this thing

called "Dev in the loop." The developer who

committed the secret is notified, and they get a

form to fill out so they can give us instant

feedback, which is super helpful for us. Due to

the nature of the software we write, sometimes

we get false positives. When that happens, our

developers can fill out a form and say, "Hey, this

is a false positive. This is part of a test case. You

can ignore this." What's more, the tool helps us

with triage. As soon as the secret is committed,

we receive Slack alerts and jump right on it.

GitGuardian's "Dev in the loop" feature has sped

up our time to remediation quite a bit. Of course,

not every developer is responding, but that's

just the nature of the organization itself. It's not

the fault of the product. It's just that some

people are not as quick to act. So when

Validated User Review

© 2022 PeerSpot | www.peerspot.com



developers do respond, I would say issues get

resolved several times faster because we know

from the jump if it's an issue or not.

It's hard to evaluate how accurate the tool is

because of the type of software we write. We're

a vulnerability company here, so we write a lot

of test cases using test data that are looking for

things like secrets, so we have false

positives. Some of GitGuardian's detectors take

that information into account. With things like

a general high-entropy detector, we expect a

potentially high false-positive rate. However, for

something like an AWS key detector,

GitGuardian's efficacy is near a hundred

percent, if not 100%. I can't recall any instances

off the top of my head where it inaccurately

flagged an AWS key or an Azure key.

What needs improvement?
One improvement that I'd like to see is a cleaner

for Splunk logs. It would be nice to have a

middle man for anything we send or

receive from Splunk forwarders. I'd love to see it

get cleaned by GitGuardian or caught to make

sure we don't have any secrets getting

committed to Splunk logs. That was an issue

that I brought up a while ago. However, my

workload just hasn't allowed me to sit down and

figure out how to solve that. That is one thing

that I wanted to see if I can use in that regard

because secrets are a thing that ends up in logs,

and that's not something we want.

For how long have I used the
solution?
The first time I looked at GitGuardian was about

a year ago now. We have open-source

information on public GitHub, but all of

our proprietary code is on an internal GitHub

Enterprise Server. When we set up our internal

GitHub Enterprise Server and deployed

GitGuardian, it had no network path out to the

public GitHub. I worked with GitGuardian, and

they set me up with public monitoring. I would

monitor all of my public open-source information

with the public offering. Then I would also have

my internal monitoring setup for everything on

our GitHub Enterprise Server.

What do I think about the
stability of the solution?
GitGuardian has been pretty stable probably

99% of the time. There was one time where I

had a slight hiccup, so I restarted the cluster,

and it was good to go.

What do I think about the
scalability of the solution?
I think GitGuardian scales well. It's adequately

scaled for what we are using it for right now. I

don't see that growing. Right now, we just have

it hooked up to our source, and it can handle

that. Now, if we were to expand into possibly

doing the Splunk use case, that might bring in

Validated User Review

© 2022 PeerSpot | www.peerspot.com



an API. In that case, I'm not sure what the

performance impact would be, but I don't think it

would be that bad. You throw a couple of extra

nodes out there, and it should be fine. It's

currently being used by all of our developers.

Everyone who commits code is using it. It scans

all of our code.

How are customer service and
support?
GitGuardian's support is fantastic. I don't think I

could rate them anything less than a 10 out of 10.

We had a few questions about how to stand up

our deployment. The SRE assigned to our

project was readily available and very

knowledgeable. He jumped on a call and spent

crazy hours helping us out. I thought they were

very flexible and easy to work with. I've never

had an issue with their support. They've given us

everything I've needed when I needed it.

How would you rate customer
service and support?
Positive

How was the initial setup?
We installed the software and connected it to

our GitHub. Literally within minutes, it was

scanning and finding secrets in our GitHub. It

doesn't take long to get it up and running and

we didn't have to make any significant

architectural changes before deploying

GitGuardian. We only had to stand up a VM and

then set up the network pathways to talk to our

GitHub. That was a very minimal amount of work

from our CIS ops team to put that out. After

installation, it doesn't require much

maintenance. When they tell me a new release

is out, I log into the console, click the upgrade

button, and it does its thing. 

What was our ROI?
We've absolutely seen ROI. For example, if

somebody accidentally commits an AWS key to

your public GitHub, somebody can take that key

and spin up EC2 instances, which can cost us

thousands of dollars. The fact that we can catch

it is almost invaluable, but it's worth the

investment to have the tool. Everything is

cheaper if we can find an issue and resolve it

sooner. It's much more affordable to remove a

secret well before it gets merged into a master

branch than it is to try to rip out the historical

commit. It affects the bottom line in that regard.

What's my experience with
pricing, setup cost, and
licensing?
I think GitGuardian's price isn't too expensive.

I'm not sure about any add-ons or additional

costs because I wasn't involved in purchasing

GitGuardian. I know the ballpark price, but I did

not handle the pricing. Other people in our

Validated User Review

© 2022 PeerSpot | www.peerspot.com



organization negotiated the pricing, but I'm not

aware of any hidden costs or anything like that. 

Which other solutions did I
evaluate?
We looked at some open-source solutions like

TruffleHog, and we also looked at the GitHub

secrets detection, but the issue was that it was

bundled with their advanced security, which we

were not planning to purchase. GitGuardian just

made perfect sense for us.

GitGuardian has the GUI that TruffleHog doesn't

have. TruffleHog can scan your GitHub and tell

you where secrets live. But it does not do a

perfect job of telling you where those secrets

live within your timeline. GitGuardian does an

excellent job of telling you the branch

where those secrets live and where they are on

the timeline. The Github tool does pretty much

the same thing, but it was off the table for us

because we were not planning on purchasing

their advanced security toolkit.

What other advice do I have?
I rate GitGuardian 10 out of 10. It does everything

that I need it to do, and I'm excited about the

new features that are coming along at this point.

It has really helped us change our culture, and

it's impressive to see that. People are now more

mindful of what gets committed to source code.

I would recommend GitGuardian. 

Which deployment model are
you using for this solution?
On-premises

Validated User Review

© 2022 PeerSpot | www.peerspot.com



Read 7 reviews of GitGuardian Internal Monitoring

See All Reviews

Validated User Review

© 2022 PeerSpot | www.peerspot.com

https://www.peerspot.com/products/gitguardian-internal-monitoring-reviews?tid%5Btid%5D=pdf_rev_1295666

