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Abstract

Quantum theory is a probabilistic theory that provides a description of small-scale physical systems

such as atoms or photons and it is one of the most successful physical theories that have been verified

experimentally with a high degree of accuracy. At the same time it predicts phenomena such as

quantum entanglement, Bell non-locality or more generally quantum contextuality that have been

harnessed as resources for certain applications that are not accessible within classical physics. What

is more, quantum phenomena are responsible for the recent rapid development of the new quantum

technologies, just to mention the quantum computing machines. However, as far as the possibility

of full exploitation of quantum technologies is concerned, this development has to be followed by

designation of suitable certification tools that would enable the user to verify or certify that a given

device operates according to its specification and generates the correct output. Such certification tools

are particularly relevant in the context of quantum cryptography where the communicating parties

need to verify that the state shared by the parties as well as the measurements performed by them

are the correct one.

While there exist methods that serve the above purpose such as for instance the well-known

quantum tomography, these rely on certain assumptions such as that the measuring devices used to test

the state are fully characterized and that the user can trust that they perform correct measurements.

While in certain situations such assumptions are justified, they are not when it comes to such tasks as

quantum cryptography. As a remedy to this problem the idea of self-testing was put forward by Mayers

and Yao. It allows for almost complete characterization of the underlying quantum systems based on

the nonclassical correlations they produce, without the need of making strong assumptions about

them. It thus falls into the category of device-independent certification in which quantum devices are

treated as black boxes whose internal working is unknown to the user and the nonclassicality they

generate is used to make nontrivial statements about them.

Self-testing as originally put forward by Mayers and Yao is based on Bell nonlocality and allows

for certification of entangled states and the measurement performed on them. While many self-

testing methods have already been proposed for entangled quantum states both in the bipartite and

multipartite case, most of them, in particular, in the multipartite case, are devoted to systems that

are locally qubits. Moreover, this type of certification methods have barely been explored for systems

that do not have spatially separated subsystems and thus do not give rise to Bell nonlocality. Our

aim here is to fill the above gaps. On one hand, we explore the possibility of exploiting quantum

contextuality for certification purposes. In this direction we provide a class of scalable noncontextuality

inequalities whose maximal violations can be used for certification of quantum systems consisting

of N qubits and sets of binary measurements that obey certain commutation and anticommutation

relations and generate the N-qubit Pauli group. Second, we propose a scheme, which is a modification

of the standard quantum contextuality scenario, which allows for making certification statements

about quantum systems from the observed correlations, however, without making any assumptions

about the compatibility structure of the involved measurements which are made in contextuality-based

approaches. On the other hand, we introduce the first, to the best our knowledge, general class of

Bell inequalities that are maximally violated by the multipartite graph states of arbitrary prime local

dimension and show that in the qutrit case the maximal quantum violation of these inequalities allows

for self-testing of the graph states. Again, our inequalities are scalable in the sense that the number
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of expectation values they consist of scales linearly with the number of parties which is relevant from

the point of view of their experimental exploitation.
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Streszczenie

Teoria kwantowa to teoria probabilistyczna, która opisuje uk lady fizyczne o ma lej skali, takie jak

atomy czy fotony, i jest jedn ↪a z najskuteczniejszych teorii fizycznych, które zosta ly zweryfikowane

eksperymentalnie z duż ↪a dok ladności ↪a. Jednocześnie przewiduje zjawiska takie jak spl ↪atanie kwan-

towe, nielokalność Bella czy bardziej ogólnie kontekstualność kwantow ↪a, które zosta ly przekute w

zasoby dla pewnych zastosowań, które nie s ↪a dost ↪epne w fizyce klasycznej. Co wi ↪ecej, zjawiska te

s ↪a odpowiedzialne za szybki rozwój nowych technologii kwantowych, który si ↪e w ostatnim czasie

odbywa, żeby tylko wspomnieć komputery kwantowe. Z punktu widzenia możliwości pe lnego wyko-

rzystania technologii kwantowych, za tym rozwojem musi pod ↪ażać tworzenie odpowiednich narz ↪edzi

certyfikuj ↪acych, które umożliwi lyby klasycznemu użytkownikowi sprawdzenie lub poświadczenie, że

dane urz ↪adzenie dzia la zgodnie ze swoj ↪a specyfikacj ↪a i generuje prawid lowy wynik. Takie narz ↪edzia

certyfikacji s ↪a szczególnie istotne w kontekście kryptografii kwantowej, gdzie komunikuj ↪ace si ↪e strony

musz ↪a zweryfikować, czy stan udost ↪epniany przez strony, jak również wykonane przez nie pomiary s ↪a

prawid lowe.

Pomimo tego, że istniej ↪a metody s luż ↪ace powyższemu celowi, jak na przyk lad dobrze znana to-

mografia kwantowa, opieraj ↪a si ↪e one na pewnych za lożeniach, takich jak to, że urz ↪adzenia pomiarowe

używane do badania stanu s ↪a w pe lni scharakteryzowane i że użytkownik ma pewność, że wykonuj ↪a

prawid lowe pomiary. O ile w niektórych sytuacjach takie za lożenia s ↪a uzasadnione, o tyle przypadku

takich zadań jak kryptografia kwantowa już nie. Jako remedium na ten problem, Mayers i Yao zapro-

ponowali ide ↪e samotestowania. Pozwala ono na niemal pe ln ↪a charakteryzacj ↪e uk ladów kwantowych w

oparciu o wytwarzane przez nie korelacje nieklasyczne, bez konieczności czynienia za lożeń na temat

tych urz ↪adzeń. Samotestowanie jest zatem sposobem certyfikacji w wersji niezależnej od urz ↪adzeń

(ang. device-independent), w której urz ↪adzenia kwantowe s ↪a traktowane jak czarne skrzynki, których

wewn ↪etrzne dzia lanie jest nieznane dla użytkownika, a nieklasyczność, jak ↪a generuj ↪a, jest tym zasobem,

który pozwala wyci ↪agać nietrywialne wnioski na ich temat.

Samotestowanie, w swoim pierwotnym sformu lowaniu opiera si ↪e na nielokalności Bella i umożliwia

certyfikacj ↪e stanów spl ↪atanych i wykonanych na nich pomiarów kwantowych. Choć powsta lo już wiele

metod samotestowania spl ↪atanych stanów kwantowych zarówno w przypadku dwucia lowym, jak i wie-

locz ↪eściowym, wi ↪ekszość z nich, szczególnie w tym drugim przypadku, poświ ↪econa jest uk ladom sk lada-

j ↪acym si ↪e z kubitów. Co wi ↪ecej, metody certyfikacji tego typu s ↪a rzadko badane w przypadku uk ladów,

które nie maj ↪a poduk ladów oddzielonych przestrzennie i tym samym nie wykazuj ↪a nielokalności Bella.

Naszym celem jest wype lnienie powyższych luk. Z jednej strony badamy możliwość wykorzystania

kontekstowości kwantowej do celów certyfikacji. W tym kierunku wprowadzamy klas ↪e skalowalnych

nierówności niekontekstualnych, których maksymalne  lamanie kwantowe można wykorzystać do cer-

tyfikacji uk ladów kwantowych sk ladaj ↪acych si ↪e z N kubitów i zbiorów pomiarów binarnych, które

spe lniaj ↪a pewne relacje komutacyjne i antykomutacyjne i generuj ↪a N-kubitow ↪a grup ↪e Pauliego. Po

drugie, proponujemy schemat, który jest modyfikacj ↪a standardowego scenariusza kontekstualności

kwantowej, a który pozwala na formu lowanie certyfikuj ↪acych o uk ladach kwantowych na podstawie

zaobserwowanych korelacji, ale bez konieczności czynienia za lożeń na temat struktury kompatybil-

ności wykonywanych pomiarów, które si ↪e standardowo czyni w przypadku metod certyfikacji opartych

na standardowej kontekstualności. Z drugiej strony rozwijamy zastosowanie nielokalności Bella, która

jest pewn ↪a szczególn ↪a form ↪a kwantowej kontekstualnośći, w samotestowaniu. Wprowadzamy pierwsz ↪a,
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zgodnie z nasz ↪a najlepsz ↪a wiedz ↪a, ogóln ↪a klas ↪e nierówności Bella, które s ↪a maksymalnie  lamane przez

wielocz ↪astkowe stany grafowe o dowolnym wymiarze lokalnym, który liczb ↪a pierwsz ↪a, a także pokazu-

jemy, że w przypadku kutrytowym maksymalne  lamanie tych nierówności pozwala na samotestowanie

stanów grafowych. Podobnie jak w powyższym przypadku nasze nierówności s ↪a skalowalne w tym

sensie, że liczba wartości oczekiwanych, z których si ↪e sk ladaj ↪a skaluje si ↪e liniowo z liczb ↪a poduk ladów

co ma znaczenie z punktu widzenia ich zastosowań w eksperymencie.
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Chapter 1

Introduction

Quantum theory is a probabilistic theory that allows to describe physical phenomena of small-scale

systems such as atoms or photons and it is one of the most successful physical theories that have been

verified experimentally with a high degree of accuracy. Indeed, it enabled correct explanations of

such phenomena as black-body radiation, provided by Planck, or the photoelectric effect, provided

by Einstein, which at that time could not be described within existing theories. The development of

quantum theory was certainly a breakthrough in the history of science that came out with an intriguing

description that raises deep philosophical questions about nature and today it is the foundation for

emerging and promising technologies such as quantum computers.

On the other hand, quantum theory required a drastic change in the way we perceive and describe

physical phenomena. In particular, the probabilistic nature of quantum theory led Einstein, Podolsky

and Rosen [1] in their famous article published in 1935 to consider a thought experiment involving

entangled states with which they argued quantum theory is incomplete. Then, they speculated whether

quantum theory can be made complete by adding some extra (hidden) variables that were not a part

of the theory, but would remove unpredictability from it. The idea of hidden variables was a subject of

debate among physicists until 1964 when Bell proved that they are not enough to explain all predictions

of quantum theory [2]. To this aim, he devised another thought experiment involving entanglement

which gave rise to correlations violating a certain inequality which is satisfied by any theory built on

the concept of hidden variables. The existence of correlations violating Bell inequalities is nowadays

referred to as Bell nonlocality.

Many experiments have been designed since then to confirm the existence of Bell nonlocality and,

at the same time, to prove the incompatibility between predictions of quantum theory and the local

hidden variable models, just to mention the experiments performed by Freedman and Clauser in 1972

[3], or by Aspect, Dalibard and Roger [4] in 1988, or, the more recent one carried out by Hensen et

al. [5] in which it was possible to close all the relevant loopholes. Importantly, the early attempts

to experimentally confirm violations of Bell inequalities by quantum theory were acknowledged by

awarding A. Aspect, J. F. Clauser and A. Zeilinger the Nobel prize in physics in 2022. (For a broad

review about Bell nonlocality we recommend [6].)

Later it turned out possible to extend the framework of local hidden variable models to more

general scenarios where entanglement or space-like separation used in composite systems is not needed

to show the discrepancy between the predictions of quantum theory and the hidden variable models.

This leads to the notion of noncontextuality described for the first time by Kochen and Specker [7].
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CHAPTER 1. INTRODUCTION

Nonlocality, in the sense of Bell, can be interpreted as a special case of contextuality. Many efforts have

been devoted in the last decades to exploring, characterizing, and understanding the phenomena of

Bell nonlocality and contextuality in the context of quantum theory, and also to propose quantifiable

schemes that can be experimentally used to confirm the “weirdness” of quantum theory (cf. Refs. [3],

[4], [8]). Most of these efforts are based on violations of Bell or, more generally, noncontextuality

inequalities by quantum theory. The most famous such inequalities are the Clauser-Horne-Shimony-

Holt (CHSH) inequality [9] in the context of Bell nonlocality and Klyachko-Can-Binicioğlu-Shumovsky

(KCBS) inequality [10] in the contextuality case.

The unintuitive properties of quantum theory, like entanglement and related to it Bell nonlocality

or, more generally, quantum contextuality, which can be seen as various forms of nonclassicality that

show the discrepancy between the classical and quantum theories, are also resources for information

processing. In this context, the works on communication complexity [11], information theory [12],

[13] and quantum cryptography [14], [15] should be mentioned. More recently it was pointed out that

Bell nonlocality can also be used for certification purposes. Let us stress that the need for designing

certification schemes for quantum states follows from the recent rapid development of new quantum

technologies such as quantum cryptography systems or quantum computing devices. In fact, the

possibilities that these technologies offer can only be fulfilled if the classical user is able to certify that

the new devices work according to their specification and generate the correct output. It is also worth

pointing out that the need for efficient certification methods was also highlighted in the Quantum

Manifesto [16].

The first ones to propose the exploitation of nonclassical correlations as a resource for certification

were Mayers and Yao, who put forward the concept of self-testing [17] (see also the recent review [18]).

It allows one to device-independently certify entangled quantum states and measurements performed

on them from the observed nonlocal correlations. The term “device-independent”, tossed for the first

time in the context of quantum cryptography in Ref. [14], refers to the fact that to verify or certify a

quantum state or measurements performed on it, no assumptions on that quantum objects are made,

and one uses only the statistical data generated by that system. Since then many self-testing results

have been derived for various quantum states and measurements (see, e.g., Refs. [19]–[24]). Also, the

concept of self-testing was generalized to the case of quantum contextuality to enable certification of

quantum systems that do not exhibit entanglement [25].

The main goal of this thesis is to develop certification schemes for quantum systems based on the

above forms of nonclassicality. More specifically, on one hand, we further explore the possibility of

exploiting quantum contextuality for certification purposes. In this direction, we provide a class of

scalable noncontextuality inequalities whose maximal violations can be used for certification of quan-

tum systems consisting of N qubits and sets of binary measurements that obey certain commutation

and anticommutation relations and generate the N-qubit Pauli group. Second, we propose a scheme,

which is a modification of the standard quantum contextuality scenario, which allows for making certi-

fication statements about quantum systems from the observed correlations, however, without making

any assumptions about the compatibility structure of the involved measurements which are made in

contextuality-based approaches. On the other hand, we introduce the first, to the best of our knowl-

edge, a general class of Bell inequalities that are maximally violated by the multipartite graph states

of arbitrary prime local dimension and show that in the qutrit case the maximal quantum violation of

these inequalities allows for self-testing of the graph states. Again, our inequalities are scalable in the

2



CHAPTER 1. INTRODUCTION

sense that the number of expectation values they consist of scales linearly with the number of parties

which is relevant from the point of view of their experimental exploitation.

In the remainder of this chapter we discuss the main ideas and mathematical formalism that we

use in later parts of the thesis. In Sec. 1.1 we introduce a general framework for probabilistic theories

and a notion of classicality based on hidden-variable models. Then, in Sec. 1.2, we describe the basic

axioms of quantum theory, whereas in Secs. 1.3 and 1.4 we show examples of quantum systems that

exhibit quantum contextuality and nonlocality, respectively. The notion of quantum entanglement

is presented in Sec. 1.5 as a basic concept in quantum theory. Finally, in Sec. 1.6, we discuss the

mathematical formalism of self-testing, crucial for the certification schemes proposed in this thesis.

1.1 Probabilistic theories and a notion of classicality

In this section, we outline the general notions and suitable mathematical framework used in the

description of experiments performed on the considered physical systems. Throughout this thesis,

we adopt an operational view of preparations and measurements, sufficiently general to encompass

classical probability theory, quantum theory, and even generalized probabilistic theories. Similar

approaches are discussed more in-depth in Refs. [26], [27].

The suitable assumptions we need here are about the nature of the experiments that can be

performed on a physical system. These assumptions pertain to the two types of available actions:

preparations - such as the generation of a quantum state - and operations - such as measurements. An

important assumption is that these experiments are reproducible, they can be performed as many times

as needed and we can use multiple repetitions of a given procedure to count relative frequencies. For

each operation performed over a preparation, there may be a finite set of outcomes, each occurring with

a well-defined probability depending on the underlying physical system. Also, there exist operations

that are performed in a sequence provided they do not demolish the physical system. Preparations

can be compared through the observed statistics in relation to the operations performed on them, and

the equivalence class of these statistics defines a physical state.

Before going into a more specific theory, i.e. the quantum theory, we formulate a few very general

definitions establishing a framework that will be our playground for the rest of the thesis.

Definition 1 (States). Two preparations are equivalent if they give rise to the same probability distri-

butions in relation to all operations. The equivalence class of preparations is called a state.

This notion of states defines, from an operational point of view, what can be inferred about a

physical system. In other words, it expresses the maximal amount of information that can be accessed

via performing available operations on it. If two physical objects exhibit the same behavior for all the

available operations they cannot be distinguished and therefore they belong to the same class, which

we name by state.

Definition 2 (Measurements). Measurements are operations with more than one outcome.

Every measurement performed on a physical system reveals a possible outcome. For instance, in

the Stern-Gerlach experiment, the effect of a non-homogeneous magnetic field splitting the beam of

atoms into two other beams up and down can be modeled as a measurement with two outcomes.

Another example is a measurement of the temperature in a city at a certain time; it is a process of
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CHAPTER 1. INTRODUCTION

revealing a number that has a physical meaning. In this case, the measurement has a continuous range

of outcomes. In this thesis, we focus on measurements with a finite number of outcomes. Let us now

move on to the notion of compatibility of measurements.

Definition 3 (Compatibility). Given a set of measurements {A1,A2, ...,An}, we say that they are com-

patible if they can be performed jointly or sequentially without changing the statistics of outcomes.

The concept of compatibility of measurements in a physical system is the key point to address.

Based on our classical intuition, we tend to think that measurements are always compatible, i.e., they

can be performed without disturbing each other like the measurements of the position and the speed

of a car.

In this general framework of probabilistic theories, the meaning of compatibility is associated

with the resulting statistics after many runs of an experiment done to collect the frequencies of the

outcomes. We say that measurements are compatible if the outcome statistics obtained after many

runs of an experiment are not disturbed by each other.

Definition 4 (Context). A context is a set of compatible measurements.

Having all the necessary notions at hand, we can now define the contextuality scenario within the

framework of generalized probabilistic theories to be a triple of sets: a set of measurements that can

be performed on a physical system, a set of outcomes of these measurements and a set of contexts.

In order to set up a notation, let {A1, ...,An} be a set of measurements that can be performed

on a system, all of them having a finite number of outcomes, and let Ci be subsets of that set,

Ci ⊂ {A1, ...,An}, that define contexts. Now, for a given context C = {Ai1 , ...,Aik} with i1 < i2 < .. . < ik =

1, . . . ,m with m≤ n, we can perform measurements and with the respective frequencies, approximate the

corresponding probability distribution. After many runs of the experiment, one may obtain satisfac-

tory approximation for probability distributions p(⃗aC |⃗AC) of obtaining outcomes ai1 , . . . ,aik := a⃗C after

performing the measurements Ai1 , . . . ,Aik := A⃗C. With this probability distribution, for each context C

we can calculate the expectation value defined as:

⟨Ai1 ...Aik⟩C = ∑
ai

ai1 ...aik p(ai1 , ...,aik |Ai1 , ...,Aik). (1.1)

The contextuality experiment is then described by a collection of probability distributions {p(⃗aCi |⃗ACi)}
corresponding to all contexts Ci. In what follows we denote this collection by

p⃗ =
⋃

i

{p(⃗aCi |⃗ACi)} (1.2)

and call it simply correlations or behavior.

Let us now illustrate the above definition with two paradigmatic scenarios often considered in the

literature, which are the Clauser-Horne-Shimony-Holt (CHSH) scenario [9] and the Klyachko-Can-

Binicioğlu-Shumowski (KCBS) scenario [10]. Fig. 1.1 presents the compatibility graphs corresponding

to each of the scenarios in which vertices represent measurements whereas edges represent compatitibil-

ity relations between measurements, in the sense that two measurements are compatible if and only if

they are connected by an edge.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Compatibility graphs of the CHSH (left) and KCBS (right) scenarios. The vertices rep-
resent the measurements, whereas the edges indicate compatibility relations between them: two mea-
surements are compatible if they are connected by an edge. In both scenarios, all the measurements
have two outcomes.

The CHSH scenario comprises four measurements that we denote by A0,A1,B0,B1. Each of them

have two outcomes, labeled by ±1. The contexts in this scenario are the four pairs of measurements

{Ai,B j} with i, j ∈ {0,1}. The KCBS scenario consists of a set of five measurements that we denote

by A0,A1,A2,A3,A4; all of them have two outcomes, which we also label as ±1. In this scenario the

contexts are the pairs of measurements {Ai,Ai+1} with i = 0, . . . ,4 where this sum is modulo 5.

In the CHSH scenario there are 16 probabilities, denoted by p(a,b|Ai,B j), that describe the exper-

iment, so the probability space belongs to R16. For any pair i, j = 0,1, these joint probabilities respect

the normalization condition: ∑a,b p(a,b|Ai,B j) = 1.

Analogously, in the KCBS scenario the probability space is a bounded subset of R20 since there are

20 probabilities forming the behavior, i.e., p(ai,ai+1|Ai,Ai+1). These satisfy ∑ai,ai+1 p(ai,ai+1|Ai,Ai+1) = 1

for every i = 1, . . . ,5.

1.1.1 A notion of classicality based on a noncontextual hidden variable model

To start the discussion about classicality, let us suppose that we want to model an ideal gas consisting

of a number of particles of the order of 1023. A possible way to do this is to directly employ the

Newton’s laws, but this would require solving 1023 differential equations of the second order to calculate

the position and velocity of all these particles which is an unfeasible task for the existing computing

devices. Instead, we can focus on statistical properties only, which are often sufficient to solve practical

problems. In this case, the statistical description is due to a lack of knowledge of the behavior of all

these 1023 particles.

The question of how probabilities emerge in the mathematical descriptions of physical systems is

a key point here. In classical statistical physics, for instance, probabilities arise as a description of a

physical system due to the lack of complete knowledge of it. However, it is assumed, that there exist

some extra variables (positions and velocities of all particles), that are discarded when measuring the

pressure or the temperature. As we will see here, quantum theory is something more in the sense that

there might not exist any physical “real” variables underlying the observed probability distributions.
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With this motivation, we introduce the mathematical definition of a non-contextual hidden variable

model:

Definition 5 (Non-contextual hidden variable model). Given a contextuality scenario, we say that

the distributions of probabilities admit a non-contextual hidden variable model if for every context

C = {Ai1 , . . . ,Aik}, the corresponding joint probabilities can be written as

p(⃗aC |⃗AC) = ∑
λ

p(λ )p(ai1 |Ai1 ,λ )...p(aik |Aik ,λ ), (1.3)

where λ belongs to a set of extra-variables, traditionally referred to as hidden variables and p(ai|Ai,λ )

are probability distributions corresponding to single measurements.

Thanks to the Abramsky-Brandeburguer (AB) theorem [28], to characterize the correlations that

admit non-contextual hidden variable models is enough to take the convex-hull of all models for which

all probability distributions p(ai|Ai,λ ) are deterministic; in fact, the set of correlations admitting the

NCHV models is a polytope. The AB theorem is a generalization of the famous Fine theorem [29]

which was proved in the context of Bell nonlocality. Consequently, to evaluate the maximum of a

linear expression in the elements of p⃗ it is enough to restrict the optimization to only the finite set of

deterministic strategies. We will illustrate this concept with two examples of linear expressions, one

defined within the CHSH scenario and one within the KCBS scenario.

The first example of a linear expression, related to the CHSH scenario, reads

ICHSH := ⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0⟩−⟨A1B1⟩ ≤ ηC = 2, (1.4)

and gives rise to the famous CHSH Bell inequality [9]. By ηC we denoted the maximal value of ICHSH

over the NCHV models (1.3). In order to determine the latter it is enough to observe that for the

deterministic NCHV models, for which ⟨AiB j⟩ = ⟨Ai⟩⟨B j⟩ and ⟨Ai⟩,⟨B j⟩ = ±1 for all i, j, , the value of

ICHSH , which is a linear expression, can be only ±2. To see that explicitly, let us observe that for the

algebraic expression a0(b0 +b1)+a1(b0−b1), where ai,b j ∈ {±1}, we have two possibilities to take into

account, b0 = b1 or b0 ̸= b1. In both cases the remaining expression will be ±2ai, and therefore the

maximal value of ICHSH is 2.

In the case of KCBS scenario [10] we consider the expression

IKCBS := ⟨A0A1⟩+ ⟨A1A2⟩+ ⟨A2A3⟩+ ⟨A3A4⟩−⟨A4A0⟩ ≤ ηC = 3. (1.5)

To show that the maximal value of IKCBS over the NCHV models is ηC = 3, we can again restrict

our attention to the deterministic strategies. One would naively expect this maximal value to be 5,

however, this is impossible since the term −⟨A4A0⟩ would have to be equal to −1 and the other terms

to be 1. This is of course impossible to achieve by simply replacing averages ⟨AiAi+1⟩ with aiai+1,

where ai ∈ {−1,1}. If we try to attain 4 we face the same problem. However, 3 can be attained if we

choose all the measurements to have the same outcome.

Another important concept to introduce here is the non-disturbance condition. If a subset of

measurements belongs to two different contexts, the marginals for this subset of measurements obtained

from the probability distributions corresponding to these contexts must coincide. To clarify the non-

disturbance condition let us take an example. In the CHSH scenario the measurement A0 belongs to

6
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two different contexts. Suppose then that we want to calculate the probability of the outcome 1. For

this measurement we can choose two contexts, one with the measurement B0 or the other with B1.

Then, the following condition must be satisfied:

p(1|A0) = ∑
b

p(1,b|A0,B0) = ∑
b

p(1,b|A0,B1). (1.6)

In the case of composite systems, the non-disturbance condition corresponds to the non-signaling

condition, which we will discuss later in Sec. 1.4.

As in Eq. (1.6), the non-disturbance condition can be expressed by a finite set of linear equations

for the elements of p⃗, and so correlations satisfying this condition also form a polytope, obtained

by intersecting the polytope of arbitrary probability distributions by a finite set of the hyperplanes

representing the above linear constraints. Every behavior p⃗ that admits the NCHV model satisfies the

non-disturbance condition. Thus, the classical set of probabilities is a polytope that belongs to the

non-disturbance polytope.

We say that a probabilistic theory is contextual if this theory gives rise to correlations p⃗ that

cannot be described by a non-contextual hidden variable model. A way to show that a probabilistic

theory is contextual is to provide an example of a p⃗ that violates some noncontextuality inequality

such as for instance the CHSH or the KCBS ones discussed above. As we will see in Sec. 1.3, quantum

theory is an example of a contextual theory.

1.2 Quantum theory

A very special example of a probabilistic theory is quantum theory. In this section, we present the rules

that define this theory and that are important in this thesis. These rules describe how the probabilities

are calculated when modelling a quantum system composed of a state and measurements. In order to

do this we first need to introduce some basic mathematical concepts. The mathematical background

of quantum theory is functional analysis and the first definition we introduce here is that of a Hilbert

space:

Definition 6 (complex Hilbert space). A Hilbert space is a complex vector space H which is equipped

with an inner product and is complete in the norm induced by this inner product.

The Reader is referred to as Ref. [30] for a more in-depth discussion about Hilbert spaces. In this

thesis, we focus on measurements that have a finite number of outcomes and Hilbert spaces with finite

dimensions are enough to describe the quantum systems. A simple example of a finite-dimensional

Hilbert space is Cd which consists of d-dimensional complex vectors and is equipped with the canonical

inner product. As any Hilbert space of dimension d is actually isomorphic to Cd , in this thesis we

simply assume that our playground is H ∼= Cd .

Having introduced the notion of Hilbert spaces, we can now define the mathematical objects rep-

resenting quantum states and measurements. Quantum states are represented by density operators

acting on the corresponding Hilbert space and quantum measurements are represented by sets of

positive semi-definite operators or, equivalently, Hermitian operators in the case of projective mea-

surements. Let us now define the above notions in a more formal way.

7



CHAPTER 1. INTRODUCTION

Definition 7 (Density Operator). A density operator ρ : H → H is a positive semi-definite operator

with Tr(ρ) = 1. A density operator represents a state of a quantum system.

The set of density operators is convex since any convex combination of two density operators is

positive semi-definite too and has trace one, therefore it is a density operator.

Definition 8 (Pure states). Pure states are extremal elements of the set of the density operators.

The extremal elements are those that cannot be written as a convex combination of two other

different density operators, so they are rank-one projectors. In other words, pure states correspond

to density matrices that can be written as ρ = |ψ⟩⟨ψ|, where |ψ⟩ is an normalized vector from the

corresponding Hilbert space H . Thus, up to a phase factor, pure states are represented by normalized

elements |ψ⟩ from the Hilbert space H .

The simplest non-trivial quantum systems of interest are qubits. These are represented by density

operators acting on a two-dimensional Hilbert space H ∼= C2 which can be expressed as:

ρ =
1
2

(I+ axX + ayY + azZ), (1.7)

where the vector a⃗ = (ax,ay,az) ∈R3 and ∥⃗a∥ ≤ 1, I is the identity operator on H , and X ,Y and Z are

the Pauli matrices:

X =

(
0 1

1 0

)
, Y =

(
0 −i

i 0

)
, Z =

(
1 0

0 −1

)
. (1.8)

Thus, every density operator on C2 can be represented by a three-dimensional real vector a⃗ with

norm ∥⃗a∥ ≤ 1. Within this representation, the case of ∥⃗a∥ = 1 corresponds to pure states, and, that of

∥⃗a∥< 1 to mixed states; in particular, for a⃗ = 0 one obtains the maximally mixed state ρ = 1
2I.

Let us denote by |0⟩ and |1⟩ the normalized eigenvectors of the Pauli matrix Z corresponding to

the eigenvalues 1 and −1, respectively. These vectors define an orthonormal basis for the Hilbert space

H = C2, meaning that any normalized element of this Hilbert space can be written as

|ψ⟩ = α|0⟩+ β |1⟩, (1.9)

where α,β ∈C and |α|2 + |β |2 = 1. Analogously, we denote by |+⟩ and |−⟩ the normalized eigenvectors,

with respective eigenvalues 1 and −1, of the Pauli matrix X , and observe that they form another

orthonormal basis in H ∼= C2.

For further purposes let us notice that for qudit systems, the Pauli matrices X and Z can be

generalized as follows:

Z =
d−1

∑
k=0

ω
k|k⟩⟨k|, X =

d−1

∑
k=0

|k + 1⟩⟨k|, (1.10)

where the index k is modulo d and ω = exp(2πi/d) is the d-th root of unity.

Ley us now move to the mathematical description of a quantum measurement and introduce the

definition of positive operator valued measure (POVM) which is the most general description of it.

Definition 9 (POMV). A measurement in quantum theory is represented by positive operators valued

measure (POVM). A measurement A with d outcomes labeled by the set {0,1, ...,d −1} is represented

8
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by a set of respective d positive semi-definite operators P0,P1, ...,Pd−1 acting on H such that

P0 + ...+ Pd−1 = I, (1.11)

where I is the identity operator acting on H .

Definition 10 (Projective measurements). Projective measurements are measurements where the posi-

tive operators P1, ...,Pd are pairwise orthogonal projectors, that is, PiPj = δi jPi (i, j = 0,1, ...,d −1).

Let us illustrate the above notion with a simple example of a two-outcome projective measurement

given by a two-element set {P0,P1}, where P0 = |0⟩⟨0| and P1 = |1⟩⟨1|; the outcomes of this measurement

are labelled a0 = 1 and a1 = −1. First, one observes that these projectors satisfy the condition (1.11),

that is,

P0 + P1 = |0⟩⟨0|+ |1⟩⟨1| = I (1.12)

and that they are orthogonal. Another representation of a projective measurement, equivalent to

the above one, is in terms of a quantum observable. Precisely, to a set of mutually orthogonal

projections {Pi} one can associate a Hermitian operator A = ∑i iPi whose eigenvalues are the outcomes

of the respective measurement. One calls such a Hermitian operator quantum observable; its spectral

decomposition contains all the information about the projectors. For instance, for the above exemplary

two-outcome measurement can be represented by the following observable

A = +1|0⟩⟨0|−1|1⟩⟨1|, (1.13)

which is basically the Z Pauli matrix. As we will see later, the representation of projective quantum

measurements in terms of observables turns out to be very useful to when computing expectation

values.

The maximal information that can be obtained about a quantum system are probabilities of ob-

taining outcomes of measurements performed on it. Given the mathematical descriptions of quantum

states and measurements, we now are able to describe how probabilities are expressed in quantum

theory. This is done via the Born’s rule defined as:

Definition 11 (Born’s rule). The probability of the outcome ai when the projective measurement A is

performed in the state ρ is given by

p(ai|A) = Tr(ρPi). (1.14)

Moreover, the post-measurement state corresponding to the outcome ai is given by

PiρPi

Tr(PiρPi)
. (1.15)

Suppose now we perform the projective measurement represented by the observable A in Eq. (1.13)

on a state |ψ⟩ = α|0⟩+ β |1⟩. The probabilities of obtaining the outcomes 1 and −1 are given by:

p(1|A) = Tr(|ψ⟩⟨ψ||0⟩⟨0|) = |⟨ψ|0⟩|2 = |α|2, (1.16)

p(−1|A) = Tr(|ψ⟩⟨ψ||1⟩⟨1|) = |⟨ψ|1⟩|2 = |β |2. (1.17)

Notice that the normalization condition is satisfied because p(1|A)+ p(−1|A) = |α|2 + |β |2 = 1. In this

9



CHAPTER 1. INTRODUCTION

case the orthonormal basis used to express the state |ψ⟩ is exactly the eigenbasis of the observable

and this is why the probabilities are exactly |α|2 and |β |2. The expectation value of A on the state

|ψ⟩ is given by

⟨A⟩ψ = +1p(1|A,ψ)−1p(−1|A,ψ) = Tr(|ψ⟩⟨ψ|A) = ⟨ψ|A|ψ⟩. (1.18)

This simple example demonstrates the utility of the notion of quantum observables in computing the

mean values.

Now, let us notice that if the same measurement is performed twice in a sequence, the probability

of obtaining the same outcome is one, so the measurements in quantum theory respect a condition of

repeatability. For instance, suppose that after the measurement A was performed on |ψ⟩, we obtained

the outcome +1. According to Eq. (1.15) the state after the measurement is given by

|0⟩⟨0|ψ⟩⟨ψ|0⟩⟨0|
|α|2 = |0⟩⟨0|. (1.19)

Now, if the measurement A is performed again on the above state, the experimenter will observer

the same outcome with probability 1. The same happens if the first measurement yields the outcome

−1. At this point we are ready to introduce the notion of compatibility of measurements in quantum

theory.

Definition 12 (Compatible quantum measurements). We then say that a pair of projective measure-

ments represented by the observables Ai and A j are compatible if, and only if, [Ai,A j] = 0.

The above definition extends directly to the case of more measurements: a set of measurements

A1, . . . ,An is compatible iff any pair of measurements from that set commute. Now, given a set of

pairwise compatible projective quantum measurements A1, ...,An, we can calculate the expectation

value for this set of measurements (which can be performed jointly or in sequence) by:

⟨A1...An⟩ρ = Tr(ρA1...An). (1.20)

It is worth to comment here that the expression (1.20) does not hold true if the measurements

are not compatible. The mean values for non-compatible measurements performed in sequence should

take into account the post-measurement state as described in the Born’s rule (11) and the expression

for the mean value turns out to be different. In the case of two measurements performed in sequence,

first A1 and then A2, the mean value is:

⟨A1A2⟩ρ =
1
2

Tr(ρ{A1,A2}). (1.21)

Given the set of rules about how to describe quantum states, quantum measurements, relations

of compatibility between measurements and the Bors’s rule, we can now move on to showing that

quantum theory is a contextual theory.

1.3 Quantum theory as a contextual theory

In what follows we will present two different approaches to prove that quantum theory is contextual.

First, in Sec. 1.3.1, we provide an example of a state in a three-dimensional Hilbert space and a set
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of measurements that violate the KCBS inequality stated in Eq. (1.5); this is the simplest example

known in the literature. Then, in Sec. 1.3.2 we show that there are sets of quantum measurements that

do not simultaneously admit deterministic assignments of outcomes; this property is usually referred

to as state-independent quantum contextuality because it concerns only sets of measurements, not

quantum states.

1.3.1 State-dependent quantum contextuality

For convenience, let us state here again the KCBS inequality together with the corresponding classical

bound derived already in Sec. 1.3.1,

IKCBS := ⟨A0A1⟩+ ⟨A1A2⟩+ ⟨A2A3⟩+ ⟨A3A4⟩−⟨A4A0⟩⩽ η
C = 3. (1.22)

Let us then consider the following one-qutrit state

|ψ⟩ = |0⟩ ≡ (1,0,0)T (1.23)

as well as five observables defined as

Ai = 2|vi⟩⟨vi|−1, (1.24)

where |vi⟩ are three-dimensional real vectors given by

|vi⟩ = (cosθ ,sinθ sinφi,sinθ cosφi)
T , (1.25)

where θ is defined as cosθ =
√

1/(1 + 2α) with

α =
1
2

sec
(

π

3

)
(1.26)

and

φi =
2
3

πi. (1.27)

It is not difficult to verify that ⟨vi|vi+1⟩ = 0 for i = 0, . . . ,4 and therefore the pairs of observables Ai

and Ai+1 commute, that is, [Ai,Ai+1] = 0. In this way, we certify that this quantum realization actually

fits the compatibility structure of the KCBS scenario as described in the Sec. 1.1 and pictured in

Fig. 1.1. Fig. 1.2 illustrates this quantum realization geometrically. After calculating the expectation

values for the compatible pairs of measurements, it can be checked that

IKCBS := ⟨A0A1⟩+ ⟨A1A2⟩+ ⟨A2A3⟩+ ⟨A3A4⟩−⟨A4A0⟩ =
3cos(π/5)−1
1 + cos(π/5)

5 ∼= 3,9. (1.28)

We thus conclude that the above three-dimensional quantum realization violates the noncontextuality

inequality (1.5). In this sense quantum theory is contextual.

It is important to notice that the value of IKCBS in Eq. (1.28) is the maximal one that IKCBS can

achieve in quantum theory [10]. Apart from this, the above quantum realization is unique up to

an arbitrary unitary transformation. This fact motivates exploiting quantum contextuality for the

purpose of certification of quantum states and measurements and actually underlies the concept of

contextuality-based self-testing of quantum systems we exploit in this thesis (see Sec. 1.6 for a rigorous
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Figure 1.2: Geometrical representation of a quantum realization that violates maximally the KCBS
inequality. The blue vector represents the quantum state (1.23) whereas the black vectors represent
the vectors (1.25) defining the five measurements.

definition of self-testing).

In the previous sections, we explained that the sets of classical probabilities as well as those

respecting the non-disturbance condition, are both polytopes in the space of correlations. Let us

now comment on the set of quantum correlations, i.e., correlations that are obtained by performing

quantum measurements on quantum states, and also also discuss its relation to the previous two sets

(see Fig. 1.3).

The first thing to take into account is that the set of probabilities that are described by quantum

theory is convex, given that we do not impose any constraints on the dimension of the underlying

Hilbert space, i.e., any convex combination of probability distributions achievable within quantum

theory gives rise to another quantum realization [31], which, however, might be defined in a higher-

dimensional Hilbert space. The second point here is that while any probability distribution admitting

the NCHV model (1.3) can be reproduced by quantum theory with a convenient choice of compatible

measurements and a quantum state, the quantum set contains behaviors p⃗ such as for instance the

one presented above that cannot be reproduced by the NCHV models. So the classical polytope

is a proper subset of the convex quantum set. At the same time, it is not difficult to verify that

quantum correlations respect the non-disturbance condition, and hence the quantum set belongs to

the non-disturbance polytope.

Let us finally notice that both the CHSH and the KCBS inequalities are particular examples

belonging to a family of noncontextual inequalities, usually referred to as n-cycle inequalities (n ≥ 4),

which are of the following form

In−cycle :=
n−1

∑
i=0

γi⟨AiAi+1⟩⩽ η
C = n−2, (1.29)

where γi ∈ {−1,1} and the number of negative coefficients γi is odd. Notice that the graphs of com-
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Figure 1.3: Pictorial representation of the set of probabilities. The classical polytope C is contained
in the convex quantum set Q which in turn is contained in the non-disturbance polytope N D . The
red straight lines represent the noncontextuality inequalities characterizing the classical polytope in
the set of probabilities.

patibility for the CHSH and the KCBS scenarios presented in Fig. 1.1 are n-cycles for n = 4 and n = 5,

respectively. In this most general scenario, the contexts are given by the pairs of measurements Ai and

Ai+1, i.e., [Ai,Ai+1] = 0 with the sum modulo n and all the measurements have two outcomes ±1. The

quantum bound for this inequality is known to be [32]

η
n
Q =





3ncos(π/n)−n
1 + cos(π/n)

, if n is odd

ncos(π/n), if n is even
(1.30)

The quantum bound for odd n is attained in a three-dimensional Hilbert space and the correspond-

ing set of measurements has a quite similar geometric structure to the set of measurements that gives

rise to the maximal violation of the KCBS inequality. On the other hand, for even n, the quantum

realization attaining ηn
Q lives in a four-dimensional Hilbert space. The Reader is referred to [32] for

more details about the n-cycle inequalities.

As for the CHSH Bell inequality, we provide a quatum realization maximally violating it later in

Sec. 1.5, where we also introduce composite quantum systems and discuss that nonlocality is a special

case of quantum contextuality.

1.3.2 State-independent quantum contextuality

In this subsection we show further interesting examples of quantum contextuality, which are indepen-

dent of quantum states. One of the most peculiar features about quantum contextuality is that there

are special sets of measurements that cannot be jointly assigned to deterministic outcomes. One of the
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most intriguing interpretations of this feature is that the measurement does not reveal a pre-defined

outcome that is independent of any other compatible measurement performed on a quantum system.

The first example in the literature that shows the existence of state-independent quantum contex-

tuality is due Kochen and Specker [7]. The theorem proven by these authors is a “no-go” theorem. In

this proof they exhibited a set of 117 rank-one projectors acting on H = C3 that obey certain orthog-

onality relations, and showed that it is impossible to simultaneously assign deterministic outcomes to

all of the associated measurements. Other such proofs with less rank-one projections or measurements

can be found in Refs. [33]-[34]-[35]-[36].

Another example is the Peres-Mermin square [37]-[38] which is one of the simplest proofs of state-

independent quantum contextuality. It consists of nine measurements, which we denote here by Mi j

with i, j ∈ {1,2,3}, all of them have two outcomes, labelled by 1 and −1. The measurements are

organized into a 3×3 square in such a way that the measurements belonging to its rows and columns

form six contexts [see Fig. 1.4]. Finally, the measurements are assumed to satisfy a set of conditions:

Mi1Mi2Mi3 = I (i = 1,2,3), (1.31)

M1iM2iM3i = I (i = 1,2) (1.32)

and

M13M23M33 = −I. (1.33)

In other words, the product of the observables forming each context is the identity except for the last

column for which it is −I. It turns out that the simplest quantum realization of the measurements

Mi j satisfying all the above requirements is given by

M11 = X ⊗ I, M12 = I⊗X , M13 = X ⊗X ,

M21 = I⊗Z, M22 = Z ⊗ I, M23 = Z ⊗Z,

M31 = X ⊗Z, M32 = Z ⊗X , M33 = Y ⊗Y, (1.34)

where X ,Y and Z are the qubit Pauli matrices. At the same time it is impossible to find nine classical

variables taking values ±1 that would satisfy the above constraints, which proves quantum theory to

be a contextual theory.

1.4 Quantum theory as a nonlocal theory

This part is dedicated to composite systems, which are systems composed of many systems (referred

to as subsystems) that are spatially separated. We will explain here the notions of a Bell scenario and

Bell nonlocality which can be seen as a particular case of contextuality for composite systems in which

compatibility of measurements is guaranteed by spatial separation. In fact, historically, the concept

of Bell non-locality was developed first [2] and only later generalized to quantum contextuality [7].

We begin by illustrating the Bell scenario in the simplest possible case. To this end, we consider a

system, be it classical, quantum or even one falling in the framework of GPTs, which is composed of two

spatially separated subsystems that are distributed among two parties, named Alice and Bob. Let us
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Figure 1.4: The Peres-Mermin square. In this graph, the vertices represent the measurements Mi j

and the lines the contexts. The product of the Hermitian operators associated to the same line always
equals I, except for the third vertical line, for which it is −I. This leads to a contradiction when trying
to simultaneously assign a classical deterministic strategy to the outcomes of all the nine measurements
and it is one of the simplest proofs of state-independent quantum contextuality.

then assume that both parties can freely choose to perform one of two measurements on their systems;

Alice’s and Bob’s measurements are denoted Ai and B j, respectively. Each of these four measurements

has two outcomes and we label them by ±1. Fig. 1.5 depicts this bipartite Bell scenario.

As already outlined in Sec. 1.1, the correlations generated in this experiment are described by a

collection of probability distributions p⃗ = {p(a,b|Ai,B j)}, where a and b stand for the outcomes of Alice

and Bob, respectively. For composite systems a non-contextual hidden variable model introduced in

Sec. 1.1 in which compatibility of measurements is guaranteed by spacial separation is referred to as

a local hidden variable model. The non-disturbance condition within the framework of Bell scenario

is then referred to as the non-signalling condition which says that information cannot be transmitted

between separated systems at arbitrary speed.

Since there is a spatial separation between Alice’s and Bob’s laboratories, they can perform the

local measurements instantaneously in a such way that there is no way of classical communication

between them as represented in Fig. 1.6; in other words, one event in the space-time does not belong

to the light cone of the other event. Hence, we can consider the measurements performed in different

locations as compatible.

Let us now show that quantum theory is nonlocal in the sense that it gives rise to correlations p⃗

which violate Bell inequalities. Before doing that we need, however, to introduce the description of

composite system within the framework of quantum theory, concentrating on the simplest bipartite

systems; it is direct to generalize what follows to systems consisting of an arbitrary number of com-

ponents. For this purpose, we consider two systems A and B which are described by Hilbert spaces

HA and HB. Then, the joint system is represented by a Hilbert space which is a tensor product of the

15



CHAPTER 1. INTRODUCTION

Figure 1.5: Representation of a bipartite Bell scenario. This scenario comprises a state S which is
shared between two labs. In each lab Alice and Bob can perform instantaneously the measurements
A j and B j respectively, where i, j ∈ {0,1}. Each measurement have 2 outcomes, labelled by a,b where
a,b ∈ {−1,1}. After many runs of a experiment, the probabilities p(a,b|Ai,B j) can be calculated as
well the expectation values ⟨AiB j⟩.

Figure 1.6: This figure represents the light’s cone of the events associated to the local measurements of
Alice and Bob on a quantum state shared by them. Let us observe that one event does not belong to
the light’s cone of another one. In the inertial referential showed, both events happen simultaneously
and thus there is no way that one event influences the outcome of the other event. This means that
the measurements performed by Alice and Bob can be considered compatible.
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local ones,

H = HA ⊗HB. (1.35)

Recall that a tensor product of Hilbert spaces Hi is also a Hilbert space defined as a linear span of all

vectors belonging to both HA and HB, and its dimension is simply a product of the dimensions of the

local spaces, i.e., dimH = dimHA ·dimHB.

In particular, to construct a basis of H it is enough to take a tensor product of bases of the

local Hilbert spaces. To illustrate this with an example, let us consider the case where dim(HA) =

dim(HB) = 2 and let us take the local orthonormal bases to be simply the computational ones: HA =

span{|0⟩A, |1⟩A} and HB = span{|0⟩B, |1⟩B}. Then,

H = span{|0⟩A ⊗|0⟩B, |0⟩A ⊗|1⟩B, |1⟩A ⊗|0⟩B, |1⟩A ⊗|1⟩B}. (1.36)

In what follows, for simplicity, we denote the tensor product by |i⟩A ⊗ | j⟩B = |i j⟩. Interestingly, the

structure of the joint Hilbert space H is much richer than can be naively inferred from its definition

because apart from the simple vectors given in Eq. (1.36), it contains also pure states which cannot

be expressed as a tensor product of pure states belonging to the local Hilbert spaces. Such states are

called entangled [cf. Sec. 1.5] and a celebrated example of such a state is one that has found numerous

applications within the field of quantum information, for instance, in quantum quantum teleportation

[39] or quantum cryptography [15], and is typically refereed to as the maximally entangled state of

two-qubits:

|ψ⟩ =
|00⟩+ |11⟩√

2
. (1.37)

Let us finally discuss the measurements. Suppose that on their local systems one of the parties, say

Alice, performs a measurement represented by an observable A. Then, the associated operator acting

on the joint system is A⊗I. In a analogous way one represents the measurements of Bob. If, moreover,

Alice and Bob perform these measurements simultaneously, the associated Hermitian operator is A⊗B.

Given the description of the state and measurements, the Born’s rule (11) to calculate the probabilities

and the state after the measurements follow straightforwardly.

We are now ready to show that quantum theory is nonlocal. With this purpose, we focus our

attention to the CHSH Bell inequality (1.4) and assume that Alice and Bob now share the two-qubit

maximally entangled state (1.37) and measure on their local systems the following observables:

A0 = X , B0 =
X + Z√

2
, (1.38)

A1 = Z, B1 =
X −Z√

2
. (1.39)

After some calculations one finds that the value for the CHSH expression amounts to

ICHSH := ⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0⟩−⟨A1B1⟩ = 2
√

2, (1.40)

which clearly exceeds the maximal value of ICHSH over NCHV models which is 2. Importantly, the value

2
√

2 in (1.40) is the maximal one that I can reach within quantum theory [40], [41], and, moreover,

the quantum state (1.37) and measurements (1.38) giving rise to this maximal value are unique up

to certain well-known equivalences. This fact lies at the heart of self-testing schemes, which are used
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for certification of quantum systems based on the observed nonclassical correlations [17] (see also Sec.

1.6). In Chapter 4 we provide a general construction of Bell inequalities that are maximally violated

by multipartite graph states of arbitrary prime local dimension and show that in the particular case

of qutrit systems, the obtained Bell inequalities can be used for self-testing.

It is worth commenting here that extensions of this scenario to situations involving more observers,

measurements, or outcomes can be done naturally, and there are many results in the literature studying

such generalizations [42]–[46].

1.5 Entanglement

Entanglement is a crucial concept in quantum theory. It contains a basic notion of nonclassicality for

composite systems and it is also a key feature of quantum theory enabling Bell nonlocality. First, we

introduce a formal definition of a separable and entangled states:

Definition 13 (Bipartite separable and entangled states). A pure bipartite state |ψAB⟩ ∈ HA ⊗HB is

separable if it can be written as a tensor product of pure states describing each subsystem, that is,

|ψAB⟩ = |ψA⟩⊗ |ψB⟩. On the other hand, |ψAB⟩ is called entangled if it is not separable.

In order to continue the discussion about entanglement, let us consider a simple example of a pure

entangled state composed of two qubits:

|ψ⟩ = α|00⟩+ β |11⟩, (1.41)

where α,β are complex numbers such that |α|2 + |β |2 = 1 and α,β ̸= 0. Notice that the entangled

state (1.37) that maximally violates a Bell inequality is a particular case when α = β = 1√
2
.

Any pure two-qubit state which is separable can be written as:

|φ1⟩⊗ |φ2⟩ = α1α2|00⟩+ α1β2|01⟩+ β1α2|10⟩+ β1β2|11⟩, (1.42)

where |φ1⟩ = α1|0⟩+ β1|1⟩ and |φ2⟩ = α2|0⟩+ β2|1⟩ are local normalized vectors. After comparing Eqs.

(1.41) and (1.42), one sees that

|ψ⟩ = α|00⟩+ β |11⟩ ̸= |φ1⟩⊗ |φ2⟩ (1.43)

because the equations α1β2 = β1α2 = 0, α1α2 = α and β1β2 = β cannot be simultaneously satisfied for

α,β ̸= 0. Trivial examples of separable states are for instance the elements of the product basis which

spans the the two-qubit Hilbert space C2 ⊗C2, i.e., {|00⟩, |01⟩, |10⟩, |11⟩}. On the other hand, the four

states defined below,

|ψ±⟩ =
|00⟩± |11⟩√

2
, |φ±⟩ =

|01⟩± |10⟩√
2

, (1.44)

which are usually called the Bell states, are all entangled, and also span C2 ⊗C2. The Bell states, are

examples of the maximally entangled states of two qubits. On the other hand, for all values of α and

β such that |α| ̸= |β | and α,β ̸= 0 the state (1.41) is non-maximally entangled.
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Some interesting behaviors happen in composite systems when the shared state is pure and entan-

gled. In order to support this statement let us assume that a Bell state is shared between Alice and

Bob. If Alice performs the local measurement associated with the Pauli matrix Z, after collecting the

result of the outcome, she knows the updated state and, consequently, she knows instantaneously the

outcome of the measurement Z performed locally by Bob independently of the distance between them.

At first sight, we could think that this would violate the basic principle in nature that information

can be transmitted only with finite speed, however, Alice does not have control of any information

that could be sent to Bob. It is like the famous ”spooky action at a distance” pointed out in the EPR

paradox [1]. The properties of quantum theory like this one are at the heart of quantum information

protocols such as quantum teleportation [39], [47], [48], entanglement distillation [49], [50], quantum

cryptography [51] and quantum computing [52], [53].

Let us also briefly discuss the notion of multipartite entanglement, which corresponds to a situation

in which a quantum system at hand consists of more than two subsystems. Analogously to the bipartite

case, a multipartite pure state is called entangled if it cannot be written as a tensor product of pure

state describing individual subsystems. An example of a multipartite entangled state is the N-qubit

Greenberger–Horne–Zeilinger (GHZ) state:

|GHZN⟩ =
1√
2

(|0⟩⊗N + |1⟩⊗N), (1.45)

where is an arbitrary integer such that N ≥ 2. Following the same reasoning as above, it is not difficult

to show that this state cannot be written as a tensor product of local states, so it is entangled.

While in the case of the pure states we discussed here, i.e. (1.41) and (1.45), it was not difficult to

show that they are entangled, the problem of deciding whether an arbitrary mixed quantum state is

entangled or not is a highly non-trivial task; in fact, as shown in Ref. [54], this is an NP-hard problem.

It is worth mentioning here that nevertheless there exist methods to detect entanglement of quantum

states such as the one based on partial transposition [55] (see also the review [56] for other methods

of entanglement detection).

A point we have to comment on here also is the relation of entanglement with Bell nonlocality. If

a state is separable, it will not violate any Bell inequality, so entanglement is a necessary resource for

nonlocality. In fact, any state that exhibits nonlocality in the sense that it violates some Bell inequality

is entangled. However, the opposite implication is in the general mixed-state case not true as there

exist entangled states which do not violate Bell inequalities [57]. Moreover, if the local measurements

at Alice’s or Bob’s sides commute, it is again impossible to violate a Bell inequality; in particular, in

the case of the CHSH Bell inequality, one can verify that the local measurements given in Eq. (1.38)

do not commute. Let us finally mention that as proven in a series of papers [40], [41], [58], [59] the

maximal quantum violation of the CHSH inequality can be achieved if, and only if the underlying

state and measurements are equivalent, under certain well-defined equivalences, to the maximally

entangled state of two qubits (1.37) and the particular Pauli measurements specified in Eqs. (1.38)

and (1.39). This form of uniqueness of the quantum realization giving rise to the maximal violation

of Bell inequalities is the key fact behind the notion of self-testing (see Sec. 1.6 for a definition) which

is a central concept in this thesis.
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1.5.1 Graph states

Let us now introduce the definition of graph states of arbitrary prime local dimension [60]-[61]. This

is a particular class of multipartite entangled quantum states that has found numerous applications in

quantum information processing. For instance, the cluster states, which are a particular instance of

graph states, are a key resource for a scheme of one one-way quantum computing [52]-[53]. Then, some

constructions for quantum error-correction codes are based on them [60]-[62] and they find applications

in quantum cryptography [63]. Finally, graph states exhibit non-local properties [64] and can be self-

tested [65]-[22]. Apart from that, graph states have a very convenient mathematical representation

which is helpful in designing certification methods for them. For both these reasons graph states are

studied in this thesis.

Consider a weighted graph G = (V ,R,d), where V := {1, . . . ,N} is the set of vertices and R := {ri j}
is the set of integer numbers from the set {0, . . . ,d − 1} specifying the weights of the edges between

the vertices i, j ∈ V ; in the particular case of ri j = 0 there is no edge connecting vertices i and j. We

additionally assume that rii = 0 for each i, that is, there are no loops in the graph and that ri j = r ji,

i.e., the edges are symmetric between themselves. Throughout this thesis we assume d to be prime

and the graph to be connected meaning that there exists a path between every pair of vertices.

Let us now show how to use graphs to construct pure quantum states. To this aim, we assume that

each vertex of G corresponds to a single d-dimensional subsystem of an N-partite quantum system,

where as already stated d is a prime number such that d ≥ 2. To each vertex i ∈ V of the graph we

then associate a stabilizing operator defined as,

Gi = Xi ⊗
⊗

j ̸=i

Zri j
j , (1.46)

where X ,Z are the generalizations of the qubit Pauli matrices to the d-dimensional Hilbert spaces

defined in Eq. (1.10), and ri j are powers of the Z operator. Then, the graph state corresponding to

the graph G is defined in the following way:

Definition 14. We define the qudit graph state |G⟩ associated to the weighted graph G = (V ,E ,d) to be

the unique normalized vector from (Cd)⊗N stabilized by the corresponding operators Gi (1.46), that is,

∀i = 1, . . . ,N Gi|G⟩ = |G⟩. (1.47)

In other words, |G⟩ is the unique common eigenstate of all operators Gi corresponding to the eigenvalue

+1.

It is worth noting that the stabilizing operators (1.46) mutually commute and the Abelian group

generated by them, being a subgroup of the N-qudit Pauli group, is called a stabilizer. In fact,

the above definition of graph states falls within the stabilizer formalism which is known for its use

in quantum error correction [66]. The latter is a very convenient way of representing multipartite

entangled quantum states or even entangled subspaces and thus is another central concept in this

thesis.

In the qubit case, when d = 2, the weights ri j take only two values, zero or one, corresponding to

the absence or presence of an edge between vertices i and j. Thus, for simplicity, we denote the graph

by G = (V ,E ), where, E is the set of edges connecting vertices. In this case, we also denote by N (i)
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Figure 1.7: The simplest connected graph giving rise to bipartite maximally entangled states such as
the one in Eq. (1.37).

the neighborhood of the vertex i, i.e., the subset of vertices which are connected to the vertex i by an

edge and the definition of the stabilizing operators is given by

Gi = Xi ⊗
⊗

j∈N (i)

Z j, (1.48)

where X ,Z are the qubit Pauli matrices and the definition of the qubit graph states is just a particular

case of Def. 14.

Let us now introduce a few examples of graph states in the simplest case of d = 2. The simplest

graph is the one that consists of two connected vertices [cf. Fig. 1.7]. The stabilizing operators

associated to this graph are given by:

G1 = X ⊗Z, G2 = Z ⊗X . (1.49)

Let us now use this example to exhibit the self-consistence of the definition of graph states through

the stabilizer formalism. We will show that there exist a unique eigenvector with eigenvalue 1 of both

stabilizing operators in Eq. (1.49). Each of them is a Hermitian operator with eigenvalues ±1, where

each eigenvalue is doubly-degenerate. The eigenspaces of G1 and G2 corresponding to the eigenvalue

1 are, respectively, span{|+ 0⟩, |−1⟩} and span{|0+⟩, |1−⟩}. The intersection of these two subspaces

is one-dimensional subspace spanned by (1/
√

2)(|+ 0⟩+ |−1⟩). So, the unique (up to a global phase)

common eigenstate with eigenvalue 1 of both stabilizing operators is |G1⟩ = (1/
√

2)(|+ 0⟩+ | − 1⟩),
which is equivalent to the maximally entangled state of two qubits up to a local unitary.

The other two examples of connected graphs with three vertices are depicted in Fig. 1.8. The

graph on the left side is complete, i.e., every pair of vertices in it is connected by an edge. The unique

three-qubit state associated to this graph is stabilized by the following three stabilizing operators

G1 = X ⊗Z ⊗Z, G2 = Z ⊗X ⊗Z, G3 = Z ⊗Z ⊗X , (1.50)

and its explicit form reads

|G2⟩ =
1√
8

(|000⟩+ |100⟩+ |010⟩− |110⟩+ |001⟩− |101⟩− |011⟩− |111⟩). (1.51)

The graph on the right side in Fig. 1.8 is another three-vertex graph which is not isomorphic to

the complete graph. The unique three qubit state associated with this graph is stabilized by

G1 = X ⊗Z ⊗Z, G2 = Z ⊗X ⊗ I, G3 = Z ⊗ I⊗X , (1.52)
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Figure 1.8: Two non-isomorphic graphs with 3 vertices. On the left side a complete graph and on the
right side another three-vertex graph which is inequivalent to the first one.

and is given by

|G3⟩ =
1√
8

(|000⟩+ |100⟩+ |010⟩− |110⟩+ |001⟩+ |101⟩− |011⟩+ |111⟩). (1.53)

Interestingly, although both these states |G2⟩ and |G3⟩ correspond to non-isomorphic graphs, they

are actually equivalent to the same three-qubit GHZ state

|GHZ3⟩ =
1√
2

(|000⟩+ |111⟩) (1.54)

up to local unitary transformations.

Let us finally provide an alternative definition of the graph states, which exhibits how these states

can be implemented, for instance on a quantum computer [cf. Ref. [67]]:

|G⟩ = ∏U rab
ab |+⟩⊗N , (1.55)

where |+⟩ is the eigenstate of the Pauli matrix X and Uab is a unitary matrix raised to the power ri j

that acts on qubits a and b, and it is given by the following expression:

Uab = |0⟩a⟨0|⊗ Ib + |1⟩a⟨1|⊗Zb + ...+ |d −1⟩a⟨d −1|⊗Zd−1
b =

d−1

∑
m=0

|m⟩a⟨m|⊗Zm
b . (1.56)

For the qubit case, the matrix Uab is given by:

Uab =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1




= |0⟩a⟨0|⊗ Ib + |1⟩a⟨1|⊗Zb, (1.57)

which is also known as the controlled Z gate. A suitable comment here is that Uab = Uba, as can

be checked, and that all of these unitary transformations acting in different vertices commute among
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themselves, i.e., [Uab,Ucd ] = 0 for all vertices denoted by a ̸= b and c ̸= d . As a consequence, the ordering

of the unitaries in the usual matrix product plays no role in the definition (1.56) and therefore the

graph states are well defined since the graph does not distinguish edges between different vertices.

This alternative definition brings interesting physical interpretations of graph states. To prepare

a graph state, for instance, we could start with the state which is a tensor product of eigenstates

of the qubit Pauli matrix X , i.e. |+⟩⊗N , and then apply the non-local unitaries Uab which create

entanglement in the state. The initial state can be for instance obtained by preparing each qubit

in the ground state |0⟩ and applying the Hadamard gate to it, whereas the action of the non-local

unitaries can be implemented by a suitable Hamiltonian acting on pairs of qubits.

In summary, while the second definition of the graph states provides also a recipe of how to

physically generate these states, the definition based on the stabilizer formalism is a convenient math-

ematical tool that allows us to design certification methods for them and thus is highly relevant for

the thesis. More details about entanglement in graph states can be found in the review [67].

1.6 Self-testing

Self-testing is one of the strongest forms of device-independent certification whose main goal is to

exploit the observed non-classical correlations to deduce the form of the quantum state and measure-

ments that gave rise to these correlations [17] (see also the recent review [18]). Self-testing is thus of

black box type certification method that allows making nontrivial statements about the underlying

quantum system from the violation of Bell or noncontextuality inequalities without making assump-

tions on the system. The main idea behind the proofs of self-testing lies in the uniqueness (up to

certain equivalences) of the quantum realization that attains the maximal quantum violation of some

inequalities such as the CHSH or the KCBS inequalities described above.

Below follows a formal definition of self-testing based on violation of noncontextuality inequalities

that was first put forward in Ref. [68]. We use this definition later in Chapters 2 and 3.

Definition 15 (Self-testing from contextuality). Suppose an unknown state |ψ⟩ ∈ H and a set of mea-

surements Ai violate a given noncontextuality inequality maximally, then this maximal quantum viola-

tion self-tests the state |ψ̃⟩ ∈Cd and the set of measurements Ãi if there exists a projection P : H →Cd

and a unitary U acting on Cd such that

U†(PAiP†)U = Ãi (1.58)

U(P|ψ⟩) = |ψ̃⟩. (1.59)

Let us also state the definition of self-testing in the case of Bell scenarios which historically was

in fact introduced earlier than the above one. For pedagogical reasons we provide it for bipartite

scenarios, noting that the generalization to the multipartite case can straightforwardly be obtained

by adding more observers. Also, we formulate it in a slightly different manner as compared to the

original one [69] because we use unitary operations instead of isometries.

Definition 16 (Self-testing from nonlocality - bipartite Bell scenario). Let us suppose that a bipartite

Bell test is performed on an unknown state |ψ⟩ ∈ HA ⊗HB and with unknown measurements Ai (Ai :

HA → HA) and B j (B j : HB → HB). We say that the observed correlations p⃗ self-test the state |ψ̃⟩ ∈
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CdA ⊗CdB and the measurements Ãi and B̃ j if one can prove that: (i) the local Hilbert spaces HA and

HB decompose as HA =C
dA ⊗H ′

A and HB =C
dB ⊗H ′

B , (ii) there exist local unitary operations UA and

UB such that

UA ⊗UB|ψ⟩ = |ψ̃⟩⊗ |aux⟩ (1.60)

for some auxiliary state |aux⟩ ∈ H ′
A ⊗H ′

B and, moreover,

U†
A AiUA = Ãi ⊗ I, U†

B B j UB = B̃ j ⊗ I. (1.61)

We remark that compared to the definition stated for self-testing based on noncontextuality in-

equalities, the definition used for Bell nonlocality does not use any projection operator. The difference

remains in the fact that the projectors in the first definition discard the auxiliary Hilbert Space. Both

definitions are different points of view of similar mathematical structures.

A simple example of an inequality useful for certification purposes is the CHSH inequality [40]-

[70]. Its maximal violation self-tests, up to the equivalences specified in the above definition, the

maximally entangled state of two qubits (1.37) and four measurements (1.38)-(1.39), which locally

anti-commute. Thus, this quantum realization is the unique one in the two-qubit Hilbert space that

up to local unitary operations attains the maximal quantum violation of the CHSH Bell inequality.

This is the first example in the literature about a certification scheme based on maximal violation of a

Bell inequalty and since then self-testing schemes for other quantum states have been proposed (see,

e.g., [19]–[24]). Our thesis fits this line of research. In fact,in Chapter 4 we present the article with a

self-testing result for qutrit graph states [71].

Another example of an inequality that self-tests a quantum system is the KCBS inequality (1.22).

The quantum realization we described in section (1.3.1) is, up to a unitary equivalence, the unique

one in H = C3 that gives rise to the maximal violation of this inequality, up to a global unitary [25].

As already mentioned self-testing methods based on Bell inequalities are device-independent as they

do not depend on any assumption on the state and measurements. In a Bell test, the fact that the

measurements performed by different observers commute is guaranteed by spatial separation. At the

same time, it is worth mentioning that the assumption of commutativity of measurements is a weakness

of self-testing schemes based on noncontextuality inequalities. It was one of the main aims of this thesis

to provide a method allowing to certify the quantum realizations giving rise to the maximal violation

of the KCBS or the n-cycle inequalities without assuming the compatibility structure of the underlying

measurements. In fact, in Chapter 2 we present a scheme based on sequential measurements which

allows one to drop the assumption of commutativity between measurements [72]. Then, in Chapter 3

we present a self-testing scheme based on the standard contextuality scenario [73].

Let us notice that to provide a self-testing scheme for a particular quantum realization one typ-

ically follows a similar strategy which consists of constructing a non-trivial Bell or noncontextuality

inequality which is maximally violated by this realization. Then, one needs to prove that the latter is

unique up to the equivalences specified in the definitions above and a possible way to realize this last

task is to construct a sum-of-squares decomposition for a given inequality (see, e.g., [21], [23], [72],

[74]–[76]) an then solve the resulting algebraic relations for the state and measurements. From the

numerical perspective, there are techniques inspired by convex optimization methods, in particular
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semi-definite programming (SDP) [25]-[77].

On the other hand, it worth to comment here that the self-testing schemes have intrinsic limitations.

It is known for instance that product states cannot violate Bell inequalities, so there is no way to self-

test any product state based on maximal violation of Bell inequalities. Moreover, it is not possible to

self-test mixed entangled states from maximal Bell violations because these are always achieved with

pure states. It is nevertheless possible to certify some genuinely entangled subspaces (or, equivalently,

all mixed states acting on them) [78]. In the case of quantum contextuality it is not possible to certify

entangled states because of the ”global” unitary freedom involved in the definition of self-testing.

Let us conclude by noting that self-testing might be an interesting option for certification in the

device-independent framework (see, e.g., Ref. [18]). In fact, there already exist self-testing schemes for

entangled states that are resources for many applications which range from device-independent ran-

domness generation [79], device-independent quantum cryptography [80]–[82], entanglement detection

[83], [84] and delegated quantum computing [85], [86]. Also, self-testing can be used to witness the

dimension of the underlying quantum system; for instance, in the case of KCBS inequality its maximal

violation certifies that the underlying quantum system is at least three-dimensional.
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Chapter 2

Paper I

2.1 Sum-of-squares decompositions for a family of noncontextuality inequal-

ities and self-testing of quantum devices

One of the simplest inequalities capable of revealing quantum contextuality is the KCBS inequality,

which is a particular case of the n-cycle inequality (1.29) when n = 5. In the first article forming the

thesis, we consider a modification of the contextuality scenario in which the measurements are not

assumed to satisfy any compatibility relations and are performed sequentially on the quantum system,

that is, one after the other one. Thus the scenario considered by us pertains to one that is typically

referred in the literature to as the temporal scenario (see, e.g., Ref. [87]).

We then derive a novel family of noncontextuality-like inequalities, which are suitable modifications

of the n-cycle inequalities, for which one is able to analytically find the corresponding sum-of-squares

decompositions. The latter is crucial for determining the maximal quantum violation of the inequalities

as well as in deriving the algebraic relations for the state and measurements that enable proving the

other main result of our work which is the self-testing result stated in Theorem. It is worth mentioning

that the sum-of-squares “technique” has already been used in deriving the maximal quantum values of

Bell inequalities as well as in deriving nonlocality-based self-testing statements (see, e.g., Ref. [21]),

but has never been used in the contextuality scenario. With the SOS decompositions, we prove that

our inequalities can be used for self-testing of three-dimensional quantum state and measurements for

the n-cycle scenario for n = 2m + 1 with m ∈ N.

One of the issues regarding certification schemes based on maximal violation of noncontextuality

inequalities is that they require making strong assumptions like that the commutation of measurements

and dimension of the Hilbert space [25]. In our work we were able to drop both of them. In fact, our

approach is based on a single assumption that requires the measurement device to have no memory

and return only the actual post-measurement state. This assumption is certainly much weaker than

the assumptions that are considered in the case of the Kochen-Specker contextuality.

Let us finally remark that while the certification methods within the contextuality or sequential

measurements scenarios are still not fully device-independent as far as its original definition is con-

cerned, they still allow one to certify systems that do not require spatial separation as in the case of Bell

nonlocality. They are also more powerful than the standard quantum tomography since for instance

they require performing less measurements and are distinct from those in the prepare-and-measure
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scenario because no assumption on the dimensionality of the preparation is required here.
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Sum-of-squares decompositions for a family of noncontextuality
inequalities and self-testing of quantum devices
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Violation of a noncontextuality inequality or
the phenomenon referred to ‘quantum contextu-
ality’ is a fundamental feature of quantum the-
ory. In this article, we derive a novel family
of noncontextuality inequalities along with their
sum-of-squares decompositions in the simplest
(odd-cycle) sequential-measurement scenario ca-
pable to demonstrate Kochen-Specker contextu-
ality. The sum-of-squares decompositions allow
us to obtain the maximal quantum violation of
these inequalities and a set of algebraic relations
necessarily satisfied by any state and measure-
ments achieving it. With their help, we prove
that our inequalities can be used for self-testing
of three-dimensional quantum state and measure-
ments. Remarkably, the presented self-testing re-
sults rely on a single assumption about the mea-
surement device that is much weaker than the
assumptions considered in Kochen-Specker con-
textuality.

To realize genuine quantum technologies such as cryp-
tographic systems, quantum simulators or quantum com-
puting devices, the back-end user should be ensured that
the quantum devices work as specified by the provider.
Methods to certify that a quantum device operates in a
nonclassical way are therefore needed. The most com-
pelling one, developed in the cryptographic context, is
self-testing [MY04]. It exploits nonlocality, i.e., the exis-
tence of quantum correlations that cannot be reproduced
by the local-realist models, and provides the complete
form of device-independent 1 characterization of quan-
tum devices only from the statistical data the devices
generate. Thus, it is being extensively studied in recent
years [YVB+14, BP15, CGS17].

However, since self-testing, as defined in Ref. [MY04],
stands on nonlocality [Bel64] (or, in other words, quan-
tum correlations that violate local-realist inequalities),
it is restricted to preparations of composite quantum
systems and local measurements on them. Therefore,
it poses a fundamental question: presuming the min-
imum features of the devices how to characterize (i)
quantum systems of prime dimension that are not ca-
pable of exhibiting nonlocal correlations, and (ii) quan-
tum systems without entanglement or spatial separation
between subsystems? A possible way to address such
instances is to employ quantum contextuality (Kochen-
Specker contextuality), a generalization of nonlocal cor-

1With the requirement of the spatial separation between mea-
surements on subsystems, and without any assumption on the in-
ternal features of the devices.

relations obtained from the statistics of commuting mea-
surements that are performed on a single quantum sys-
tem [KS75, Cab08, CSW14, KCBbuS08]. Indeed, the
recent study [BRV+19b, IMOK20, BRV+19a] provides
self-testing statements based on contextual correlations
(or correlations that violate noncontextuality inequal-
ity). Since quantum contextual correlations are essen-
tial in many aspects of quantum computation [HWVE14,
Rau13] and communication [GHH+14, SHP19], self-
testing statements are crucial for certifying quantum
technology [BRV+19a]. Apart from that, it is, nonethe-
less, fundamentally interesting to seek the maximum in-
formation one can infer about the quantum devices only
from the observed statistics in a contextuality experi-
ment.

In the context of nonlocality, sum-of-squares (SOS)
decomposition of quantum operators associated with
local-realist inequalities has been the key mathemat-
ical tool in recent years to obtain optimal quantum
values and self-testing properties of quantum devices
[BP15, ŠASA16, SAT+17, KŠT+19, SSKA19, ASTA19,
Kan19, CMMN19]. Whether this line of study, albeit, re-
stricted to nonlocal correlations, can further be extended
to contextuality scenario is of great interest from the per-
spective of unified approach to non-classical correlations
[CSW14, AC18].

In this work, we consider Klyachko-Can-Binicioğlu-
Shumovsky (KCBS) scenario which comprises of one
preparation and n (where n > 5 is odd) number of mea-
surements [KCBbuS08, AQB+13, LSW11]. This is the
simplest scenario capable to exhibit contextual correla-
tions using a three-dimensional quantum system and five
binary outcome measurements. It also has several impli-
cations in quantum foundation and quantum information
[GBC+14, GHH+14, SBA17, Cab13, KanCK14, SR17,
XSS+16]. We first introduce a modified version of KCBS
expression for n = 5 involving correlation between the
outcomes of two sequential measurements, along with an
SOS decomposition of the respective quantum operator.
We describe our methodology to obtain SOS and simul-
taneously, generalize for n-cycle KCBS scenario where
n = 2m + 1,m ∈ N. Interestingly, the SOS decomposi-
tion holds even without the idealizations that the mea-
surements satisfy commutativity conditions in a cyclic
order. By virtue of this decomposition, we obtain the
maximum quantum value of our modified n-cycle ex-
pression and a set of algebraic relations involving any
quantum state and measurements that yield those max-
imum values. By solving those relations, we show the
existence of a three-dimensional vector-space invariant
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under the algebra of measurement operators. Subse-
quently, we prove the uniqueness of the projected three-
dimensional measurements and state up to unitary equiv-
alence, that is, self-testing property of the quantum de-
vices. The presented self-testing statement relies on the
premise that the measurement device returns only the
post-measurement system and has no memory, while it
does not rely on the commutativity relations between ob-
servables.

1 Preliminaries
We begin by illustrating our scenario and specifying the
assumptions.

Sequential-measurement set-up. Each run of the exper-
imental observation comprises of preparation of a physi-
cal system followed by two measurements in a sequence
using one non-demolishing measurement device as de-
picted in Fig. 1. The measurement device has n (odd)
different settings, each of which yields ±1 outcome. Let’s
denote the first and second measurement settings by Ai
and Aj where i, j ∈ {1, . . . , n}. The settings are chosen
such that j = i ± 1, where from now on the subscript i
is taken modulo n, that is, Ai±n = Ai. We make the
following assumption about the measurement device.

Assumption. The measurement device has no memory
and returns only the actual post-measurement state.

This assumption is necessary, otherwise, any quantum
statistics can be reproduced by classical systems.

By repeating this experiment many times we can ob-
tain joint probabilities p(ai, ai±1|Ai,Ai±1) of two mea-
surements and single probabilities p(ai|Ai) of the first
measurement, and consequently, their correlation func-
tions,

〈AiAi±1〉 =
∑

ai,ai±1

aiai±1p(ai, ai±1|Ai,Ai±1),

〈Ai〉 =
∑

ai

aip(ai|Ai), (1)

where the measurement outcomes are denoted as ai =
±1.

Figure 1: Sequential-measurement set-up. The simplest
contextuality scenario comprises of one preparation P and one
measurement device with settings Ai each of them returns ±1
outcome.

In quantum theory the two-outcome measurements Ai
can be in general non-projective. However, since we do
not restrict the dimension of these measurements, an

extension of Naimark’s dilation theorem [IMOK20] al-
lows us to consider these measurements to be projective.
Thus, we can represent the measurements by the follow-
ing operators

Ai = 2Pi − 1, (2)
where Pi are projectors acting on some finite-dimensional
Hilbert space H. The preparation is represented by a
quantum state that, by the same reason, can be consid-
ered pure; we denote it by |ψ〉.

Kochen-Specker contextuality [CSW14] pertains to the
assumption that the projectors satisfy certain orthogo-
nality relations, particularly in this scenario, PiPi±1 = 0
for all i, implying [Ai, Ai±1] = 0. Such prerequisite about
the measurement device are difficult to justify in practice.
Since we aim to characterize the quantum devices from
their minimal features, we do not make this assumption.
We will see later that orthogonality relations between
projectors will be derived facts from the maximal viola-
tion of our inequality.

A general linear expression that can be considered to
test nonclassicality (or noncontextuality in the usual sce-
nario) in this set-up is given by,

B =
∑

i

ci(〈AiAi+1〉+ 〈Ai+1Ai〉) +
∑

i

di〈Ai〉. (3)

Using the quantum expression of the joint probabili-
ties under the aforementioned Assumption, for example,
p(+1,+1|Ai,Ai±1) = 〈ψ|PiPi±1Pi|ψ〉, we find

〈AiAi+1〉+ 〈Ai+1Ai〉 = 〈ψ|{Ai, Ai+1}|ψ〉. (4)

Subsequently, the optimal quantum value of the expres-
sion (3) is defined as

ηQ = sup
|ψ〉,Ai

〈ψ|B|ψ〉, (5)

where B =
∑
i ci{Ai, Ai+1} +

∑
i diAi is the quantum

operator associated with the expression B and Ai are of
the form (2). Notice that in the usual scenario, due to
commutativity relations, {Ai, Ai+1} can be replaced by
2AiAi+1. The maximal classical value ηC (or noncontex-
tual value in the usual scenario 2) is defined as

ηC = max
ai∈{1,−1}

{
2
∑

i

ciaiai+1 +
∑

i

diai

}
. (6)

KCBS inequality. The well known n-cycle KCBS non-
contextuality inequality [AQB+13] is of the form

BKCBS := −
n∑

i=1
〈AiAi+1〉 6 ηC = n− 2. (7)

The maximal quantum violation of this inequality is

ηQ = 3 cos (π/n)− 1
1 + cos (π/n) n (8)

2Since any noncontextual value assignment pertains to certain
orthogonality conditions, here we refer to ηC as the classical value
for the relaxed scenario. Note that, under the aforesaid Assump-
tion, the optimal value of B in classical theory or any other theory
where measurement does not affect the system is given by Eq. (6).
With the orthogonality conditions, ηC reduces to the maximal non-
contextual value.
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and it is achieved by the following quantum state

|ψ̂〉 = |0〉 ≡ (1, 0, 0)T , (9)

and observables

Âi = 2|v̂i〉〈v̂i| − 1, (10)

where |v̂i〉 are three-dimensional real vectors defined as

|v̂i〉 = (cos θ, sin θ sinφi, sin θ cosφi)T (11)

where θ is defined as cos θ =
√

1/(1 + 2α), where

α = 1
2 sec

(π
n

)
(12)

and
φi = n− 1

n
πi. (13)

Note that α and φi are functions of n, which for the
sake of simplification is not explicitly specified in their
notation. Let us also remark that |ψ̂〉 ∈ C3 and Âi
acting on C3 denote a particular example of quantum
realizations achieving the maximal quantum value of the
KCBS inequality (7). The self-testing properties of the
above-mentioned state and measurements based on the
violation of KCBS inequality are shown in [BRV+19b].
The proof is based on the optimization method of
semidefinite programming under the usual assumptions
of contextuality, along with an additional assumption
that Pi in Eq. (2) are rank-one projectors.

Sum-of-squares decomposition. Let us finally discuss
the concept of sum-of-squares decompositions. Consider
a quantum operator B corresponding to some noncontex-
tuality expression B like the one in (5). Now, if for any
choice of quantum measurements Ai and some η ∈ R one
can decompose the shifted operator η1−B as

η1−B =
∑

k

E†kEk, (14)

the maximal quantum value of B is upper bounded by
η, i.e., 〈ψ|B|ψ〉 6 η for any quantum state |ψ〉. We
call (14) a sum-of-squares decomposition associated to
B. Typically Ek are constructed from the measurement
operators Ai. The bound η is realized by a state and a
set of measurements if and only if the following algebraic
relation holds true for all k,

Ek|ψ〉 = 0. (15)

Our self-testing proofs heavily rely on the above relations.
Let us remark that Ref. [LSW11] provides an SOS

decomposition for the conventional KCBS operator un-
der the assumptions that the measurements satisfy
[Ai, Ai±1] = 0. In what follows we derive an alterna-
tive noncontextuality inequality together with the cor-
responding SOS decomposition of the form (14) which
does not require making this assumption. Furthermore,
our SOS is designed in such a way that the algebraic
relations (15) it implies can be used for self-testing.

2 Modified KCBS inequality with sum-of-
squares decomposition
We are now ready to present our results. For pedagogical
purposes we begin with the simplest case of n = 5 and
consider the following modified KCBS expression

B = −1
2

5∑

i=1
(〈AiAi+1〉+ 〈Ai+1Ai〉)− α2

5∑

i=1
〈Ai〉, (16)

where α is given in (12) with n = 5. Following (6) it is
not difficult to find the maximal classical value of B is
ηC = 3 + α2.

Result 1 (Modified KCBS inequality with SOS). The
maximal quantum value of B given in Eq. (16) with α =
(1/2) sec(π/n) is ηQ = 3(1 + α2).

Proof. To prove this statement we present the SOS de-
composition for the modified KCBS operator

B = −1
2
∑

i

{Ai, Ai+1} − α2
∑

i

Ai. (17)

Let us first define the following Hermitian operators for
i = 1, . . . , 5,

Mi,1 = − 1
α3 (Ai + αAi−1 + αAi+1),

Mi,2 = − 1
α4 (−αAi +Ai−2 +Ai+2), (18)

and observe that they satisfy the following relations

− α5

5
∑

i

(
2Mi,1 + α3Mi,2

)
= α2

∑

i

Ai, (19)

and
α5

5
∑

i

(
M2
i,1 + α3

2 M2
i,2

)
= 1

2
∑

i

{Ai, Ai+1}+ 5
2α1,

(20)
where we have used the identities α2 +α = 1 for α given
in Eq. (12) with n = 5 and A2

i = 1. With the aid of
these relations it is straightforward to verify that

α5

5
∑

i

(1−Mi,1)2+α8

10
∑

i

(1−Mi,2)2

=
(
α5 + α8

2

)
1− α5

5
∑

i

(
2Mi,1 + α3Mi,2

)

+α5

5
∑

i

(
M2
i,1 + α3

2 M2
i,2

)

= 3(1 + α2)1−B, (21)

where B is given in Eq. (17).
Thus, the above equation constitutes a SOS decompo-

sition (14) of the modified KCBS operator in which

Ek =
√
α5

5 (1−Mk,1) (22)

for k = 1, . . . , 5;

Ek =
√
α8

10 (1−Mk−5,2) (23)
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for k = 6, . . . , 10; and 3 + 3α2 = 4.146 is the quantum
bound of B. We can validate that the state and measure-
ments in dimension three (9)-(10) responsible for optimal
value of KCBS inequality achieve this bound.

Inspired by the above n = 5 case, let us now derive our
modified KCBS expression for more measurements. Our
aim is to obtain a general expression for which the sum-
of-squares decomposition can easily be constructed as the
one in Eq. (21) and later directly used for self-testing.

To reach this goal, let us consider n two-outcome quan-
tum measurements represented by operators Ai (2) act-
ing on some Hilbert space of unknown but finite dimen-
sion. Let us then consider the expression (14) in which
the operators Ek are of the form 1−Mk with some pos-
itive multiplicative factors, where Mk are constructed
from Ai. Notice that for such a choice, Eq. (15) im-
plies that Mk must be stabilizing operators of the state
|ψ〉 maximally violating our modified KCBS expression,
that is, Mk|ψ〉 = |ψ〉. Now, to design the explicit form of
Mk we can use the optimal quantum realization (9)-(10)
of the n-cycle KCBS inequality (7), which gives us (see

Appendix A for details of the derivation)

Mi,k = ᾱ [(1− 2βk)Ai + βk(Ai+k +Ai−k)] , (24)

where i = 1, . . . , n and k = 1, . . . , (n− 1)/2, whereas the
coefficients βk and ᾱ are given by

βk = 1
2(1− cosφk) (25)

and
ᾱ = 1 + 2α

1− 2α, (26)

where α, φk are defined in Eqs. (12) and (13), respec-
tively. Let us remark that Mi,k, ᾱ, βi are all functions
of n which for the sake of simplification is not specified
explicitly. Moreover, the operators Mi,k defined in (24)
act on unknown Hilbert space H of finite dimension.

We now go back to the SOS decomposition (14) which
is deemed to be of the form

∑

i,k

ck [1−Mi,k]2 (27)

with some non-negative parameters ck to be determined.
By plugging the expression of Mi,k (24) into it and after
some rearrangement of indices, we obtain

∑

i,k

ck [1−Mi,k]2 =
(
nᾱ2

∑

k

ck

(
1
ᾱ2 + 1 + 6β2

k − 4βk
))

1−
(

2ᾱ
∑

k

ck

)∑

i

Ai

+ᾱ2
∑

i

[
2c1β1 (1− 2β1) + cn−1

2
β2

n−1
2

]
{Ai, Ai+1}

+ᾱ2
∑

i

(n−3)/2∑

k=2

[
2ckβk (1− 2βk) + cf( k

2 )β
2
f( k

2 )
]
{Ai, Ai+k}, (28)

where

f

(
k

2

)
=
{
k/2, if k is even
(n− k)/2, if k is odd.

(29)

We want to choose the coefficient ck so that they are non-
negative and all the anti-commutators {Ai, Ai+k} vanish
except for k = ±1. For that purpose we consider n =
2m + 1 for m ∈ N \ {1}. First we take ck = 0 whenever
k 6= 2x, where x = 0, . . . ,m − 1. It follows from (28)
that our requirement is fulfilled if the following set of
equations is satisfied

2c2xβ2x (1− 2β2x) + c2x−1β2
2x−1 = 0 (30)

for x = 1, . . . ,m−1. The above equation (30) implies for
all x = 1, . . . ,m− 1

c2x

c1
= 1

2x
x∏

j=1

β2
2j−1

β2j (2β2j − 1)

=
(

β1
2xβ2x

)2 x∏

j=1
sec(φ2j ). (31)

Since sec(φ2j ) is positive for all j 3, c2x/c1 is also positive.
Now, to provide a plausible solution of c2x , it suffices to
choose a positive c1. Due to (30) the remaining anti-
commutators in (28) are {Ai, Ai+1} with a factor

ᾱ2 [2c1β1 (1− 2β1) + c2m−1β2
2m−1

]
. (32)

For simplicity we choose this factor to be 1/2 which im-
plies that c1 is such that

4c1β1 (1− 2β1) + 2c2m−1β2
2m−1 = 1

ᾱ2 . (33)

After substituting c2m−1 from Eq. (31), the above gives

c1 = 22m−3

ᾱ2
1

22m−1β1 (1− 2β1) + β2
1
m−1∏
j=1

sec(φ2j )
. (34)

One can readily verify that c1 is positive. Finally, due to

3Note that cosφ2j = cos (π2j/n) and 0 < π2j/n < π/2, ∀j =
1, 2, . . . ,m− 1.
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(30) and (33), Eq. (28) reads as,
∑

i,k

ck [1−Mi,k]2 = ηn1−Bn, (35)

where

Bn = −1
2
∑

i

{Ai, Ai+1} − γ
∑

i

Ai , (36)

γ = −2ᾱ
∑

k

ck , (37)

and

ηn = nᾱ2
∑

k

ck

(
1
ᾱ2 + 1 + 6β2

k − 4βk
)
, (38)

and ck,Mi,k are defined in (31), (34) and (24).
From Eq. (25) we know that ᾱ is a negative quan-

tity and hence γ is positive. Thus, our modified n-cycle
KCBS inequality is

Bn := −1
2
∑

i

(〈AiAi+1〉+ 〈Ai+1Ai〉)− γ
∑

i

〈Ai〉 6 ηCn

(39)
whose quantum bound is ηn (38) and the classical value
ηCn is provided in Result 3. It follows from the construc-
tion of the SOS (35) that the qutrit quantum state and
measurements defined in Eqs. (9)-(13) satisfy the stabi-
lizing relations Mi,k|ψ〉 = |ψ〉, implying the bound ηn is
tight, or, in other words, the maximal quantum value of
(39) equals ηn.

To put the above mathematical analysis in a nutshell,
the expression of the noncontextuality inequality (39) is
derived such that it meets a SOS decomposition (14) of
certain form. This leads us to the following result.

Result 2 (Modified n-cycle expression with SOS). The
maximum quantum value of modified n-cycle noncontex-
tuality expression (39) with a SOS decomposition (35) is
ηn (38) (where n = 2m + 1,m ∈ N \ {1}).

Let us finally prove the classical bound of our new non-
contextuality expression.

Result 3 (Maximal classical value). The classical value
of Bn in Eq. (39) is given by n+ γ − 2.
Proof. The classical value can be obtained by assigning
±1 values to the observables appearing in (39), that is,

ηCn = max
ai∈{1,−1}

{
−

n∑

i=1
aiai+1 − γ

n∑

i=1
ai

}
, (40)

where γ is positive. Let us say in the optimal assignment
there are k number of ai which are −1. We first assume
k > n/2. When there are k number of −1, and n − k
number of +1, the minimum value of

∑
i aiai+1 = 4k −

3n, and the quantity
∑
i ai = n− 2k. Substituting these

values in (40) we see

ηCn = (3− γ)n− (4− 2γ) k. (41)

Therefore, the optimal value of ηCn is obtained for the
minimum value of k, that is, for k = (n + 1)/2. This
implies the right-hand-side of (41) is n+γ−2. Similarly,
if k < n/2, then we have (n− k) > n/2, and following a
similar argument we can obtain the same bound.

3 Self-testing of quantum devices
An exact self-testing statement provides us the certifica-
tion of quantum devices, given that we observe an op-
timal violation of a noncontextuality inequality. How-
ever, the observed statistics are unchanged in the pres-
ence of auxiliary degrees of freedom (or auxiliary sys-
tems) and a global unitary. Therefore, self-testing in the
context of state-dependent quantum contextual correla-
tion [BRV+19b, IMOK20] infers unique state and mea-
surements up to these equivalences.

Here, we take the definition of self-testing stated in
[IMOK20]. Formally, self-testing of preparation |ψ〉 ∈ Cd
and a set of measurements {Ai}ni=1 acting on Cd is de-
fined as follows: if a set of observables {Ai}ni=1 acting on
unknown finite-dimensional Hilbert space H and a state
|ψ〉 ∈ H maximally violate a noncontextuality inequality,
then there exists a projection P : H → Cd and a unitary
operation U on Cd such that

1. U(P|ψ〉) = |ψ〉 ,

2. U(PAiP)U† = Ai for all i = 1, . . . , n.

To obtain self-testing only from the reduced Assumption
mentioned in section 1, we consider a modified version of
the expression Bn (39) of the following form

B̃n := Bn −
∑

i

[p(+ + |Ai+1,Ai) + p(+ + |Ai−1,Ai)] .

(42)
Since the additional term is non-positive, the classical
and quantum bounds of B̃n are the same as for Bn. More-
over, it follows from (35) that the SOS decomposition of
B̃n is

ηn1− B̃n =
∑

i,k

ck [1−Mi,k]2 +
∑

i

(PiPi+1)†(PiPi+1)

+
∑

i

(PiPi−1)†(PiPi−1), (43)

where

B̃n = Bn −
∑

i

Pi+1PiPi+1 −
∑

i

Pi−1PiPi−1, (44)

and ηn is again the optimal quantum value of B̃n. Let us
now show that our inequality (42) can be used to make a
self-testing statement, according to the above definition,
for the state and observables (9)-(10)maximally violating
it.

Result 4 (Self-testing). Under the Assumption stated in
Sec. 1, if a quantum state |ψ〉 ∈ H and a set of n (where
n = 2m + 1,m ∈ N \ {1}) measurements Ai acting on H
violate the inequality (42) maximally, then there exists a
projection P : H → C3 and a unitary U acting on C3

such that

U(PAiP†)U† = 2|v̂i〉〈v̂i| − 13,

U(P|ψ〉) = (1, 0, 0)T , (45)

where |v̂i〉 are defined in (11).
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Proof. Taking the expectation value of the state |ψ〉 on
both side of the SOS decomposition (43) of B, we obtain
by virtue of (15) that for any i and k,

Mi,k|ψ〉 = |ψ〉. (46)

In the particular k = 1 case this condition when com-
bined with the explicit form of Mi,1 given in Eq. (24)
together with the fact that β1 = α/(1 + 2α), leads to the
following relations for all i = 1, . . . , n,

(Ai + αAi+1 + αAi−1)|ψ〉 = (1− 2α)|ψ〉. (47)

Similarly, from the last two terms of the SOS decompo-
sition (43) we get that for all i = 1, . . . , n,

PiPi±1|ψ〉 = 0. (48)

Given the relations (47) and (48), the next Theorem pro-
vides the proof for the self-testing statement.

The self-testing property implies our modified inequal-
ity (42) are non-trivial since any classical value assign-
ment is not equivalent to the realization given in (45).

Theorem. If a set of quantum observables {Ai}ni=1
(where n is odd) of the form (2) acting on arbitrary finite-
dimensional Hilbert space H and a unit vector |ψ〉 ∈ H
satisfy the relations (47) and (48), then there exists a
projection operator P : H → C3 and a unitary U acting
on C3 such that (45) holds true.

Proof. We prove this theorem in two steps.
Step 1. In the first step, we deduce the effective dimen-

sionality of the observables Ai and the state |ψ〉. Let us
define a vector space V = Span{|ψ〉, A1|ψ〉, A3|ψ〉}. Due
to Lemma 1 (stated in Appendix B), it suffices to consider
the observables Ai and the state |ψ〉 restricted to V . In
other words, Lemma 1 points out that the Hilbert space
H can be decomposed as V ⊕ V ⊥ and all the operators
Ai have the following block structure

Ai =
(
Ãi O
O A′i

)
, (49)

wherein Ãi, A′i are acting on V, V ⊥, respectively; in par-
ticular, A′i|ψ〉 = 0 for any i. This allows us to define

Ãi = PAiP
† = 2P̃i − 1,

|ψ̃〉 = P|ψ〉, (50)

where P is the projection operator from H to V , P̃i =
PPiP

† > 0 and 1 is the identity operator acting on V .
It follows from Eq. (2) and Eqs. (47) and (48) that

the projected measurements P̃i and the state |ψ̃〉 satisfy
the following sets of relations for all i = 1, . . . , n,

P̃iP̃i±1|ψ̃〉 = 0, (51)(
P̃i + αP̃i−1 + αP̃i+1

)
|ψ̃〉 = |ψ̃〉, (52)

Step 2. In the second step, we characterize the observ-
ables Ãi. With the help of Lemma 2 given in Appendix
B, we first show that all observables Ãi are of the form

Ãi = 2|vi〉〈vi| − 1 (53)

for some normalized vectors |vi〉 ∈ C3 such that
〈vi|vi±1〉 = 0. The remaining part is the characteriza-
tion of |vi〉. By plugging Eq. (53) into Eq. (52) we
obtain that for all i,

(|vi〉〈vi|+ α|vi−1〉〈vi−1|+ α|vi+1〉〈vi+1|)|ψ̃〉 = |ψ̃〉. (54)

We use the fact that |vi〉, |vi±1〉 are orthogonal and mul-
tiply 〈vi−1| and 〈vi+1| with Eq. (54), which lead us to
the following equations

α〈vi−1|vi+1〉〈vi+1|ψ̃〉 = (1− α)〈vi−1|ψ̃〉 (55)

and
α〈vi+1|vi−1〉〈vi−1|ψ̃〉 = (1− α)〈vi+1|ψ̃〉 (56)

for all i. By substituting the term 〈vi−1|ψ̃〉 from the first
equation to the second one, we arrive at the following
conditions

∀i, |〈vi−1|vi+1〉| =
1− α
α

. (57)

Note that, here we use the fact that 〈vi+1|ψ̃〉 6= 0 4.
Considering the absolute value of both side of (56) and
using (57) we obtain another set of conditions

∀i, |〈ψ̃|vi−1〉| = |〈ψ̃|vi+1〉|. (58)

And since n is odd, as a consequence of the above equa-
tion,

∀i, j, |〈ψ̃|vi〉| = |〈ψ̃|vj〉|. (59)

Let us try to see what is the most general form of |vi〉
compatible with the above conditions. First let us exploit
the fact that observed probabilities do not change if we
rotate the state and measurements by a unitary opera-
tion. We thus choose it so that U |ψ̃〉 = (1, 0, 0)T ≡ |0〉.
We also notice that any unitary of the following form

(
1 0
0 U ′

)
(60)

with U ′ being any 2 × 2 unitary does not change |0〉.
Later we will use this freedom.

Due to the fact that we are characterizing projectors
|vi〉〈vi| rather than the vectors themselves, we can always
assume the first element of the vector is positive, that is,
|vi〉 has the form,

|vi〉 =
(
cos θi, eiai sin θi sinφi, eibi sin θi cosφi

)T
. (61)

The condition (59) implies that all cos θi are equal and
therefore let us denote θi = θ. Plugging these forms of
|vi〉 and |ψ̃〉 = |0〉 into Eq. (54), the first element of the
vector equation leads to

cos θ = 1√
1 + 2α

. (62)

4If 〈vj+1|ψ̃〉 = 0 for some j, then (55) implies 〈vj−1|ψ̃〉
is also 0, and further (54) implies |vj〉〈vj |ψ̃〉 = |ψ̃〉. Substitut-
ing these in (54) taking i = j + 1, we arrive at a relation
|vj+2〉〈vj+2|ψ̃〉 = (1− α)/α|ψ̃〉 which cannot be true for any finite
n since |vj+2〉〈vj+2| has eigenvalues 1,0.
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Using this freedom we can bring one of the vectors, say
|vn〉, to (cos θ, 0, sin θ)T by taking

sinφn = 0, eibn = 1. (63)

Then, due to the condition 〈v1|vn〉 = 〈vn−1|vn〉 = 0 we
infer eib1 , eibn−1 are real and without loss of generality
we can take

eib1 = eibn−1 = 1 (64)

by absorbing the sign in cosφ1, cosφn−1. Further, we can
get rid one of the phases in |v1〉, that is,

eia1 = 1, (65)

and take sin(φ1) to be non-negative by applying another
unitary of the form (60),

U ′ = diag[± exp(−ia1), 1] (66)

that does not change the simplified form of |vn〉. Equat-
ing the second and third element of the vector equation
(54), we obtain the relations

eiai sinφi + αeiai−1 sinφi−1 + αeiai+1 sinφi+1 = 0, (67)

and

eibi cosφi + αeibi−1 cosφi−1 + αeibi+1 cosφi+1 = 0. (68)

With the aid of (63) and (65), Eq. (67) for i = n points
out sin(φ1) = −eian−1 sin(φn−1) which allows us to con-
sider eian−1 = 1. Taking i = 1 in Eqs. (67) and (68)
and replacing the values of sinφn, cosφn, eia1 , eib1 , eibn

we obtain,

sinφ1 + αeia2 sinφ2 = 0, (69)
cosφ1 + α+ αeib2 cosφ2 = 0. (70)

Thus, eia2 , eib2 are real and can be taken to be 1. Note,
here we use the fact that sinφ1 6= 0 5. Similarly, by
taking i = 2, . . . , n− 2 we conclude for all i

eiai = eibi = 1. (71)

On the other hand, the condition 〈vi|vi+1〉 = 0 implies,

φi+1 − φi = cos−1
(
−cos2 θ

sin2 θ

)

= (n− 1)π
n

. (72)

Finally, considering i = n in the above Eq. (72) and
using sinφn = 0 we deduce φ1 = (n− 1)π/n. We discard
the possibility φ1 = −(n− 1)π/n since sinφ1 is taken to
be non-negative. Thus, the equations (62), (71), and (72)
together with φ1 establish that the unknown vectors |vi〉
in (61) are unitarily equivalent to |v̂i〉. This completes
the proof.

5If sinφ1 = 0, then cosφ1 = ±1 and consequently
〈vn|v1〉 = cos (θ ∓ θ) which contradicts the relation 〈vn|v1〉 = 0.
Analogously, if we suppose cosφ2 = 0, then cosφ1 + α = 0 and
sinφ2 = ±1. Now, the first equation holds only if 2α2 = 1.

4 Conclusion
Kochen-Specker contextuality captures the intrinsic na-
ture of quantum theory that essentially departs from
classicality. It also offers a generalization of quantum
correlations beyond nonlocality to a larger class of quan-
tum systems and minimizes the demands to test non-
classicality. Therefore, it is a fundamental problem to
understand what is the maximal information about the
underlying quantum system that can be inferred from the
correlations observed in a contextuality experiment, and
whether this information can be used for certification of
quantum devices from minimal assumptions of their in-
ternal functioning.

In this work, we derive self-testing statements for n-
cycle scenario using weaker assumptions than those made
in previous approaches based on Kochen-Specker contex-
tuality [CSW14, BRV+19b, IMOK20, BRV+19a]. In par-
ticular, we do not assume orthogonality relations between
measurement effects. Instead, we consider general two-
outcome measurements which nevertheless obey a single
assumption that the measurement device does not return
any additional information except the post-measurement
system and does not possess any memory. Moreover,
we take a different approach, that is, we use the sum-
of-squares ’technique’ that has successfully been used in
the Bell scenario to derive maximal quantum violation of
certain Bell inequalities as well as in making self-testing
statements [BP15, ŠASA16, SAT+17, KŠT+19, SSKA19,
CMMN19, Kan19, ASTA19], but has never been explored
for self-testing in the contextuality scenario.

We further remark that self-testing from quantum con-
textuality is not fully device-independent as far as its
original definition is concerned, while, its experimental
test does not require space-like separation. The assump-
tion is critical to verify for practical purposes, however,
in future studies, one may try to overcome it by restrict-
ing the computational power or the memory of the mea-
surement device. Nonetheless, it is way more powerful
than the usual process of tomography. It is also distinct
from the self-testing approach in prepare-and-measure
scenario [TKV+18, FK19] since no restriction on the di-
mensionality of the preparation is imposed here.

Although the SOS decompositions hold for a certain
number of measurements, a suitable adaptation of our
approach in future studies may lead to SOS decomposi-
tions for an arbitrary odd number of measurements. An-
other direction for further study is to explore whether our
approach can be applied to states and measurements of
higher dimension than three and whether our self-testing
statements can be made robust to experimental imper-
fections. From a more general perspective, it would be
interesting to design a unifying approach to self-testing
based on Bell nonlocality and quantum contextuality.

Acknowledgement
This work is supported by the Foundation for Polish Sci-
ence through the First Team project (First TEAM/2017-
4/31) co-financed by the European Union under the Eu-

7



ropean Regional Development Fund.

References
[AC18] B. Amaral and M. T. Cunha. Contex-

tuality: The Compatibility-Hypergraph Ap-
proach, pages 13–48. Springer Briefs in
Mathematics. Springer, Cham, 2018.
DOI: 10.1007/978-3-319-93827-1_2.

[AQB+13] M. Araújo, M. T. Quintino, C. Budroni,
M. T. Cunha, and A. Cabello. All noncon-
textuality inequalities for the n-cycle sce-
nario. Phys. Rev. A, 88: 022118, 2013.
DOI: 10.1103/PhysRevA.88.022118.

[ASTA19] R. Augusiak, A. Salavrakos, J. Tura, and
A. Acín. Bell inequalities tailored to the
Greenberger–Horne–Zeilinger states of ar-
bitrary local dimension. New J. Phys.,
21(11): 113001, 2019.
DOI: 10.1088/1367-2630/ab4d9f.

[Bel64] J. S. Bell. On the Einstein Podolsky
Rosen paradox. Physics Physique Fizika,
1: 195–200, 1964.
DOI: 10.1103/PhysicsPhysiqueFizika.1.195.

[BP15] C. Bamps and S. Pironio. Sum-of-squares
decompositions for a family of Clauser-
Horne-Shimony-Holt-like inequalities and
their application to self-testing. Phys. Rev.
A, 91: 052111, 2015.
DOI: 10.1103/PhysRevA.91.052111.

[BRV+19a] K. Bharti, M. Ray, A. Varvitsiotis, A. Ca-
bello, and L. Kwek. Local certification
of programmable quantum devices of arbi-
trary high dimensionality. 2019.

[BRV+19b] K. Bharti, M. Ray, A. Varvitsiotis,
N. Warsi, A. Cabello, and L. Kwek. Ro-
bust Self-Testing of Quantum Systems via
Noncontextuality Inequalities. Phys. Rev.
Lett., 122: 250403, 2019.
DOI: 10.1103/PhysRevLett.122.250403.

[Cab08] A. Cabello. Experimentally Testable State-
Independent Quantum Contextuality.
Phys. Rev. Lett., 101: 210401, 2008.
DOI: 10.1103/PhysRevLett.101.210401.

[Cab13] A. Cabello. Simple Explanation of the
Quantum Violation of a Fundamental
Inequality. Phys. Rev. Lett., 110: 060402,
2013.
DOI: 10.1103/PhysRevLett.110.060402.

[CGS17] A. Coladangelo, K. Goh, and V. Scarani.
All pure bipartite entangled states can be
self-tested. Nature Communications, 8(1):
15485, 2017.
DOI: 10.1038/ncomms15485.

[CMMN19] D. Cui, A. Mehta, H. Mousavi, and
S. Nezhadi. A generalization of CHSH and

the algebraic structure of optimal strate-
gies. 2019.

[CSW14] A. Cabello, S. Severini, and A. Winter.
Graph-Theoretic Approach to Quantum
Correlations. Phys. Rev. Lett., 112: 040401,
2014.
DOI: 10.1103/PhysRevLett.112.040401.

[FK19] M. Farkas and J. Kaniewski. Self-testing
mutually unbiased bases in the prepare-
and-measure scenario. Phys. Rev. A, 99:
032316, 2019.
DOI: 10.1103/PhysRevA.99.032316.

[GBC+14] O. Gühne, C. Budroni, A. Cabello,
M. Kleinmann, and J. Larsson. Bounding
the quantum dimension with contextuality.
Phys. Rev. A, 89: 062107, 2014.
DOI: 10.1103/PhysRevA.89.062107.

[GHH+14] A. Grudka, K. Horodecki, M. Horodecki,
P. Horodecki, R. Horodecki, P. Joshi,
W. Kłobus, and A. Wójcik. Quantify-
ing Contextuality. Phys. Rev. Lett., 112:
120401, 2014.
DOI: 10.1103/PhysRevLett.112.120401.

[HWVE14] M. Howard, J. Wallman, V. Veitch, and
J. Emerson. Contextuality supplies the
“magic” for quantum computation. Nature,
510(7505): 351–355, 2014.
DOI: 10.1038/nature13460.

[IMOK20] A. Irfan, K. Mayer, G. Ortiz, and
E. Knill. Certified quantum measurement
of Majorana fermions. Phys. Rev. A, 101:
032106, 2020.
DOI: 10.1103/PhysRevA.101.032106.

[Kan19] J. Kaniewski. A weak form of self-testing.
2019.

[KanCK14] P. Kurzyński, A. Cabello, and D. Kasz-
likowski. Fundamental Monogamy Relation
between Contextuality and Nonlocality.
Phys. Rev. Lett., 112: 100401, 2014.
DOI: 10.1103/PhysRevLett.112.100401.

[KCBbuS08] A. Klyachko, M. Can, S. Binicioğlu, and
A. Shumovsky. Simple Test for Hidden
Variables in Spin-1 Systems. Phys. Rev.
Lett., 101: 020403, 2008.
DOI: 10.1103/PhysRevLett.101.020403.

[KS75] S. Kochen and E. Specker. The Problem of
Hidden Variables in Quantum Mechanics.
In The Logico-Algebraic Approach to Quan-
tum Mechanics, The Western Ontario Se-
ries in Philosophy of Science, pages 293–
328. Springer Netherlands, 1975.
DOI: 10.1007/978-94-010-1795-4.

[KŠT+19] J. Kaniewski, I. Šupić, J. Tura, F. Bac-
cari, A. Salavrakos, and R. Augusiak. Max-
imal nonlocality from maximal entangle-
ment and mutually unbiased bases, and
self-testing of two-qutrit quantum systems.

8



Quantum, 3: 198, 2019.
DOI: 10.22331/q-2019-10-24-198.

[LSW11] Y. Liang, R. Spekkens, and H. Wiseman.
Specker′s parable of the overprotective seer:
A road to contextuality, nonlocality and
complementarity. Phys. Rep., 506(1): 1–
39, 2011.
DOI: 10.1016/j.physrep.2011.05.001.

[MY04] D. Mayers and A. Yao. Self testing quan-
tum apparatus. Quantum Inf. Comput.,
4(4): 273–286, 2004.
DOI: doi.org/10.26421/QIC4.4.

[Rau13] R. Raussendorf. Contextuality in
measurement-based quantum compu-
tation. Phys. Rev. A, 88: 022322, 2013.
DOI: 10.1103/PhysRevA.88.022322.

[ŠASA16] I. Šupić, R. Augusiak, A. Salavrakos, and
A. Acín. Self-testing protocols based on
the chained bell inequalities. New J. Phys.,
18(3): 035013, 2016.
DOI: 10.1088/1367-2630/18/3/035013.

[SAT+17] A. Salavrakos, R. Augusiak, J. Tura,
P. Wittek, A. Acín, and S. Pironio.
Bell Inequalities Tailored to Maximally
Entangled States. Phys. Rev. Lett., 119:
040402, 2017.
DOI: 10.1103/PhysRevLett.119.040402.

[SBA17] J. Singh, K. Bharti, and Arvind. Quan-
tum key distribution protocol based on con-
textuality monogamy. Phys. Rev. A, 95:

062333, 2017.
DOI: 10.1103/PhysRevA.95.062333.

[SHP19] D. Saha, P. Horodecki, and M. Pawłowski.
State independent contextuality advances
one-way communication. New J. Phys.,
21(9): 093057, 2019.
DOI: 10.1088/1367-2630/ab4149.

[SR17] D. Saha and R. Ramanathan. Activation
of monogamy in nonlocality using local con-
textuality. Phys. Rev. A, 95: 030104, 2017.
DOI: 10.1103/PhysRevA.95.030104.

[SSKA19] S. Sarkar, D. Saha, J. Kaniewski, and
R. Augusiak. Self-testing quantum systems
of arbitrary local dimension with minimal
number of measurements. 2019.

[TKV+18] A. Tavakoli, J. Kaniewski, T. Vértesi,
D. Rosset, and N. Brunner. Self-testing
quantum states and measurements in the
prepare-and-measure scenario. Phys. Rev.
A, 98: 062307, 2018.
DOI: 10.1103/PhysRevA.98.062307.

[XSS+16] Z. Xu, D. Saha, H. Su, M. Pawłowski,
and J. Chen. Reformulating noncontextual-
ity inequalities in an operational approach.
Phys. Rev. A, 94: 062103, 2016.
DOI: 10.1103/PhysRevA.94.062103.

[YVB+14] T. Yang, T. Vértesi, J. Bancal, V. Scarani,
and M. Navascués. Robust and Versatile
Black-Box Certification of Quantum
Devices. Phys. Rev. Lett., 113: 040401,
2014.
DOI: 10.1103/PhysRevLett.113.040401.

A Obtaining the stabilizing operators
To guess the stabilizing operators Mi,k we use the stabilizing operators in the optimal quantum realization of n-cycle
KCBS inequality (7). Let us assume that these operators are in the following form

M̂i,k = aÂi + bÂi+k + b′Âi−k, (73)

where the coefficients a, b and b′ are to be determined as a solution to the equation

(aÂi + bÂi+k + b′Âi−k)|ψ̂〉 = |ψ̂〉, (74)

and |ψ̂〉, Âi are given in Eqs. (9)-(10). To solve the above we first notice the following relation,

Âi|ψ̂〉 = (cos 2θ, sin 2θ sinφi, sin 2θ cosφi)T , (75)

which when substituted into Eq. (74) leads one to a system of equations



a(1 + b
a + b′

a ) cos 2θ

a sin 2θ
(

sinφi + b
a sinφi+k + b′

a sinφi−k
)

a sin 2θ
(

cosφi + b
a cosφi+k + b′

a cosφi−k
)


 =




1
0
0


 . (76)

Assuming that a 6= 0 and taking into account that sin 2θ 6= 0, the last two equations in the above system can be
rewritten as

[
sinφi sinφi+k sinφi−k
cosφi cosφi+k cosφi−k

]


1
b/a

b′/a


 =

[
0
0

]
. (77)
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After multiplying the above equation from left by
[

sinφi cosφi
cosφi − sinφi

]
(78)

and using the fact φi+k − φi = φk, Eq. (77) simplifies to,

[
1 cosφk cosφk
0 sinφk − sinφk

]


1
b/a

b′/a


 =

[
0
0

]
. (79)

In this way we remark that the dependence of i in (77) disappears and the system of equations (79) imply

b

a
= b′

a
= −1

2 secφk. (80)

Substitution of above in the first vector equality of (76) leads to

a = 1
(1− secφk)(2 cos2 θ − 1) , (81)

and thus, we obtain a unique solution of a, b, b′. Finally, substituting a, b, b′ into Eq. (74) we can conveniently state
M̂i,k operators in the following way

M̂i,k :=
(

1 + 2α
1− 2α

)[
(1− 2βk)Âi + βk(Âi+k + Âi−k)

]
,

(82)

where
βk = 1

2(1− cosφk) , α = 1
2 sec

(π
n

)
. (83)

B Lemma 1-2
In this appendix, we provide two Lemmas that are used in the proof of the Theorem.

Lemma 1. If a set of quantum observables {Ai}ni=1 (where n is odd) of the form (2) and a vector |ψ〉 satisfy the
relations (47) and (48), then the vector space

V = span{|ψ〉, A1|ψ〉, A3|ψ〉} (84)

is invariant under the algebra generated by Ai.

Proof. To prove this statement it suffices to show that Ai|ψ〉 for all i = 1, . . . , n as well as all AiAj |ψ〉 with i 6= j can
be expressed as linear combinations of the basis vectors |ψ〉, A1|ψ〉 and A3|ψ〉.
Let us begin by noting that Eq. (47) for i = 2 gives us directly such a linear combination for A2|ψ〉 and so A2|ψ〉 ∈ V .

Then, the fact that Ai|ψ〉 ∈ V for i = 4, . . . , n follows from Eq. (47); it is enough to rewrite the latter as

Ai|ψ〉 = 1− 2α
α
|ψ〉 − 1

α
Ai−1|ψ〉 −Ai−2|ψ〉. (85)

Let us now move on to showing that AiAj |ψ〉 ∈ V for all i 6= j. To this end, we first observe that using (48) we
obtain

AiAi±1|ψ〉 = (2Pi − 1)(2Pi±1 − 1)|ψ〉
= −(Ai +Ai±1 + 1)|ψ〉, (86)

which due to the fact that Ai|ψ〉 ∈ V , allows us to conclude that for all i, AiAi±1|ψ〉 ∈ V .
Let us then consider the vectors AiAj |ψ〉 for pairs i, j such that |i − j| = 2. Using the property of involution and

the fact [Ai, Ai±1]|ψ〉 = 0 which is a consequence of Eq. (48), we get

AiAi±2|ψ〉 = AiAi±2(Ai±1)2|ψ〉
= (AiAi±1)(Ai±1Ai±2)|ψ〉. (87)

Since we have already shown AiAi±1|ψ〉 ∈ V , the above equation implies AiAi±2|ψ〉 ∈ V .
Given that AiAj |ψ〉 ∈ V for |i − j| = 1 and |i − j| = 2 we can then prove, applying the same argument as above,

that AiAj |ψ〉 belong to V for any pair i, j such that |i − j| = 3. In fact, following this approach recursively we can
prove that AiAj |ψ〉 ∈ V for i, j such that |i− j| = k with k = 3, . . . , n− 1, which completes the proof.
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Let us remark that the subspace V is in fact spanned by any triple of the vectors |ψ〉, Ai|ψ〉 and Aj |ψ〉 with i 6= j.
This is a consequence of the fact that, as proven above, any vector Ai|ψ〉 is a linear combination of |ψ〉, A1|ψ〉 and
A3|ψ〉.

Lemma 2. If a set of projectors {P̃i}ni=1 acting on C3 and a vector |ψ̃〉 satisfy the relations (51) and (52), then each
P̃i has rank one, that is, for each i there exists a normalized vector |vi〉 ∈ C3 such that P̃i = |vi〉〈vi| and, moreover,
〈vi|vi±1〉 = 0.

Proof. Since P̃i are projectors, we have
∀i, P̃ 2

i |ψ̃〉 = P̃i|ψ̃〉. (88)

Let us begin by showing that P̃i|ψ̃〉 6= 0 for all i. Assume to this end that there exist j such that P̃j |ψ̃〉 = 0. Using
then Eq. (52) for i = j − 1 we arrive at

(P̃j−1 + αP̃j−2)|ψ̃〉 = |ψ̃〉. (89)

After applying P̃j−2 to both sides of this equation and using Eq. (51), we obtain αP̃ 2
j−2|ψ̃〉 = P̃j−2|ψ̃〉 which is

consistent with Eq. (88) if and only if P̃j−2|ψ̃〉 = 0. Therefore, due to Eq. (89) we have P̃j−1|ψ̃〉 = |ψ̃〉. Again,
substituting these relations in (52) taking i = j, we arrive at P̃j+1|ψ̃〉 = [(1− α)/α]|ψ̃〉 which contradicts Eq. (88).
Let us now show that all the operators P̃i are of rank one. We first prove that none of them can be of rank three.

Assume for this purpose that rank(P̃j) = 3 for some j. Then, the condition (88) gives P̃j |ψ̃〉 = |ψ̃〉. This, after taking
into account that P̃j+1P̃j |ψ̃〉 = 0 implies P̃j+1|ψ̃〉 = 0, which contradicts the fact P̃i|ψ̃〉 6= 0 for all i, as shown before.
Let us then prove that none of P̃i can be of rank two. To this end, assume that there is j such that rank(P̃j) = 2

and consider the eigen-decomposition of P̃j ,
P̃j = |1〉〈1|+ |2〉〈2|, (90)

where |1〉, |2〉, |3〉 are the eigenvectors, forming an orthonormal basis in C3. Subsequently, |ψ̃〉 can be expressed as

|ψ̃〉 = x1|1〉+ x2|2〉+ x3|3〉 (91)

for some x1, x2, x3 ∈ C. Note that x1 = x2 = 0 is not possible since it requires P̃j |ψ̃〉 = 0. Similarly, x3 6= 0, otherwise
P̃j |ψ̃〉 = |ψ̃〉 which implies P̃j±1|ψ̃〉 = 0.
Now, employing the fact that P̃j is supported on span{|1〉, |2〉}, it follows from the condition P̃jP̃j±1|ψ̃〉 = 0 that

P̃j±1|ψ̃〉 = q3,±|3〉 for some q3,± ∈ C. By combining this with (88) we find that

P̃j±1|3〉 = |3〉, (92)

that is, |3〉 is the eigenvector of P̃j±1 with eigenvalue one, which, due to the fact that P̃j±1 6 1, implies that P̃j±1
decompose as

P̃j±1 = P̃ ′j±1 + |3〉〈3| (93)

with P̃ ′j±1 being projectors supported on span{|1〉, |2〉}. By finally plugging Eqs. (90) - (93) into Eq. (52) for i = j
and projecting the obtained equation onto |3〉 we see that 2α = 1, which is not satisfied for any n.
As a result all the operators P̃i are of rank one and therefore they can be expressed as

P̃i = |vi〉〈vi| (94)

for some |vi〉 ∈ C3. Furthermore, since P̃i|ψ̃〉 6= 0, Eq. (51) implies 〈vi|vi±1〉 = 0. This completes the proof.
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Chapter 3

Paper II

3.1 Scalable noncontextuality inequalities and certification of multiqubit quan-

tum systems

In the second article forming this thesis we continue our endeavour to provide certification methods for

quantum systems. This time our main aim was to provide methods that unlike the n-cycle inequalities

discussed above allow to certify systems of arbitrary dimension. However, due to the complexity of

the problem we needed to restore to the standard contextuality scenario in which one needs to assume

that the underlying compatibility structure of measurements is satisfied. This means that our method

falls into the category of semi-device independent methods.

In this article we proposed a family of noncontextuality inequalities that involve 2n dichotomic

measurements with n being an arbitrary natural number such that n ≥ 3. In the particular case of

three qubits, our family reproduces an inequality that in the non-locality context is known as the

Mermin-Ardehali-Belinskii-Klyshko (MABK) inequality [88]-[89], however, for larger values of n both

classes are distinct.

To construct these inequalities, but also to derive our main results stated in Theorems 1 and 2, we

employed the stabilizer formalism which in fact has already proven to be very useful for instance in

deriving Bell inequalities for multipartite states (see, e.g., Ref. [64]). Our inequalities are constructed

in such a way that their maximal quantum violation is achieved by an n-qubit state equivalent to the

GHZ state (1.45) and a set of observables that form anticommuting pairs, this being a key fact behind

the possibility of using these inequalities for certification of quantum states and measurements.

Indeed, we then prove that the only possible quantum realizations (consisting of quantum states

and measurements) that achieve the maximal quantum violation of our inequalities are those that are

unitarily equivalent to the one specified above in the sense of Def. 15. Thus, the maximal violation

of our inequalities certifies that the underlying state is equivalent to the GHZ state of n qubits (1.45)

and simultaneously the observables are equivalent to n pairs of anticommuting observables, which are

in fact, equivalent to pairs of the Pauli matrices X and Z acting on all subsystems of this state. In

deriving this result, the structure of the compatibility hypergraph in the simplest case of n = 3 played

a key role because it allowed to identify relevant symmetries of the inequality which then simplified

the algebraic relations for the observables, but it also allowed to generalize the inequality to the case

of arbitrary n. Finally, following the approach of Ref. [68], in the simplest case of n = 3 we have also
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studied the robustness of our scheme against noises and experimental imperfections.

The key feature of our inequalities is that they are scalable in the sense that the number of

expectation values that they involve scales only polynomially with the system size n. This certainly

lowers the experimental effort necessary to violated them as compared to other such inequalities like

the aforementioned MAKB inequalities which contain 2n terms.

3.2 Author’s contribution

My contribution to the article consisted of:

• Active participation in the discussion that lead to formulation of the problem and derivation of

the noncontextuality inequalities;

• Generalization of the inequalities to any n based on the inequality for n = 3. In deriving these

inequalities I exploited the symmetries of the underlying compatibility hypergraph;

• Proving Lemmas 1, 2 and 3 and as a consequence Theorem 1;

• Significant contribution to proving Lemmas 4, 5 and 6 and Theorem 2;

• Help in deriving the robustness analysis presented in Sec. V of the article;

• Significant contribution to writing the manuscript.
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We propose a family of noncontextuality inequalities and show that they can be used for certification of
multiqubit quantum systems. Our scheme, unlike those based on nonlocality, does not require spatial separation
between the subsystems, yet it makes use of certain compatibility relations between measurements. Moreover,
it is scalable in the sense that the number of expectation values that are to be measured to observe contextuality
scales polynomially with the number of qubits that are being certified. In a particular case we also show our
scheme to be robust to errors and experimental imperfections. Our results seem promising as far as certification of
physical setups is concerned in scenarios where spatial separation between the subsystems cannot be guaranteed.
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I. INTRODUCTION

Multiqubit entangled states constitute a key resource for
various quantum information tasks such as quantum computa-
tion [1,2] and error correction [3,4], quantum communication
[5,6], quantum simulations [7,8], and cryptographic protocols
[9,10]. To realize genuine quantum technologies employing
such tasks, the back-end user should be guaranteed that the
quantum devices work as specified by the provider. The
standard state verification schemes based on quantum tomog-
raphy [11,12], however, suffer from two problems: they are
unfeasible for larger systems and require using trusted and
well-characterized measuring devices.

Observing nonclassical correlations through the violation
of a Bell-type inequality [13] can be used to detect entan-
glement in a device-independent way; i.e., it implies the
presence of entanglement without the need to have a trust
in the measurement devices. This property of the violation
of Bell inequalities makes them a useful resource for imple-
menting quantum information protocols such as quantum key
distribution in a device-independent way [14]. Remarkably,
maximal quantum violation of certain Bell inequalities can
be used to demonstrate a phenomenon called “self-testing
of quantum states and measurements” [15,16], which can be
used to provide device-independent characterization of quan-
tum devices. Recently, such a form of certification based on
the phenomenon of nonlocality has been explored extensively.
For instance, several self-testing statements for multiqubit
graph states were recently derived in Refs. [17–19]. However,
genuine demonstration of the violation of Bell inequalities
requires a spatial separation between the subsystems.

Sequential quantum measurements on a single system can
be used to observe quantum contextuality [20] and tempo-
ral quantum correlations [21–23] through the violation of
suitable inequalities. Apart from the foundational relevance
of these two notions of nonclassicality, on one side, they
have been explored as a resource for quantum information
applications such as measurement-based quantum computa-
tion [24–27]. On the other side, they have also been used
for certification of relevant quantum properties such as the

dimension of the underlying quantum system [28,29]. More
importantly, contextuality and temporal correlations have also
been exploited for certification of quantum states and/or mea-
surements [30–34].

Motivated by the above results, in this work we introduce
a family of noncontextuality inequalities that are maximally
violated by many-qubit quantum systems and certain pairs of
anticommuting observables. In constructing our inequalities
we exploit the multiqubit stabilizer formalism known for its
use in quantum error correction [35–37]. These inequalities
are scalable in the sense that the number of expectation values
they are built from scales polynomially with the number of ob-
servables, 2n, that are measured; yet their maximal violation
can be achieved by quantum systems of dimension at least
2n. From this point of view they can be seen as dimension
witnesses. In the particular case n = 3 our family reproduces
an inequality that in the nonlocality context is known as
the Mermin-Ardehali-Belinskii-Klyshko (MABK) inequality
[38–40] (see also Refs. [41–43] for other approaches to reveal
Bell nonlocality or quantum contextuality based on stabilizer
formalism). Yet for n > 3 these families are distinct. We then
show that our inequalities can be used for certification of
multiqubit quantum systems in the sense of Ref. [32]. In fact,
we generalize the results of that work to any number of qubits.

Our work is organized as follows. In Sec. II we outline
the contextuality scenario and provide the definitions of graph
states and self-testing. In Sec. III we present the simplest
inequality designed to certify the three-qubit graph state cor-
responding to the complete graph together with three pairs of
anticommuting observables. In Sec. IV we present a scalable
family of inequalities designed to certify multiqubit quantum
systems. In Sec. V we investigate whether our certification
schemes are robust.

II. PRELIMINARIES

We begin by illustrating our scenario and introducing the
relevant notations and definitions.
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FIG. 1. Measurement setup. A contextuality experiment com-
prises of a preparation device P that prepares some quantum state
ρ which is later measured sequentially by the nondemolishing mea-
surement device with settings Ai; each of these measurements yields
the ±1 outcome. Figure from Ref. [33].

A. Contextuality scenario

A standard contextuality scenario is defined by a triple
of sets: a set of measurements, a set of outcomes of the
measurements, and a set of contexts, which are the subsets
of compatible measurements. The notion of compatibility in
a contextuality scenario means that the measurements that
belong to the same context can be performed jointly or in
a sequence in such a way that the observed statistics are
independent of the order in which these measurements were
performed. In the latter case, however, the measurements are
nondemolishing, meaning that they do not physically destroy
the system.

Each run of the experimental observation comprises of
preparation of a physical system followed by a sequence
of nondemolishing measurements in a device as depicted in
Fig. 1. The measurement device has no memory and returns
only the actual postmeasurement state. The measurement de-
vice has different settings, each of which yields two outcomes
which we label by ±1. The contexts will be defined in the spe-
cific scenarios studied. Let us stress here that in the quantum
case the above scenario comprises the most general situation
in which the physical system is described by a mixed state and
the measurements need not be projective.

After repeating this experiment many times, one esti-
mates the joint probabilities of obtaining the outcomes of
measurements that are performed on the preparation and,
consequently, their correlation functions, which are average
values over the outcomes of the measurements. For instance,
if the measurements A1, A2, and A3, which belong to the same
context, are performed in sequence or jointly, we can estimate
the 23 joint probabilities p(a1, a2, a3|A1, A2, A3) as well as the
correlation function

〈A1A2A3〉 =
∑

ai=±1

a1a2a3 p(a1, a2, a3|A1, A2, A3). (1)

This notation can be naturally extended to any sets of compat-
ible measurements.

To reveal contextuality in the experiment one typically uses
noncontextuality inequalities as violation of such inequalities
by the joint probabilities implies that any noncontextual hid-
den variable model cannot reproduce them [20]. Typically
such inequalities are defined in terms of linear expressions
composed of correlation functions. For instance, in a scenario
where the measurements are performed in triples, we can

consider the following form of inequality:

I :=
∑
i, j,k

ci, j,k〈AiAjAk〉 � ηC � ηQ, (2)

where ci, j,k are real coefficients to be chosen, and ηC and ηQ

are the classical and quantum bounds.
If there is a noncontextual hidden variable model that

describes the joint probabilities, then the inequality with
the classical bound ηC is satisfied. Here, the meaning of
classicality is mathematically defined as the existence of
a noncontextual hidden variable model, for which the ex-
pectation values in Eq. (2) factorize and each individual
expectation value is deterministic, i.e., 〈AiAiAk〉 = aia jak ,
with ai ∈ {+1,−1}. Consequently, the classical bound ηC of
Eq. (2) can be derived as the maximum value that can be
attained by any such model,

ηC = max
ai=±1

⎛
⎝∑

i, j,k

ci, j,kaia jak

⎞
⎠. (3)

On the other hand, the quantum bound of the inequality is
defined as the optimal value of the linear expression obtained
over all the possible quantum states and measurements in
any Hilbert space. Since we do not specify the dimension of
the underlying Hilbert space, without any loss of generality,
we can assume that the measurements are projective and the
state is pure (see, e.g., Ref. [32], where an extension of the
Neumark dilation theorem is proven). In other words, any
correlations obtained within the above experiment can always
be reproduced with a pure state and projective measurements
satisfying the same compatibility relations.

For instance, in the case of the inequality given in Eq. (2)
the quantum bound is evaluated to be

ηQ = sup
Ai ;ρ

⎡
⎣∑

i, j,k

ci, j,k tr(ρAiAjAk )

⎤
⎦, (4)

where the observables Ai are Hermitian operators acting on
a Hilbert space H and satisfying A2

i = 1 for any i and ρ =
|ψ〉〈ψ | is some pure state that describes the preparation.

Our aim here is to introduce certain noncontextuality in-
equalities that are scalable in the sense that the number of
expectation values they consist of grows polynomially with n
and, at the same time, their maximal violation can be achieved
only by quantum systems of dimension 2n. We also explore
whether these inequalities can be used for certification of
quantum states and measurements.

B. Graph states

A graph G = (V, E ) is a mathematical object defined by a
set of vertices V and a set of edges E that connect some pairs
of vertices. By N (i) we denote the neighborhood of the vertex
i, that is, a set of those vertices that are connected to i by an
edge. Also, we call a graph connected if any two vertices are
connected by a path composed of edges.

Interestingly, one can exploit the notion of a graph to
define classes of pure entangled multipartite states. While in
principle there are many ways of doing that, here we follow
the definition based on the stabilizer formalism [44] (see also
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FIG. 2. Two nonisomorphic graphs with three vertices.

Ref. [45] for a review on graph states). It allows one to as-
sociate an N-qubit entangled state to any connected N-vertex
graph G.

In order to present the construction consider the Pauli ma-
trices

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (5)

Now, to each vertex i ∈ V one associates an N-qubit operator
Gi defined as

Gi = Xi ⊗
⊗

j∈N (i)

Zj, (6)

where the single X acts on site i, whereas the Z operators act
on all sites that belong to the neighborhood N (i) of i. Having
introduced the Gi operators we define the graph state.

Definition 1. We define the graph state |G〉 associated to
the graph G = (V, E ) as the unique state stabilized by the
corresponding operators Gi (6), that is,

Gi|G〉 = |G〉, ∀i = 1, . . . , N. (7)

In other words, |G〉 is the unique common eigenstate of all Gi

corresponding to eigenvalue +1.
The operators Gi are usually called the stabilizing opera-

tors. Notice also that they mutually commute and the Abelian
group generated by them is called a stabilizer.

Two simple examples of connected graphs with three ver-
tices are depicted in Fig. 2. The graph on the left is a complete
graph, i.e., one in which any vertex is connected to any other
vertex by an edge. The unique three-qubit state associated
to this graph is stabilized by the following three stabilizing
operators,

G1 = X ⊗ Z ⊗ Z, (8)

G2 = Z ⊗ X ⊗ Z, (9)

G3 = Z ⊗ Z ⊗ X, (10)

and can be stated as

|G′〉 = 1√
8

(|000〉 + |100〉 + |010〉 − |110〉

+ |001〉 − |101〉 − |011〉 − |111〉). (11)

The graph on the right-hand side in Fig. 2 is nonisomorphic
to the complete graph. The unique three-qubit state associated
with this graph is stabilized by

G1 = X ⊗ Z ⊗ Z, (12)

G2 = Z ⊗ X ⊗ 1, (13)

G3 = Z ⊗ 1 ⊗ X, (14)

and is given by

|G′′〉 = 1√
8

(|000〉 + |100〉 + |010〉 − |110〉

+ |001〉 + |101〉 − |011〉 + |111〉). (15)

Let us notice that although both these exemplary states
|G′〉 and |G′′〉 correspond to nonisomorphic graphs, they
are actually equivalent to the same three-qubit Greenberger-
Horne-Zeilinger (GHZ) state,

|GHZ〉 = 1√
2

(|000〉 − |111〉), (16)

by suitable local unitary transformations.
In the context of multipartite qubit states such a vertex

is associated to a qubit and edges represent entanglement
between qubits. However, in our scheme that we propose for
certification of such a multiqubit state, we do not assume that
there exists a local Hilbert space corresponding to each vertex.

Let us finally notice that the construction of the graph
state corresponding to the three-vertex complete graph can
be generalized to any number of qubits. The corresponding
stabilizing operators are given by

Gi = Z1 · · · Zi−1XiZi+1 · · · Zn, (17)

with i = 1, . . . , n. They stabilize an n-qubit graph state that
is local-unitary equivalent to the GHZ state (1/

√
2)(|0〉⊗n +

|1〉⊗n).

C. Self-testing

Self-testing, originally defined in Ref. [15] in the context
of nonlocality, aims to certify an unknown quantum state and
a set of measurements based on statistics obtained in an exper-
iment, up to certain unitary equivalence and the existence of
auxiliary degrees of freedom. Self-testing based on violation
of Bell inequalities is by definition a device-independent task
as it does not depend on any assumption on the state and
measurements. In a Bell test, the assumption of commutativity
between the measurements arises due to the fact that spatially
separated subsystems cannot communicate instantaneously
with each other.

Self-testing statements based on violation of noncontextu-
ality inequalities require, on the other hand, the assumption
of compatibility of measurements. First, contextuality-based
self-testing was defined in Ref. [31] in a similar way to how
self-testing is defined within the Bell scenario. Here we pro-
vide a slightly different definition that takes inspiration from
Ref. [32] (see also Ref. [33]) and fits better the inequalities
introduced here.
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To this aim, let us consider again the experiment described
in Sec. II A, but now we assume that both the state (in gen-
eral mixed) and measurements (in general nonprojective) are
unknown; still, the measurements obey certain compatibility
relations. Since we do not specify the dimension of the under-
lying Hilbert space, without loss of generality, we can assume
that the measurements are projective and the state is pure (see,
e.g., Ref. [32]). In other words, any correlations giving rise to
the violation of the noncontextuality inequality can always be
reproduced with a pure state ρ = |ψ〉〈ψ | and observables Ai

obeying A2
i = 1, all acting on some Hilbert space of unknown

dimension H. These observables obey the same compatibility
relations.

At the same time we consider a reference experiment with
a known pure state |ψ̃〉 ∈ Cd for some d and known ob-
servables Ãi acting on Cd that obey the same compatibility
relations.

Definition 2. Suppose an unknown state |ψ〉 ∈ H and a set
of measurements Ai violate a given noncontextuality inequal-
ity maximally; then this maximal quantum violation self-tests
the state |ψ̃〉 ∈ Cd and the set of measurements Ãi if there
exists a projection P : H → Cd and a unitary U acting on Cd

such that

U †(P Ai P†)U = Ãi, (18)

U (P |ψ〉) = |ψ̃〉. (19)

Speaking alternatively, the above definition says that based
on the observed nonclassicality one is able to identify a
subspace V = Cd in H on which all the observables act in-
variantly. Equivalently, Ai can be decomposed as Ai = Âi ⊕
A′

i, where Âi act on V , whereas A′
i act on the orthocomplement

of V in H; in particular, A′
i|ψ〉 = 0. Moreover, there is a

unitary U † Âi U = Ãi.

III. THE SIMPLEST INEQUALITY AND SELF-TESTING
OF THREE-QUBIT GRAPH STATE

A. Simplest inequality

Here, we consider a noncontextuality inequality that allows
for self-testing the complete graph state of three qubits and
simultaneously a set of six dichotomic observables denoted by
Ai and Bj (i, j ∈ {1, 2, 3}) such that {Ai, Bi} = 0 (i = 1, 2, 3).
The measurement outcomes are labeled by ±1, which means
that the measurement operators have eigenvalues ±1 and thus
they satisfy A2

i = B2
i = 1.

The compatibility hypergraph of the scenario is depicted
in Fig. 3. A compatibility hypergraph is one in which the
vertices are associated with the measurements of the scenario
and the hyperedges represent the contexts which are subsets
of compatible measurements. The noncontextuality inequality
we consider is given by

I3 := 〈A1B2B3〉 + 〈B1A2B3〉 + 〈B1B2A3〉 − 〈A1A2A3〉
� ηC = 2 < ηQ = 4. (20)

The above inequality is equivalent to a noncontextuality
inequality employed in Ref. [46] to demonstrate quantum
contextuality of a single eight-dimensional quantum system.
In the context of the Bell scenario it is the well-known MABK

FIG. 3. Hypergraph [47] of compatibility of the Kochen-Specker
contextuality scenario associated to inequality (20). In this hyper-
graph, the vertices represent the observables of the scenario and the
hyperedges represent the contexts. The red hyperedges are associated
to the correlators which enter inequality (20) with +1 and the blue
to correlators corresponding to the negative sign. Here the colors are
conveniently chosen in order to elucidate symmetric properties of the
inequality.

inequality [38–40] for which a non-locality-based self-testing
statement was derived in Ref. [17].

Following the argument in the previous section, the clas-
sical bound of the above expression can be obtained by
assigning the values ±1 to each variable Ai and Bj which
implies ηC = 2. At the same time, the algebraic maximum
of I3 is four since the correlators can take a value between
−1 and +1, and, importantly, it equals the maximal quantum
value of I3, that is, ηQ = 4. Indeed, it can be checked that the
following set of measurements,

A1 = X ⊗ 1 ⊗ 1, B1 = Z ⊗ 1 ⊗ 1,

A2 = 1 ⊗ X ⊗ 1, B2 = 1 ⊗ Z ⊗ 1,

A3 = 1 ⊗ 1 ⊗ X, B3 = 1 ⊗ 1 ⊗ Z, (21)

together with the complete graph state |G′〉 given by Eq. (11)
give rise to the algebraic maximum. This follows from the
fact that for this choice of observables, the first three terms of
the inequality correspond to the stabilizing operators Gi given
in Eq. (8), whereas the last one corresponds to their product
G1G2G3 = −X1X2X3.

Let us notice that almost all pairs of these observables
commute except for those with the same subscripts which
anticommute, that is,

[Ai, Aj] = [Ai, Bj] = [Bi, Bj] = 0 (i �= j) (22)

and

{Ai, Bi} = 0 (i = 1, 2, 3). (23)
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For further convenience let us also comment on the sym-
metries of inequality (20). A simple way to visualize these
symmetries is by using the compatibility hypergraph of the
scenario that is represented in Fig. 3. For instance, note that
under the relabeling of the measurements Ai ↔ Aj together
with Bi ↔ Bj , i.e., a permutation of subscripts i ↔ j, the
inequality remains the same. We can also observe that a cyclic
permutation of measurements A1 → A2 → A3 → A1 together
with B3 → B1 → B2 → B3 does not change the structure of
the hypergraph and therefore the inequality remains the same.
Other symmetries can be found just by looking at the hyper-
graph since it captures the intrinsic structure of the associated
inequality. The above symmetries as well as the structure
of the I3 expression will be vital for our considerations, in
particular, for generalizing this inequality into a family of
inequalities maximally violated by n-qubit GHZ states and n
pairs of anticommuting observables.

B. Self-testing

We now prove that the maximal quantum violation of in-
equality (20) can be used for certification of the GHZ state
(11) along with the observables (21). To this aim, consider
a quantum realization given by a pure state |ψ〉 ∈ H and a
set of quantum observables Ai, Bj with i, j = 1, 2, 3 acting on
H, where H is some unknown Hilbert space. We additionally
assume that these observables obey the compatibility relations
presented in Fig. 3, which translate into the commutation
relations in Eq. (22).

Assume then the correlations obtained by measuring Ai and
Bj on the state |ψ〉 attain the quantum bound of inequality
(20). This directly implies that the first three terms in I3

take value 1, whereas the last term equals −1, which via the
Cauchy-Schwarz inequality translate to the following equa-
tions:

A1B2B3|ψ〉 = |ψ〉 and permutations, (24)

B1A2B3|ψ〉 = |ψ〉 and permutations, (25)

B1B2A3|ψ〉 = |ψ〉 and permutations, (26)

A1A2A3|ψ〉 = −|ψ〉 and permutations, (27)

where “permutations” refers to the fact that the above rela-
tions also hold if we permute the observables, which is a
consequence of the commutation relations (22). One directly
deduces from these identities that

A1B1|ψ〉 = A1A2B3|ψ〉 = −B3A3|ψ〉
= A1A3B2|ψ〉 = A3B3|ψ〉, (28)

where in the first line we used B1|ψ〉 = A2B3|ψ〉 from
Eq. (25) and then the fact that B3 commutes with A1 and A2

along with the relation A1A2|ψ〉 = −A3|ψ〉 that stems from
Eq. (27). On the other hand, in the second line, we used
B1|ψ〉 = A3B2|ψ〉 from Eq. (26) and A1B2|ψ〉 = A3|ψ〉 from
Eq. (27).

Let us now employ the symmetries of the inequality. In-
deed, as already mentioned, it is invariant under simultaneous
permutations Ai ↔ Aj and Bi ↔ Bj for any i �= j, and there-
fore one can straightforwardly infer from Eq. (28) that the

following chain of equalities holds true:

A1B1|ψ〉 = A2B2|ψ〉 = A3B3|ψ〉
= −B1A1|ψ〉 = −B2A2|ψ〉 = −B3A3|ψ〉. (29)

From the above equations it follows that the operators Ai and
Bi with i = 1, 2, 3 anticommute when acting on the state |ψ〉,
i.e.,

{A1, B1}|ψ〉 = {A2, B2}|ψ〉 = {A3, B3}|ψ〉 = 0. (30)

Inspired by the approach of Ref. [32], we now define a
subspace

V := span{|ψ〉, A1|ψ〉, A2|ψ〉, A3|ψ〉,
B1|ψ〉, B2|ψ〉, B3|ψ〉, A1B1|ψ〉}, (31)

and prove the following fact for it.
Lemma 1. V is an invariant subspace of all the observables

Ai and Bj for i, j ∈ {1, 2, 3}.
Proof. One can verify with the aid of Eqs. (24)–(27) that

the action of the operator A1 on the eight vectors spanning
V is a permutation of these vectors up to the factor −1. In
exactly the same way, one shows that B1V ⊆ V . Therefore,
we conclude that the subspace V is invariant under the action
of the observables A1 and B1. By the symmetry of inequality
(20) it then follows that the subspace V is invariant under the
action of all observables Ai and Bj for i, j ∈ {1, 2, 3}. �

It should be noticed that due to Eq. (29), the subspace
V stays the same if one replaces the last vector A1B1|ψ〉 in
Eq. (31) by A2B2|ψ〉 or A3B3|ψ〉.

Due to Lemma 1, it suffices for our purpose to identify the
form of the state |ψ〉 and the operators Ai and Bj restricted to
the subspace V . In fact, the whole Hilbert space splits as H =
V ⊕ V ⊥, where V ⊥ is an orthocomplement of V in H. Then,
the fact that V is an invariant subspace of all the observables
Ai and Bj means that they have the following block structure:

Ai = Âi ⊕ A′
i, Bj = B̂ j ⊕ B′

j, (32)

where Âi = PAiP and analogously B̂i = PBiP with P : H →
V being a projection onto V . Since A′

i and B′
j act trivially on

V , that is, A′
iV = B′

jV = 0, which means that the observed
correlations giving rise to the maximal violation of inequality
(20) come solely from the subspace V , in what follows we can
restrict our attention to the operators Âi and B̂ j .

First, from the fact that Ai and Bj are observables obeying
A2

i = B2
j = 1, it directly follows that Âi, B̂ j are observables

too and satisfy

Â2
i = B̂2

j = 1V (i, j = 1, 2, 3), (33)

where 1V is the identity acting on V . Second, Eq. (32) implies
that the hatted observables must obey the same commutation
relations as Ai and Bj , that is,

[Âi, Â j] = [Âi, B̂ j] = [B̂i, B̂ j] = 0 (i �= j). (34)

Third, it turns out that relations (30) force Âi and B̂i to anti-
commute on the subspace V .

Lemma 2. Suppose the maximal quantum violation of in-
equality (20) is observed. Then, {Âi, B̂i} = 0 for all i ∈
{1, 2, 3}.
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Proof. Let us focus on the first pair Â1 and B̂1. By checking
the action of {A1, B1} on all the eight vectors that span the sub-
space V we can conclude that {Â1, B̂1} = 0. Indeed, Eq. (30)
implies that {A1, B1} vanishes when acting on |ψ〉. Then, for
A1|ψ〉 one has

{A1, B1}A1|ψ〉 = (A1B1A1 + B1)|ψ〉 = 0, (35)

where the second equality follows again from Eq. (30). For
A2|ψ〉 and A3|ψ〉 we can use the fact that A1 and B1 commute
with A2 and A3, which gives

{A1, B1}Ai|ψ〉 = Ai{A1, B1}|ψ〉 = 0 (i = 2, 3). (36)

In exactly the same way one deals with the vectors Bi|ψ〉.
Finally, for the last vector in Eq. (31), A1B1|ψ〉, one has

{A1, B1}A1B1|ψ〉 = (A1B1A1B1 + 1)|ψ〉 = 0, (37)

where to get the last equality we use Eq. (30). Owing to the
block form of A1 and B1 in Eq. (32), all this implies that
{Â1, B̂1} = 0.

One more time, by the symmetries of the inequality, we
can draw the same conclusions for the remaining pairs of the
observables Ai and Bi. As a result {Âi, B̂i} = 0 for i = 1, 2, 3,
which completes the proof. �

With Lemma 2 at hand, we can now employ the standard
approach that has already been used in many non-locality-
based self-testing schemes [17,18,48,49]. Precisely, using this
approach we can first infer that the dimension d of the
subspace V is even. To see this, note that from the above
anticommutation relation between Âi and B̂i we have

Âi = −B̂iÂiB̂i or B̂i = −ÂiB̂iÂi, (38)

which after taking trace on both sides simplifies to tr(Âi ) =
tr(B̂i ) = 0. It then follows that both the eigenvalues ±1 of
each observable Âi or B̂i have equal multiplicities. This clearly
implies that the dimension d = dim V is an even number,
d = 2k for some k ∈ N, and thus V = C2 ⊗ Ck . On the other
hand, since dim V � 8, one concludes that k = 2, 3, 4.

The fact that Â1 and B̂1 are traceless means also that the
operators Â1 and B̂1 are equivalent to X ⊗ 1k and Z ⊗ 1k for
some k = 2, 3, 4 up to some unitary operation (see for in-
stance Appendix B in Ref. [48] for the proof of this statement).
This observation is one of the key ideas behind the proof of the
following lemma.

Lemma 3. Suppose the maximal quantum violation of in-
equality (20) is observed. Then, there exists a basis in V such
that

Â1 = X ⊗ 1 ⊗ 1, B̂1 = Z ⊗ 1 ⊗ 1,

Â2 = 1 ⊗ X ⊗ 1, B̂2 = 1 ⊗ Z ⊗ 1,

Â3 = 1 ⊗ 1 ⊗ X, B̂3 = 1 ⊗ 1 ⊗ Z. (39)

Proof. First, from Lemma 2 we have {Â1, B̂1} = 0 which
implies that there exists a unitary U1 acting on V such that

U †
1 Â1 U1 = X ⊗ 1k, (40)

U †
1 B̂1 U1 = Z ⊗ 1k, (41)

where, as already mentioned, the dimension d of the subspace
V is given by d = 2k for some k = 2, 3, 4. Using then the

above form of Â1 and B̂1 and the commutation relations (22)
we can write the other operators as follows:

U †
1 Â2 U1 = 12 ⊗ M, (42)

U †
1 B̂2 U1 = 12 ⊗ N, (43)

U †
1 Â3 U1 = 12 ⊗ O, (44)

U †
1 B̂3 U1 = 12 ⊗ P, (45)

where M, N , O, and P are Hermitian involutions acting on the
subspace of dimension k. To show explicitly how the above
equations are obtained let us focus on Â2; the proof for the
other observables is basically the same. Since Â2 acts on C2 ⊗
Ck , it can be decomposed in the Pauli basis as

U †
1 Â2 U1 = 12 ⊗ M1 + X ⊗ M2 + Y ⊗ M3 + Z ⊗ M4, (46)

where Y is the third Pauli matrix and Mi are some Hermitian
matrices acting on Ck . Now, it follows from the fact that Â2

commutes with Â1, that M3 = M4 = 0. Then, from [Â2, B̂1]
one obtains that M2 = 0, and, by putting M1 = M, we arrive
at Eq. (42).

Second, from Lemma 2, we have {Â2, B̂2} = 0 which is
equivalent to {M, N} = 0. Since both M and N are involutions,
one concludes, as before, that k = 2k′ for k′ = 1, 2, or, equiv-
alently, that Ck = C2 ⊗ Ck′

. Moreover, there exists another
unitary transformation U2 : Ck → Ck such that

U †
2 M U2 = X ⊗ 1k′ , (47)

U †
2 N U2 = Z ⊗ 1k′ . (48)

Finally, to learn the form of O and P we can again employ
the commutation relations (22). They imply in particular that
[M, O] = [N, O] = [M, P] = [N, P] = 0, and consequently,

O = 12 ⊗ O′, P = 12 ⊗ P′, (49)

where O′ and P′ are some operators acting on Ck′
such

that [O′]2 = [P′]2 = 1k′ . Additionally, due to the fact that
{Â3, B̂3} = 0, they must anticommute, {O′, P′} = 0. This
means that k′ = 2 and that there exists a unitary operation U3

acting on this qubit Hilbert space such that

U †
3 O′ U3 = X, U †

3 P′ U3 = Z. (50)

Taking all this into account, one finds that V ∼= C2 ⊗
C2 ⊗ C2 and that there exists a single unitary operation
U = U1(12 ⊗ U2)(12 ⊗ 12 ⊗ U3) on V which brings all the
observables Âi and B̂i to the form in Eqs. (39). �

We have thus arrived at one of our main results of this
paper.

Theorem 1. If a quantum state |ψ〉 and a set of mea-
surements Ai and Bj with i, j ∈ {1, 2, 3} maximally violate
inequality (20), then there exist a projection P : H → V with
V = (C2)⊗3 and a unitary U acting on V such that

U † (P Ai P†)U = Xi, (51)

U † (P Bi P†)U = Zi, (52)

where Xi and Zi are X and Z Pauli matrices acting on qubit i,
and

U (P|ψ〉) = |G〉 (53)
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with |G〉 being the three-qubit complete graph state defined in
Eq. (11).

Proof. A quantum state |ψ〉 that belongs to a Hilbert space
H and a set of observables Ai, Bj acting on H attain the
maximal quantum violation of inequality (20) if and only if
they satisfy the set of Eqs. (24)–(27). The algebraic relations
induced by this set of equations let us prove Lemmas 1–3
which imply that there exists a projection P : H → V ∼= C8

and a unitary U = U1(12 ⊗ U2)(12 ⊗ 12 ⊗ U3) acting on V ∼=
C8 for which Eqs. (51) hold true.

From the above characterization of the observables we can
infer the form of the state |ψ〉. Indeed, after plugging Eqs. (78)
into the conditions (24) one realizes that the latter are simply
the stabilizing conditions of the graph state associated to the
complete graph of three vertices given in Eq. (11) and thus
U |ψ〉 = |G′〉. This completes the proof. �

A few comments are in order. The first is that the tensor
product structure here is just a suitable mathematical tool
we used to represent our results. We know that in composite
quantum systems the Hilbert space of the whole system is a
tensor product of the Hilbert spaces of the separate subsys-
tems; however, it has to be clear that in Theorem 1 we do not
assume the whole system to be composite.

The second comment is that the certification statement
made in Theorem 1 involves a global unitary operation which
means that any state from V can in fact be chosen as the
reference state, even a fully product one. Thus, Theorem 1
cannot be understood as a certification of only the state, but
rather as a certification of a state and a set of measurements at
the same time. Or, more precisely, it is a certification of how
measurements act on the state or what the relation between a
state and measurements is; this relation is basis independent.

One way to get rid of the above ambiguity is to assume
that the quantum system at hand is composed of spatially
separated subsystems on which the verifier can perform local
measurements. Such an assumption allows them to use Bell
nonlocality to deduce the form of the state. For instance for
the GHZ state of three qubits a self-testing statement based on
the violation of inequality (20) was derived in Ref. [17].

To illustrate the difference between contextuality and non-
locality-based certification let us consider another set of
quantum observables on C8 defined as

A1 = X ⊗ 1 ⊗ 1, A2 = 1 ⊗ X ⊗ Z, A3 = 1 ⊗ Z ⊗ X,

B1 = Z ⊗ 1 ⊗ 1, B2 = 1 ⊗ Z ⊗ 1, B3 = 1 ⊗ 1 ⊗ Z.

(54)

Clearly, these observables, similarly to those in Eq. (21),
satisfy the commutation and anticommutation relations in

Eqs. (22) and (30). Moreover, they give rise to the maximal
violation of inequality (20) together with the graph state |G′′〉
corresponding to the linear graph in Fig. 2. However, while
both the graph states |G′〉 and |G′′〉 are equivalent under local
unitary operations and thus cannot be distinguished within
both approaches to self-testing, the sets of observables in
Eqs. (21) and (54) are certainly not; they are equivalent under
global unitary operations. Thus, the maximal violation of the
Bell inequality (20) would allow one to distinguish between
these two sets, while standard quantum contextuality does not
allow to do that.

IV. A SCALABLE INEQUALITY AND SELF-TESTING
OF MULTIQUBIT GRAPH STATES

In this section we design a family of noncontextuality in-
equalities which is scalable and aimed to certify multiqubit
quantum systems. These inequalities are scalable since the
numbers of measurements and correlators increase polynomi-
ally with the number of vertices of the respective graph state.
The inequality we propose in Eq. (57) generalizes the inequal-
ity given in Eq. (20) and has this inequality in the heart of
the construction since the structure of the simplest inequality
appears as the building blocks of the general construction. We
prove that the inequalities are useful for certification purposes.

A. Scalable noncontextuality inequalities

First, let us consider a set of 2n observables denoted by
A1, . . . , An and B1, . . . , Bn. They are assumed to mutually
commute except for pairs Ai, Bi with i ∈ {1, . . . , n}, that is,

[Ai, Aj] = [Bi, Bj] = [Ai, Bj] = 0 (i �= j). (55)

We now describe our construction of the noncontextuality
inequalities. We first consider a sum of n expectation values
of the form Ci = 〈B1 · · · Bi−1AiBi+1 · · · Bn〉 for i = 1, . . . , n
which involve n − 1 different Bj observables and a single
observable Ai. Then, for any choice of three out of n such
different correlators Ci, Cj and Ck (i �= j �= k) we consider
another correlator that we subtract from the sum. It is given by

〈B1 · · · Ai · · · Aj · · · Ak · · · Bn〉 (56)

and consists of three observables Ai, Aj , and Ak and n − 3
observables Bm with m �= i, j, k. In this way we obtain
n + ( n

3 ) expectation values from which we construct our
noncontextuality inequality,

In = αn(〈A1B2B3B4 · · · Bn〉 + 〈B1A2B3B4 · · · Bn〉 + 〈B1B2A3B4 · · · Bn〉 + · · · + 〈B1B2B3B4 · · · An〉)

−〈A1A2A3B4 · · · Bn〉 − 〈A1A2B3A4 · · · Bn〉 − · · · − 〈B1 · · · Bn−3An−2An−1An〉 � η
(n)
C < η

(n)
Q = αnn +

(
n

3

)
, (57)

where the constant αn = ( n−1
2 ) has been added for further

convenience.
It is not difficult to see that for the case n = 3 the above

inequality reproduces the one in Eq. (20). While, as already

012431-7



SANTOS, JEBARATHINAM, AND AUGUSIAK PHYSICAL REVIEW A 106, 012431 (2022)

FIG. 4. Hypergraphs of compatibility of subsets of observables
related with two choices of subsets of correlators in Eq. (58). On
the left we have the hypergraph associated with the subscripts 1, 2,
and 3, and on the right side with the subscripts 1, 2, and 4. These
two hypergraphs also represent the compatibility structures of the
observables corresponding to the simpler inequality (20) and another
such simpler inequality with the observables Ai and Bj , with i, j =
1, 2, 4, respectively. These two compatibility structures serve as the
building blocks to construct inequality (58).

mentioned, for n = 3 it is equivalent to the MABK inequality
[38–40] if the commutation relations between the observ-
ables are satisfied due to the spatial separation between the
subsystems, for n > 3 this is not the case. The number of
terms in the MABK Bell-type inequalities grows exponen-
tially with n, whereas in our noncontextuality inequalities this
number scales only polynomially with n. In Refs. [18,42,50]
other Bell-type inequalities were designed for the graph states
which again scale exponentially or linearly; thus, they differ
from our inequalities. Our inequalities (57) are designed such
that they are suitable for the purpose of certification. It is also
important to notice that our inequality is constructed in such
a way that for every three different correlators that enter In

with + and the associated “negative” one, the noncommon
observables appearing in all these four correlators adopt the
compatibility structure from the simplest inequality for n = 3.
To illustrate this with an example let us consider the inequality
for n = 4:

I4 = 3(〈A1B2B3B4〉 + 〈B1A2B3B4〉 + 〈B1B2A3B4〉
+ 〈B1B2B3A4〉) − 〈B1A2A3A4〉 − 〈A1B2A3A4〉
− 〈A1A2B3A4〉 − 〈A1A2A3B4〉

� η
(4)
C < η

(4)
Q = 16. (58)

Figure 4 presents the compatibility structures of the common
observables for two choices of such four-element subsets of
expectation values in I4. The first subset consists of the first
three terms with a + sign and the last one with a − sign, all
containing observables A1, A2, and A3, whereas the second set
is composed of the first, the second, and the fourth “+” terms
in I4 and the third “negative one,” all of them containing A1,
A2, and A4.

Inequality (57) is nontrivial for any n, i.e., η
(n)
C < η

(n)
Q . To

prove this statement, let us first notice that its quantum bound
is η

(n)
Q = nαn + ( n

3 ) and can be attained by the following ob-
servables,

Ai = Xi, Bj = Zj, (59)

and the unique graph state |Gn〉 associated to the complete
graph of n qubits and stabilized by the operators in Eq. (17).
In fact, plugging Eqs. (59) into the expression for In one real-
izes that all correlators with + correspond to the stabilizing
operators Gi, whereas those entering In with a minus sign
correspond to products of triples of different Gi’s.

Let us then estimate the maximal classical value η
(n)
C , and,

for pedagogical purposes, we first consider the case n = 4 for
which the expression I4 can be stated as

I4 = (〈A1B2B3B4〉 + 〈B1A2B3B4〉 + 〈B1B2A3B4〉
− 〈A1A2A3B4〉) + (〈A1B2B3B4〉 + 〈B1A2B3B4〉
+ 〈B1B2B3A4〉 − 〈A1A2B3A4〉) + (〈A1B2B3B4〉
+ 〈B1B2A3B4〉 + 〈B1B2B3A4〉 − 〈A1B2A3A4〉)

+ (〈B1A2B3B4〉 + 〈B1B2A3B4〉 + 〈B1B2B3A4〉
− 〈B1A2A3A4〉), (60)

where each line in the right-hand side of the above equa-
tion corresponds to a lifting of I3 to n = 4. Due to the fact
that in each line we have basically the inequality for n = 3,
it is not difficult to see that for noncontextual models, |I4| �
4 × 2 = 8, which is clearly smaller than the maximal quantum
value η

(4)
Q = 16. To prove that the same holds true for any n, it

suffices to notice that, analogously to I4, In can be rewritten as
a sum of ( n

3 ) terms that are liftings of I3, and thus η
(n)
C � 2( n

3 ).
At the same time, η(n)

Q = n( n−1
2 ) + ( n

3 ) and thus η
(n)
Q > η

(n)
C for

any n � 3.

B. Certification based on the noncontextuality inequality

Let us now show how the above inequality can be used for
certification of the complete graph state and n pairs of anti-
commuting observables. To this aim, we assume that a state
|ψ〉 ∈ H together with a set of 2n dichotomic observables
Ai and Bi acting on H maximally violate Eq. (57). Then, as
in the case n = 3, this implies the following set of n + ( n

3 )
equations:

B1 · · · Bi−1AiBi+1|ψ〉 = |ψ〉 (61)

with i = 1, . . . , n, and

B1 · · · Ai · · · Aj · · · Ak · · · Bn|ψ〉 = −|ψ〉 (62)

for any choice of i, j, k = 1, . . . , n such that i �= j �= k.
As a consequence of these equations, we have

A1B1|ψ〉 = A1A2B3B4 · · · Bn|ψ〉 = A2B2|ψ〉, (63)

where the first and the second equality stem from Eq. (61) for
i = 2 and Eq. (61) for i = 1, respectively. Then, by applying
Eq. (62) for i = 1, j = 2, and k = 3, one obtains

A1B1|ψ〉 = −B3A3|ψ〉. (64)

On the other hand, using Eq. (61) with i = 3 we can write

A1B1|ψ〉 = A1A3B2B4 · · · Bn|ψ〉 = A3B3|ψ〉, (65)

where the second equation is a consequence of Eq. (61) for
i = 1. Simultaneously, an application of Eq. (62) for i = 1,
j = 2, and k = 3 to the second terms in the above gives

A1B1|ψ〉 = −B2A2|ψ〉. (66)
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Note that our inequality is designed in a such way that
it is symmetric under any permutation of subscripts; i.e., it
is invariant under the transformations Ai ↔ Aj together with
Bi ↔ Bj . This when applied to Eqs. (63)–(66) results in the
following relations:

AiBi|ψ〉 = AjBj |ψ〉 = −BiAi|ψ〉 (67)

for i, j ∈ {1, 2, . . . , n}. In particular, Ai and Bi anticommute:

{Ai, Bi}|ψ〉 = 0 (i = 1, . . . , n). (68)

Having established the key relations between the state and
the observables, let us now, analogously to the case n = 3,
identify a subspace of the Hilbert space H which is invariant
under the action of all observables Ai and Bi. The subspace is
given by

Vn = span{|ψ〉, Bi1 |ψ〉, Bi1 Bi2 |ψ〉, . . . , Bi1 Bi2 · · · Bik |ψ〉,
. . . , Bi1 Bi2 · · · Bin−1 |ψ〉, B1 · · · Bn|ψ〉}, (69)

where i j = 1, . . . , n for any j and i1 < i2 < · · · < ik < · · · <

in−1.
For instance, in the simplest cases of n = 3 and n = 4, the

above construction gives

V3 = span{|ψ〉, Bi|ψ〉, BiBj |ψ〉, B1B2B3|ψ〉} (70)

and

V4 =span{|ψ〉, Bi|ψ〉, BiBj |ψ〉, BiBjBk|ψ〉, B1B2B3B4|ψ〉}
(71)

with i, j, k = 1, . . . , n and i < j < k. In particular, V3 is ex-
actly the same as the one defined in Eq. (31); due to Eq. (61),
BiBj |ψ〉 = Ak|ψ〉 with i �= j �= k and B1B2B3|ψ〉 = A1B1|ψ〉.

Let us then notice that the number of vectors spanning
Vn is 2n. This is because each subset of vectors of the form
Ai1 · · · Aik |ψ〉 for i1 < · · · < ik contains ( n

k ) elements, and we
have n + 1 such subsets indexed by k = 0, . . . , n. Thus the
total number of vectors can be counted as

n∑
k=0

(
n

k

)
= (1 + 1)n = 2n, (72)

meaning that dim Vn � 2n. In fact, as we show later dim Vn is
exactly 2n.

Our aim now is to identify the form of the operators Ai and
Bj projected onto the subspace Vn. The idea of the proof of
self-testing is similar to those we used in the case n = 3.

Lemma 4. The subspace Vn of Hn is invariant under the
action of the operators Ai and Bj for i, j = {1, 2, . . . , n}.

Proof. It can be checked that the action of any operator Ai

or Bj over all the set of 2n elements that generate the subspace
Vn is, up to the factor −1, a permutation over this set. Indeed,
the action of Bm on vectors of the form Bi1 · · · Bik |ψ〉 with i1 <

· · · < ik for k = 1, . . . , n returns vectors of a similar form
with k → k − 1 if m equals one of the subscripts i1, . . . , ik , or
with k → k + 1 otherwise. In both cases the resulting vectors
are already in Vn.

Let us then consider the Ai observables. Due to Eq. (61)
and taking into account the commutation (55) or anticom-
mutation (68) their action on the vectors spanning Vn can
always be represented as an action of a product of n − 1
different Bi observables. Thus, when applied to Bi1 · · · Bik |ψ〉

with i1 < · · · < ik for k = 1, . . . , n they will again produce
vectors involving products of Bi operators that are already in
Vn. This completes the proof. �

This is a key step of our considerations because, taking
into account the fact that Ai and Bi are quantum observables,
Lemma 4 implies that they can be represented as a direct sum
of two blocks,

Ai = Âi ⊕ A′
i, Bj = B̂ j ⊕ B′

j, (73)

where Âi and B̂i are projections of Ai and Bi onto Vn, that is,
Âi = PnAiPn and B̂i = PnAiPn with Pn : Hn → Vn denoting the
projector onto Vn. On the other hand, A′

i and B′
j are defined on

the orthocomplement of Vn in the Hilbert space Hn that we
denote V ⊥

n ; clearly, Hn = Vn ⊕ V ⊥
n .

Importantly, A′
i and B′

i act trivially on the subspace Vn, in
particular A′

i|ψ〉 = B′
i|ψ〉 = 0, and consequently it is enough

for our purposes to characterize Âi and B̂ j . Our first step to
achieve this goal is to prove the following lemma.

Lemma 5. {Âi, B̂i} = 0 for all i ∈ {1, . . . , n}.
Proof. In order to prove this statement we will show that

{Ai, Bi}Vn = 0; that is, all these anticommutators act trivially
on any vector from Vn. To this aim, let us investigate how
{Ai, Bi} acts on the vectors spanning Vn. We first see that
{Ai, Bi}|ψ〉 = 0 as a direct consequence of Eq. (67). Let us
then consider vectors Bj |ψ〉. If i �= j, we can directly use the
commutation relations (55) to write

{Ai, Bi}Bj |ψ〉 = Bj{Ai, Bi}|ψ〉 = 0. (74)

On the other hand, if i = j, one has

{Ai, Bi}Bi|ψ〉 = (Ai + BiAiBi )|ψ〉 = 0, (75)

where the last equality is again a consequence of the facts that
AiBi|ψ〉 = −BiAi|ψ〉 and that B2

i = 1.
It is not difficult to realize that the above reasoning extends

to any vector spanning the subspace Vn. Indeed, let us consider
vectors of the form Bi1 · · · Bik |ψ〉 with i1 < · · · < ik for k =
1, . . . , n and assume first that all i1, . . . , ik differ from i. Then,
due to the commutation relations, one directly has

{Ai, Bi}Bi1 · · · Bik |ψ〉 = Bi1 · · · Bik {Ai, Bi}|ψ〉 = 0. (76)

On the other hand, if one of the subscripts, say, i1, equals i,
then

{Ai, Bi}Bi1 · · · Bik |ψ〉 = Bi2 · · · Bik {Ai, Bi}B1|ψ〉
= Bi2 · · · Bik (Ai + BiAiBi )|ψ〉
= 0, (77)

where the last equality follows from the fact that Ai and Bi

anticommute when acting on |ψ〉 and from B2
i = 1.

Taking into account that each {Ai, Bi} is a Hermitian op-
erator and that it acts trivially on the whole subspace Vn, one
directly concludes that {Âi, B̂i} = 0. �

Our next lemma is a straightforward generalization of
Lemma 3.

Lemma 6. Suppose the maximal quantum violation of our
inequality (57) is observed. Then, there exists a basis of Vn for
which

Âi = Xi, B̂ j = Zj . (78)
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Proof. We will proceed recursively starting from the pair
Â1 and B̂1. It follows from Lemma 5 that {Â1, B̂1} = 0 which
means that the dimension d = dim Vn is an even number, i.e.,
d = 2k for some k = 1, . . . , 2n−1 (recall that d � 2n), and that
there exists a unitary U1 acting on Vn such that

U †
1 Â1 U1 = X ⊗ 1k, (79)

U †
1 B̂1 U1 = Z ⊗ 1k, (80)

where 1k is an identity acting on Ck .
Next, to determine the remaining observables Âi and B̂i

we exploit the fact that they all must commute with both Â1

and B̂1. With this aim, we use the fact that Vn = C2 ⊗ Ck to
decompose Âi and B̂i (i = 2, . . . , n) in terms of the Pauli basis
as

U †
1 R̂i U1 = 1 ⊗ MR

0 + X ⊗ MR
1 + Y ⊗ MR

2 + Z ⊗ MR
3 ,

(81)
where R = A, B, and MR

i are some Hermitian matrices act-
ing on Ck . Now, [R̂i, Â1] = 0 implies that MR

2 = MR
3 = 0,

whereas from [R̂i, B̂1] = 0 one concludes that MR
1 = 0. As

a result, all Âi and B̂i with i = 2, . . . , n admit the following
representation,

U †
1 Âi U1 = 12 ⊗ Mi, U †

1 B̂i U1 = 12 ⊗ Ni, (82)

where Mi and Ni act on Ck; in fact, they are Hermitian
and obey M2

A = M2
B = 1k , and thus are quantum observables.

Moreover, it follows from Lemma 5 that {Mi, Ni} = 0 for all
i = 2, . . . , n.

We have thus a set of 2(n − 1) quantum observables Mi and
Ni that satisfy the same commutation and anticommutation
relations as Âi and B̂i, and therefore we can use the above
reasoning again to conclude that the dimension k is even,
that is, k = 2k′ for some k′ = 1, . . . , 2n−4, and that there is
a unitary operation U2 : Ck → Ck such that

U †
2 M2 U2 = X ⊗ 1k′ , U †

2 N2 U2 = Z ⊗ 1k′ , (83)

where 1k′ is an identity acting on Ck′
. We then use the fact that

the other operators Mi and Ni with i = 3, . . . , n commute with
both M2 and N2 to see that they are of the form Mi = 12 ⊗ Pi

and Ni = 12 ⊗ Qi, where Pi and Qi are quantum observables
acting on Ck′

.
It is now clear that the above procedure can be applied it-

eratively many times until all the observables are proven to be
of the form (78), of course, up to certain unitary operation. In
fact, one finds that Vn = (C2)⊗n; that is, it is an n-qubit Hilbert
space. Moreover, there is a unitary operation U composed of
all the intermediate unitary operations Ui such that

U †Âi U = Xi, U †B̂i U = Zi, (84)

for any i = 1, . . . , n. �
One of the main messages that one takes from this lemma

is that the dimension of Vn is exactly 2n; in other words, Vn is
isomorphic to an n-qubit Hilbert space. In this sense our in-
equalities can be seen as dimension witnesses: the dimension
of the Hilbert space supporting a state and observables giving
rise to the maximal violation of our inequalities must be at
least 2n. Moreover, the above lemma implies that a set of n
pairs of anticommuting quantum observables with outcomes
±1 that satisfy the commutation relations (55) can always

be represented, up to a single unitary operation, as a tensor
product of single-qubit operators (78). We have thus arrived
at our main result.

Theorem 2. If a quantum state |ψ〉 and a set of dichotomic
observables Ai and Bj with i, j = {1, 2, . . . , n} give rise to
maximal violation of inequality (57), then there exist a pro-
jection Pn : Hn → C2n

and a unitary U acting on C2n
such

that

U †(P Ai P†)U = Âi, (85)

U †(P Bj P†)U = B̂ j, (86)

U (P|ψ〉) = |Gn〉, (87)

where Âi and B̂ j are defined in Eq. (78) and |Gn〉 is the
complete graph state of n qubits.

Proof. The state |ψ〉 ∈ Hn and observables Ai and Bj act-
ing on the Hilbert space Hn attain the maximal quantum
violation of inequality (57) if, and only if, they satisfy the
set of n + ( n

3 ) equations (61) and (62). The algebra induced
by this set of equations allows us to prove Lemmas 4, 5,
and 6; in particular, it follows that there exists a projection
Pn : H → Vn

∼= C2n
and a unitary U acting on Vn such that

U †(P Ai P†)U = Xi, (88)

U †(P Bj P†)U = Zj . (89)

In this way, the products of observables that appear in the first
n correlators in inequality (57) give stabilizing operators of
the graph state associated to the complete graph with n ver-
tices, whereas the correlators with negative sign correspond to
products of three different stabilizing operators for which the
graph state |Gn〉 is an a eigenvector with associated eigenvalue
−1. Thus the complete graph state will be the unique state that
attains the maximal quantum violation; then

U (P|ψ〉) = |Gn〉. (90)

This completes the proof. �

V. ROBUSTNESS

Here we obtain fidelity bounds on the state and measure-
ments leading to the given nonmaximal violation of inequality
(57) to demonstrate that our scheme is robust to errors and
experimental imperfections. For simplicity, let us focus on the
case of n = 3. Let us say that the maximal quantum violation
of inequality (20) is observed with an ε error, i.e., a non-
maximal violation of 4 − ε is observed. Then, the correlators
satisfy the following bounds:

〈ψ |A1B2B3|ψ〉 � 1 − ε,

〈ψ |B1A2B3|ψ〉 � 1 − ε,

〈ψ |B1B2A3|ψ〉 � 1 − ε,

−〈ψ |A1A2A3|ψ〉 � 1 − ε, (91)

for some ε > 0. We demonstrate that for a small enough value
of ε, the quantum realization is close enough to the optimal
quantum realization which leads to the maximal quantum
violation of the inequality. This is the purpose of robustness
analysis that will be presented here; i.e., we show that in the
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limit ε → 0 the quantum realization is close to the optimal
one.

In the presence of errors, it is not straightforward to
guarantee the existence of an invariant subspace under the
action of the operators Ai and Bj , as we have in the self-
testing of the optimal quantum realization. However, the
robustness of the protocol can be demonstrated, in a sim-
ilar way to that of Ref. [32], by proving the existence
of an eight-dimensional ideal subspace V̂ together with a
state |ψ̂〉 ∈ V̂ and observables Âi and B̂i acting on it such
that their fidelities with the actual state and measurements
approach one in the limit of ε → 0. We define the state fi-
delity as F (|ψ̂〉, |ψ〉) := |〈ψ̂ |ψ〉|2, and the operator fidelity
as F (X̂i, Xi ) := (1/8)Tr(X̂iXi ) (with Xi = Ai), where the 1/8
factor is used to normalize the fidelity since Tr(X̂iXi ) � 8, and
similarly defined between B̂ j and Bj . Formally, we have the
following theorem.

Theorem 3. Suppose a quantum state |ψ〉 and a set of
measurements Ai, Bj with i, j = {1, 2, 3} in a Hilbert space
H satisfy the ideal expectations corresponding to the maximal
quantum violation of inequality (20) to within error ε. Then
there exists a projection P : H → V̂ , where dim(V̂ ) = 8, a
state |ψ̂〉 ∈ V̂ and Âi, B̂ j which are Hermitian involutions
acting on V̂ for all i and j such that

〈ψ̂ |Â1B̂2B̂3|ψ̂〉 = 1,

〈ψ̂ |B̂1Â2B̂3|ψ̂〉 = 1,

〈ψ̂ |B̂1B̂2Â3|ψ̂〉 = 1,

and there exists some unitary U acting on V̂ such that

F (U |ψ̂〉, |ψ〉) � 1 − ε0,

F (UÂiU
†, Ai ) � 1 − ε1 ∀i,

F (UB̂jU
†, Bj ) � 1 − ε2 ∀i,

where ε0 = 25ε, ε1 = 0, and ε2 = 4ε.
The proof of the above theorem is given in Appendix A.

This theorem implies that there exists a subspace in which,
up to a small enough error, the quantum realization leading
to the nonmaximal quantum violation is close to the optimal
quantum realization up to a unitary. For instance, an error of
0.1% in each expectation value implies that the state fidelity
is not less than 97.5% and the operator fidelities of Bj are not
less than 99.6%. Following the proof of Theorem 3, one can
also obtain the fidelity bounds for any n demonstrating the
robustness of the scheme similarly as presented in Theorem 4.

In order to obtain a tight self-testing bound that is appli-
cable to a more noisy practical scenario in which the given
nonmaximal violation is not almost perfect, one may employ
the numerical method to bound the state fidelity as a func-
tion of violation of the noncontextual inequality based on
semidefinite programming relaxations of quantum contextual
sets introduced in Ref. [51] or the analytical method based on
operator inequalities introduced in Ref. [17].

VI. CONCLUSIONS

Quantum contextuality provides a notion of nonclassical-
ity for single systems. Motivated by extending the task of
self-testing based on Bell inequalities to scenarios where en-

tanglement is not necessary or spatial separation between the
subsystems is not required, self-testing of quantum devices
based on quantum contextuality has recently been explored.
In this work we have followed this research direction and have
introduced a family of inequalities revealing quantum contex-
tuality and have shown that they can be used for certification
of multiqubit quantum systems. An interesting feature of our
scheme is that it is scalable: the amount of information about
the observed nonclassical correlations needed to certify the
underlying quantum system grows only polynomially with the
number of qubits that are certified.

Such contextuality-based certification schemes rely, how-
ever, on compatibility relations between the involved mea-
surements and are thus generally difficult to implement in
practice. A natural follow-up of this work would be therefore
to design a scheme for certification built on our inequalities
that does not rely on the compatibility relations, but rather
allows one to deduce them from the observed nonclassicality.
Such schemes for single quantum systems have recently been
proposed in Refs. [33,34] within the sequential measurements
or temporal correlations scenario. It would be thus interesting
to see whether our results can be mapped to this scenario.
Another possible direction for further research is to explore
whether one can improve the scalability of our scheme with
the number of the certified qubits. From a general perspective
it is a highly nontrivial question to ask what is the minimal
information about the observed nonclassical correlations that
enables making nontrivial statements about the underlying
quantum system.
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APPENDIX A: PROOF OF THEOREM 3

Here we present the derivation of robustness of the scheme
given in Theorem 3. This will be similar to the proof of
robustness of the certification scheme given in Ref. [32].

For providing robust self-testing statements in the Bell
tests where dichotomic measurements are implemented [17],
Jordan decomposition for the state and measurements has
been employed to simplify the derivation. In Ref. [32], Jordan
decomposition has also been extended to the contextuality
scenario to provide robust certification of the two-qubit sys-
tem. In Appendix B, we extend this Jordan decomposition to
our scenario to provide the robust certification. According to
this decomposition, we can decompose the Hilbert space H in
which the state and measurements leading to the violation of
our inequality act as

H =
⊕

l

Hl , (A1)

where each Hl has dimension at most eight and is invariant
under the action of Ai and Bj .
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With respect to decomposition (A1), the state |ψ〉 can be
written as

|ψ〉 =
∑

l

√
pl |ψl〉, (A2)

where |ψl〉 ∈ Hl and
∑

l pl = 1. We express each |ψl〉 in the
computational basis {|abc〉l : a, b, c ∈ {0, 1}} as

|ψl〉 =
∑

a,b,c=0,1

c(l )
abc|abc〉l , (A3)

where c(l )
abc satisfies

∑
a,b,c |c(l )

abc|
2 = 1.

We define the subspace V̂ ⊆ H as the linear span of
{|ãb̃c̃〉 := ∑

l
√

pl |abc〉l}. We define the ideal state in this
subspace as

|ψ̂〉 := 1√
2

(|0̃0̃0̃〉 − |1̃1̃1̃〉), (A4)

which can be reexpressed as

|ψ̂〉 =
∑

l

√
pl |ψ̂l〉, (A5)

where

|ψ̂l〉 := 1√
2

(|000〉l − |111〉l ). (A6)

Note that for the ideal observables defined as

Â1 := ⊕
l (Â1l ⊗ 1l ⊗ 1l ), B̂1 := ⊕

l (B̂1l ⊗ 1l ⊗ 1l ),

Â2 := ⊕
l (1l ⊗ Â2l ⊗ 1l ), B̂2 := ⊕

l (1l ⊗ B̂2l ⊗ 1l ),

Â3 := ⊕
l (1l ⊗ 1l ⊗ Â3l ), B̂3 := ⊕

l (1l ⊗ 1l ⊗ B̂3l ),

where

Âil = Xi, B̂ jl = Yj, (A7)

where Xi and Yj are the Pauli operators acting on the ith qubit,
the ideal state defined in Eq. (A4) violates the noncontex-
tuality inequality (20) maximally. Note that the ideal state
projected onto Hl , i.e., |ψ̂l〉, has the form of the GHZ state
(16). We have chosen the above particular form of the ideal
state for our convenience.

We now express the nonideal observables with respect to
the Jordan decomposition. Due to the fact that we have three
pairs of dichotomic observables that do not commute on the
quantum state, which is a consequence of Lemma 7, the di-
mension of each of the subspaces Hl in Eq. (A1) can be taken
to be eight. From Corollary 1, it follows that

A1 = ⊕
l (A1l ⊗ 1l ⊗ 1l ), B1 = ⊕

l (B1l ⊗ 1l ⊗ 1l ),

A2 = ⊕
l (1l ⊗ A2l ⊗ 1l ), B2 = ⊕

l (1l ⊗ B2l ⊗ 1l ),

A3 = ⊕
l (1l ⊗ 1l ⊗ A3l ), B3 = ⊕

l (1l ⊗ 1l ⊗ B3l ),

where by using “local” unitary operations we can always
choose Ail and Bil acting on Hl to be other following forms:

A1l = X1, B1l = cos θlY1 + sin θlX1,

A2l = X2, B2l = cos φlY2 + sin φlX2,

A3l = X3, B3l = cos νlY3 + sin νlX3, (A8)

with θl , φl , νl ∈ [−π
2 , π

2 ].

We now proceed to calculate the state fidelity given by
|〈ψ̂ |ψ〉|2, where |ψ̂〉 is the ideal state given by Eq. (A4). Using
the fact that the global phase on each subspace can be chosen
freely, we can always set 〈ψ̂l |ψl〉 � 0, and therefore,

〈ψ̂ |ψ〉 =
∑

l

pl〈ψ̂l |ψl〉 �
∑

l

pl |〈ψ̂l |ψl〉|2. (A9)

Now, using the expressions of |ψl〉 and |ψ̂l〉 given by
Eqs. (A3) and (A6), respectively,

∑
l pl |〈ψ̂l |ψl〉|2 can be writ-

ten as ∑
l

pl |〈ψ̂l |ψl〉|2 =
∑

l

pl
1

2

∣∣c(l )
000 − c(l )

111

∣∣2
.

The expression in the right-hand side of the above equa-
tion can be written as

1

2

∣∣c(l )
000 − c(l )

111

∣∣2 = ∣∣c(l )
000

∣∣2 + |c(l )
111|2 − 1

2

∣∣c(l )
000 + c(l )

111

∣∣2
.

Using
∑

abc |c(l )
abc|

2 = 1 in the first term in the right-hand side
of the above equation, we arrive at∑

l

pl |〈ψ̂l |ψ〉|2 = 1 −
∑

l

pl

∑
abc �=000,111

∣∣c(l )
abc

∣∣2

−
∑

l

pl
1

2

∣∣c(l )
000 + c(l )

111

∣∣2
. (A10)

We will use the following lemma to obtain a lower bound on
the right-hand side of the above equation.

Lemma 7. Suppose that inequalities (91) are satisfied for
some ε > 0. Then, ‖{Ai, Bi}|ψ〉‖ � 4

√
2ε for all i.

Proof. We show that ‖{A1, B1}|ψ〉‖ � 4
√

2ε. From
Eqs. (91) and assuming that 0 � ε � 1, we have that

‖A1|ψ〉 + A2A3|ψ〉‖ =
√

2(1 + 〈ψ |A1A2A3|ψ〉)

�
√

2[1 − (1 − ε)]

=
√

2ε, (A11)

and, similarly, we have

‖B2|ψ〉 − B1A3|ψ〉‖ �
√

2ε, (A12)

‖B1|ψ〉 − A2B3|ψ〉‖ �
√

2ε, (A13)

‖B2|ψ〉 − A1B3|ψ〉‖ �
√

2ε. (A14)

Using then the triangle inequality for the vector norm and the
fact that it is unitarily invariant, we have

‖(A1B1 + B1A1)|ψ〉‖ � ‖(B1A1 + B1A2A3)|ψ〉‖
+ ‖(−B1A2A3 + A2B2)|ψ〉‖
+ ‖(−A2B2 + A1A2B3)|ψ〉‖
+ ‖(−A1A2B3 + A1B1)|ψ〉‖

� 4
√

2ε. (A15)

Due to the symmetry of the inequality, the same will hold for
any other i, which completes the proof. �
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First, let us bound
∑

l pl |c(l )
000 + c(l )

111|
2

in Eq. (A10). From
Eqs. (A11) and (A12), respectively, we obtain∑

l

pl
(∣∣c(l )

000 + c(l )
111

∣∣2 + ∣∣c(l )
001 + c(l )

110

∣∣2

+∣∣c(l )
010 + c(l )

101

∣∣2 + ∣∣c(l )
011 + c(l )

100

∣∣2) � ε,∑
l

pl
(∣∣e−iφl c(l )

000 − eiθl c(l )
111

∣∣2 + ∣∣eiφl c(l )
010 + eiθl c(l )

101

∣∣2

+∣∣e−iφl c(l )
001 − eiθl c(l )

110

∣∣2 + ∣∣eiφl c(l )
011 + eiθl c(l )

100

∣∣2) � ε.

From the first of these equations, it follows that∑
l

pl

∣∣c(l )
000 + c(l )

111

∣∣2 � ε. (A16)

It also follows that∑
l

pl

∣∣c(l )
001 + c(l )

110

∣∣2 � ε, (A17)

∑
l

pl

∣∣e−iφl c(l )
001 − eiθl c(l )

110

∣∣2 � ε. (A18)

Next, we proceed to bound
∑

l pl
∑

abc �=000,111 |c(l )
abc|2 in

Eq. (A10). We have∣∣c(l )
110

∣∣2|eiθl + e−iφl |2

= ∣∣(eiθl c(l )
110 − e−iφl c(l )

001

) + e−iφl
(
c(l )

001 + c(l )
110

)∣∣2
.

Using the fact that |x + y|2 � 2(|x|2 + |y|2) for any x, y ∈ C
in the above equation, we arrive at∣∣cl

110

∣∣2|eiθl + e−iφl |2

� 2
(∣∣eiθl cl

110 − e−iφl c(l )
001

∣∣2 + ∣∣c(l )
001 + c(l )

110

∣∣2)
.

From Eqs. (A17) and (A18),∑
l

pl

∣∣c(l )
110

∣∣2|eiθl + e−iφl |2

=
∑

l

pl

∣∣c(l )
110

∣∣2
(2 + 2 cos(θl + φl )) � 4ε. (A19)

Similarly,∣∣c(l )
001

∣∣2|eiθl + e−iφl |2

= ∣∣(−eiθl c(l )
110 + e−iφl c(l )

001

) + eiθl
(
c(l )

001 + c(l )
110

)∣∣2

� 2
(∣∣ − eiθl c(l )

110 + e−iφl c(l )
001

∣∣2 + ∣∣c(l )
001 + c(l )

110

∣∣2)
,

from which it follows that∑
l

pl

∣∣c(l )
001

∣∣2|eiθl + e−iφl |2

=
∑

l

pl

∣∣c(l )
001

∣∣2
(2 + 2 cos(θl + φl )) � 4ε. (A20)

Adding Eqs. (A19) and (A20),∑
l

pl
(∣∣c(l )

001

∣∣2 + ∣∣c(l )
110

∣∣2)
(1 + cos(θl + φl )) � 4ε. (A21)

We now need the following lemma, which is similar to
Lemma 7.

Lemma 8. Suppose the ideal expectations are satisfied to
within error ε. Then ‖A1B2|ψ〉 + B1A2|ψ〉‖ � 2

√
2ε.

Proof.

‖A1B2|ψ〉 + B1A2|ψ〉‖ � ‖(A1B2 − A1B1A3)|ψ〉‖
+ ‖(A1B1A3 + B1A2)|ψ〉‖ � 2

√
2ε,

where the last inequality follows from Eqs. (A11) and
(A12). �

From the result of the lemma, we obtain∑
l

pl
((∣∣c(l )

001

∣∣2 + ∣∣c(l )
110

∣∣2)|eiθl + eiφl |2

+ (∣∣c(l )
011

∣∣2 + ∣∣c(l )
100

∣∣2)|eiθl − e−iφl |2)
+

∑
l

pl
((∣∣c(l )

000

∣∣2 + ∣∣c(l )
111|2

)∣∣e−iθl + e−iφl |2

+ (∣∣c(l )
010

∣∣2 + ∣∣c(l )
101

∣∣2)|e−iθl − eiφl |2) � 8ε,

and therefore,∑
l

pl
(∣∣c(l )

001

∣∣2 + ∣∣c(l )
110

∣∣2)|eiθl + eiφl |2 � 8ε,

or ∑
l

pl
(∣∣c(l )

001

∣∣2 + ∣∣c(l )
110

∣∣2)
(1 + cos(θl − φl )) � 4ε. (A22)

Adding Eqs. (A21) and (A22),

8

2
ε �

∑
l

pl
(∣∣c(l )

001

∣∣2 + ∣∣c(l )
110

∣∣2)
(1 + cos θl cos φl )

�
∑

l

pl
(∣∣c(l )

001

∣∣2 + ∣∣c(l )
110

∣∣2)
, (A23)

where in the last inequality we used θl , φl ∈ [−π
2 , π

2 ], and
so cos θl � 0 and cos φl � 0. Similarly, from Eqs. (A13)
and (A14), we have found the following bounds on∑

l pl (|c(l )
010|

2 + |c(l )
101|

2
) and

∑
l pl (|c(l )

011|
2 + |c(l )

100|
2
):

8

2
ε �

∑
l

pl
(∣∣c(l )

010

∣∣2 + ∣∣c(l )
101

∣∣2)
, (A24)

8

2
ε �

∑
l

pl
(∣∣c(l )

011

∣∣2 + ∣∣c(l )
100

∣∣2)
, (A25)

respectively. Summing Eqs. (A23)–(A25), we obtain∑
l

pl

∑
abc �=000,111

∣∣c(l )
abc

∣∣2 � 24

2
ε. (A26)

Substituting Eqs. (A26) and (A16) in Eq. (A10), we obtain the
state fidelity as

F (|ψ̂〉, |ψ〉) �
(

1 − 25

2
ε

)2

� 1 − 25ε. (A27)

Next we bound the fidelity of the operators. From Eq. (A8)
and the definition of the ideal operators (up to a unitary free-
dom), it follows that for all i, tr(ÂiAi ) = 8 which implies that
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F (Âi, Ai ) = 1. From Eq. (A8), it also follows that

F (B̂1, B1) =
∑

l

pl cos θl . (A28)

Let us now obtain a lower bound on
∑

l pl cos θl . Using both
the result of Lemma 7 and Eq. (A8), we obtain

4ε � 1

8
‖{A1, B1}|ψ〉‖2

=
∑

l

pl sin2 θl . (A29)

Using cos2 θl + sin2 θl = 1 and
∑

l pl = 1, we can write∑
l pl sin2 θl as∑

l

pl sin2 θl = 1 −
∑

l

pl cos2 θl

� 1 −
∑

l

pl cos θl , (A30)

where the inequality follows from θl ∈ [−π
2 , π

2 ] and therefore
cos θl � 0. From the above two equations, it follows that

1 −
∑

l

pl cos θl � 4ε. (A31)

Using the above equation in Eq. (A28), we obtain

F (B̂1, B1) � 1 − 4ε.

This ends the proof of Theorem 3.
Theorem 3 can be straightforwardly extended to any n as

follows. Here the state fidelity is defined as earlier and the
operator fidelity is defined with the different normalization
factor as F (X̂i, Xi ) := (1/ dim(V̂n))Tr(X̂iXi ), where dim(V̂n) is
the dimension of the invariant subspace.

Theorem 4. If a quantum state |ψ〉 and a set of measure-
ments Ai, Bj with i, j = {1, 2, . . . , n} in a Hilbert space Hn

satisfy the ideal expectations corresponding to the maximal
quantum violation of inequality (57) to within error ε, then
there exists a projection P : Hn → V̂n, where dim(V̂n) = 2n,
a state |ψ̂〉 ∈ V̂n, and Âi, B̂ j which are Hermitian involutions
acting on V̂n for all i and j such that

〈ψ̂ |Â1B̂2B̂3B̂4 · · · B̂n|ψ̂〉 = 1,

〈ψ̂ |B̂1Â2B̂3B̂4 · · · B̂n|ψ̂〉 = 1,

...

〈ψ̂ |B̂1B̂2B̂3B̂4 · · · Ân|ψ̂〉 = 1,

and there also exists a unitary U acting on V̂ such that

F (U |ψ̂〉, |ψ〉) � 1 − ε0,

F (UÂiU
†, Ai ) � 1 − ε1 ∀i,

F (UB̂iU
†, Bi ) � 1 − ε2 ∀i,

where ε0 = [8(2n−1 − 1) + 1]ε, ε1 = 0, and ε2 = 25−nε.
Proof. The bounds of this theorem are obtained using the

similar steps used in the proof of Theorem 3. With respect to
the Jordan decomposition,

Hn =
⊕

l

Hl , (A32)

where each Hl has dimension at most 2n and is invariant
under the action of Ai and Bj . As before, the state |ψ〉 can
be decomposed as

|ψ〉 =
∑

l

√
pl |ψl〉, (A33)

where |ψl〉 ∈ Hl and
∑

l pl = 1. With respect to the computa-
tional basis {|n1n2 · · · nn〉l : ni ∈ {0, 1}}, we express each |ψl〉
as

|ψl〉 =
∑

ni∈{0,1}
c(l )

n1n2···nn
|n1n2 · · · nn〉l ,

where
∑

n1n2···nn
|cn1n2···nn |2 = 1.

We define the subspace V̂n ⊆ Hn as the linear span of
{|ñ1ñ2 · · · ñn〉 := ∑

l
√

pl |n1n2 · · · nn〉l}. We define the ideal
state in this subspace as

|ψ̂〉 := 1√
2

(|0̃10̃2 · · · 0̃n〉 − |1̃11̃2 · · · 1̃n〉), (A34)

which can be reexpressed as

|ψ̂〉 =
∑

l

√
pl |ψ̂l〉, (A35)

where

|ψ̂l〉 := 1√
2

(|0102 · · · 0n〉l − |1112 · · · 1n〉l ). (A36)

Note that for the ideal observables defined as

Âi :=
⊕

l

(
k−1⊗
i=1

1l ⊗ Âl
i ⊗

n⊗
i=k+1

1l

)
,

B̂ j :=
⊕

l

(
k−1⊗
i=1

1l ⊗ B̂l
j ⊗

n⊗
i=k+1

1l

)
,

where

Âil = Xi, B̂ jl = Yj,

with i, j = 1, 2, 3, and, for i, j = 4, 5, . . . , n,

Âil = −Yi, B̂ jl = Xj,

the ideal state defined in Eq. (A34) violates the noncontextu-
ality inequality (20) maximally.

From Appendix B, it follows that the nonideal observables
can be written as

Ai =
⊕

l

(
k−1⊗
i=1

1l ⊗ Al
i ⊗

n⊗
i=k+1

1l

)
,

Bj =
⊕

l

⎛
⎝ k−1⊗

j=1

1l ⊗ Bl
j ⊗

n⊗
j=k+1

1l

⎞
⎠,

for all i, j = 1, 2, . . . , n. We choose a unitary such that the
operators Ail and Bjl acting on Hl can be written as follows:

Ail = Xj, Bjl = cos θ jlYj + sin θ jl Xj, i, j = 1, 2, 3,

(A37)

Bil = Xk, Ajl = cos θ jlYk + sin θ jl Xk, i, j = 4, 5, . . . , n,

(A38)

with θ jl ∈ [−π
2 , π

2 ] for all j and k.
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Using the similar steps used to obtain Eq. (A10), we
have

〈ψ̂ |ψ〉 � 1 −
∑

l

pl

∑
n1n2···nn �=0102···0n,1112···1n

∣∣c(l )
n1n2···nn

∣∣2

− 1

2

∑
l

pl

∣∣c(l )
0102···0n

+ c(l )
1112···1n

∣∣2
. (A39)

Similarly to the case of n = 3, a bound on the right-hand side
of the above equation can be obtained as follows. The term
1
2

∑
l pl |c(l )

0102···0n
+ c(l )

1112···1n
|2 in Eq. (A39) can be bounded

using the inequality given by

‖A1|ψ〉 + A2A3B4 · · · Bn|ψ〉‖ �
√

2ε. (A40)

From this equation, we obtain∑
l

pl
(∣∣c(l )

010203···0n
+ c(l )

111213···1n

∣∣2

+ · · · + ∣∣c(l )
011213···1n

+ c(l )
110203···0n

∣∣2) � ε, (A41)

from which it follows that∑
l

pl

∣∣c(l )
0102···0n

+ c(l )
1112···1n

∣∣2 � ε. (A42)

Next, the second term in Eq. (A39) can be bounded using
the other inequalities such as

‖B2|ψ〉 − B1A3B4 · · · Bn|ψ〉‖ �
√

2ε, (A43)

from which we obtain∑
l

pl

( ∑
n4,...,nn

∣∣e−iθ2l c(l )
000n4···nn

− eiθ1l c(l )
111n̄4···n̄n

∣∣2

+
∑

n4,...,nn

∣∣eiθ2l c(l )
010n4···nn

+ eiθ1l c(l )
101n̄4···n̄n

∣∣2

+
∑

n4,...,nn

∣∣e−iθ2l c(l )
001n4···nn

− eiθ1l c(l )
110n̄4···n̄n

∣∣2

+
∑

n4,...,nn

∣∣eiθ2l c(l )
011n4···nn

+ eiθ1l c(l )
100n̄4···n̄n

∣∣2

)
� ε,

where n̄i, with i = 4, 5, . . . , n, denotes ni ⊕2 1. From the
above equation, using the steps similar to the ones used to
obtain the bound given by Eq. (A23), we obtain a bound on∑

l pl (|c(l )
0010···0|2 + |c(l )

1101···1|2) as follows:∑
l

pl
(∣∣c(l )

0010···0
∣∣2 + ∣∣c(l )

1101···1
∣∣2) � 8

2
ε. (A44)

The sum
∑

n1n2···nn �=00···0,11···1
∑

l pl |c(l )
n1n2···nn

|2 can be spilt into
the sum of (2n−1 − 1) terms which are a sum of the mod-
ulus of two coefficients c(l )

n1n2···nn
as in the left-hand side of

Eq. (A44). These (2n−1 − 1) terms have the same bound as
given in Eq. (A44). Therefore, we obtain∑

l

pl

∑
n1n2···nn �=00···0,11···1

∣∣c(l )
n1n2···nn

∣∣2 � 8(2n−1 − 1)

2
ε. (A45)

Using Eqs. (A42) and (A45) in Eq. (A39), we obtain the
bound on the fidelity as given in Theorem 4.

Next, we bound the fidelity of the operators. As in the case
of n = 3, we also have ‖{A1, B1}|ψ〉‖ � 4

√
2ε which implies

that

25−nε � 1

2n
‖{A1, B1}|ψ〉‖2

� 1 −
∑

l

pl cos θl , (A46)

leading to the following bound on the fidelity between B̂1

and B1:

F (B̂1, B1) � 1 − 25−nε,

employing the similar steps as in the case of n = 3. This ends
the proof of Theorem 4. �

APPENDIX B: JORDAN’S LEMMA

In this section we prove a corollary to Jordan’s lemma
which is a direct generalization of Corollary 7.1 proven in
Ref. [32]. For completeness we also state Jordan’s lemma
(see, e.g., Ref. [32] for a proof).

Lemma 9 (Jordan’s lemma). Let A and B be a pair of Her-
mitian operators acting on a Hilbert space H such that A2 =
B2 = 1. Then, H decomposes as a direct sum H = ⊕

l Hl ,
with dim Hl ∈ {1, 2}, and A and B act invariantly on each Hl .

In this way, since the set of eigenvectors of AB span H,
we can decompose the Hilbert space H = ⊕

l Hl where the
dimension of such Hl is at most 2.

Corollary 1. Let Ai and Bj with i = 1, 2, 3 be Hermitian
operators acting on a Hilbert space H that square to identity
and satisfy the following commutation relations:

[Ai, Aj] = [Ai, Bj] = 0 (i �= j). (B1)

Then, H can be decomposed as

H =
⊕

l

(H1
l ⊗ H2

l ⊗ H3
l ), (B2)

where each local Hilbert space Hi
l is of dimension

at most two. Moreover, A1 = ⊕
l (A1l ⊗ 1l ⊗ 1l ),

B1 = ⊕
l (B1l ⊗ 1l ⊗ 1l ), A2 = ⊕

l (1l ⊗ A2l ⊗ 1l ),
B2 = ⊕

l (1l ⊗ B2l ⊗ 1l ), A3 = ⊕
l (1l ⊗ 1l ⊗ A3l ), and

B3 = ⊕
l (1l ⊗ 1l ⊗ B3l ).

Proof. This proof is a direct generalization of that of
Corollary 7.1 proven in Ref. [32].

First, let us notice that Eq. (B1) implies that [AiBi, AjBj] =
0 for any i, j = 1, 2, 3, which means that all three Hermitian
operators AiBi can be jointly diagonalized.

Let then |α, β, γ 〉 be an eigenvector of these
operators such that A1B1|α, β, γ 〉 = α|α, β, γ 〉 and
A2B2|α, β, γ 〉 = β|α, β, γ 〉 and A3B3|α, β, γ 〉 = γ |α, β, γ 〉.
Define the following vectors: |ᾱ, β, γ 〉 = A1|α, β, γ 〉,
|α, β̄, γ 〉 = A2|α, β, γ 〉, |α, β, γ̄ 〉 = A3|α, β, γ 〉, |ᾱ, β̄, γ 〉 =
A1A2|α, β, γ 〉, |ᾱ, β, γ̄ 〉 = A1A3|α, β, γ 〉, |α, β̄, γ̄ 〉 =
A2A3|α, β, γ 〉, and |ᾱ, β̄, γ̄ 〉 = A1A2A3|α, β, γ 〉. Then,
the subspace

span{|α, β, γ 〉, |ᾱ, β, γ 〉, |α, β̄, γ 〉, |α, β, γ̄ 〉,
|ᾱ, β̄, γ 〉, |ᾱ, β, γ̄ 〉, |α, β̄, γ̄ 〉, |ᾱ, β̄, γ̄ 〉} (B3)
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is isomorphic to span{|α〉, |ᾱ〉} ⊗ span{|β〉, |β̄〉} ⊗
span{|γ 〉, |γ̄ 〉}. It follows from Lemma 9 that both A1 and B1,
both A2 and B2, as well as both A3 and B3 act invariantly on
the first, second, and third tensor factors, and trivially on the
others, respectively. �

The above corollary can be trivially generalized to any
n � 3: let Ai and Bj (i, j = 1, . . . , n) be Hermitian operators
acting on Hn that square to the identity and satisfy

[Ai, Aj] = [Bi, Bj] = 0 (i �= j). (B4)

Then, Hn decomposes as Hn = ⊕
l (H1

l ⊗ H2
l ⊗ · · · ⊗ Hn

l ),
with dim Hi

l � 2, and

Aj =
⊕

l

(
j−1⊗
i=1

1l ⊗ Al
j ⊗

n⊗
i= j+1

1l

)
(B5)

and

Bj =
⊕

l

(
j−1⊗
i=1

1l ⊗ Bl
j ⊗

n⊗
i= j+1

1l

)
. (B6)
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Chapter 4

Paper III

4.1 Scalable Bell inequalities for graph states of arbitrary prime local di-

mension and self-testing

In the third work forming the thesis we turn to the Bell scenario. We provide a general construc-

tion of Bell inequalities whose maximal quantum values are achieved by multipartite graph states

of arbitrary prime local dimension which form one of the most representative classes of multipartite

entangled states, including for instance the GHZ state, that are a resource for many tasks such as

quantum computing. In other words, for any such graph state we provide a Bell inequality maxi-

mally violated by this state together with certain quantum observables that correspond to a set of

d mutually unbiased based in prime dimension d. In order to derive these inequalities we build on

two other recent constructions of Bell inequalities from Refs. [75] and [22]. Whereas the former work

introduces Bell inequalities maximally violated by the maximally entangled states of two qudits with

prime local dimension, the latter provides a construction of Bell inequalities tailored to the multiqubit

graph states.

Let us notice here that it is in general a difficult task to determine the maximal quantum value

of a generic Bell inequality, and, at the same time, Bell inequalities for which the maximal quantum

violation is known are highly useful within the area of device-independent quantum information. For

instance, maximal Bell violations can be used for certification purposes, in particular in self-testing,

but also to certify true randomness [90]. The corresponding Bell operators are constructed with the

aid of the stabilizer formalism of the graph states in such a way that we can analytically find their sum-

of-squares (SOS) decompositions, which then allows to determine the maximal quantum violations of

our Bell inequalities. Importantly, the number of expectation values to measure in order to test the

violation of our inequalities scales only linearly with the system size.

Finally, we show that these inequalities can be used for self-testing of multi-qutrit graph states

such as the well-known four-qutrit absolutely maximally entangled state AME(4,3) [91]. Indeed,

by employing the results of Ref. [75] we show that in the case of d = 3, the algebraic relations

implied by the abovementioned SOS decompositions fully characterize two unitarily inequivalent sets

of measurements achieving the maximal quantum violation, and, for both of them, the state that

attains the optimal violation is the corresponding many-qutrit graph state. While we are unable to

prove it with the methods at hand, we believe that our inequalities can actually be used to self-test
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any qudit graph state for d ≥ 5.

Our result thus generalizes the self-testing statement made for the qubit graph states in Ref. [22]

as well as that of Ref. [75] made for the two-qutrit maximally entangled state. In fact, our proof of

the self-testing statement heavily explits the results of the latter work. The possibilities of future work

are discussed in the Conclusions section of the article.

4.2 Author’s contribution

My contribution to this article was:

• Active participation in discussions that lead to designing the main idea of the work and to finding

a way to derive the Bell inequalities;

• Signification contribution in deriving the Bell inequalities for graph states and proving Theorem

2;

• Help in proving the self-testing statement in Theorem 3;

• Help in preparing the manuscript.

61



            

PAPER • OPEN ACCESS

Scalable Bell inequalities for graph states of arbitrary prime local
dimension and self-testing
To cite this article: Rafael Santos et al 2023 New J. Phys. 25 063018

 

View the article online for updates and enhancements.

This content was downloaded from IP address 195.187.84.129 on 29/06/2023 at 12:52



New J. Phys. 25 (2023) 063018 https://doi.org/10.1088/1367-2630/acd9e3

OPEN ACCESS

RECEIVED

19 December 2022

REVISED

4 May 2023

ACCEPTED FOR PUBLICATION

30 May 2023

PUBLISHED

20 June 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Scalable Bell inequalities for graph states of arbitrary prime local
dimension and self-testing
Rafael Santos1, Debashis Saha2, Flavio Baccari3 and Remigiusz Augusiak1,∗

1 Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
2 School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551,
India

3 Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
∗ Author to whom any correspondence should be addressed.

E-mail: augusiak@cft.edu.pl

Keywords: Bell non-locality, Bell inequalities, quantum entanglement, multipartite states, graph states, self-testing

Abstract
Bell nonlocality—the existence of quantum correlations that cannot be explained by classical
means—is certainly one of the most striking features of quantum mechanics. Its range of
applications in device-independent protocols is constantly growing. Many relevant quantum
features can be inferred from violations of Bell inequalities, including entanglement detection and
quantification, and state certification applicable to systems of arbitrary number of particles. A
complete characterisation of nonlocal correlations for many-body systems is, however, a
computationally intractable problem. Even if one restricts the analysis to specific classes of states,
no general method to tailor Bell inequalities to be violated by a given state is known. In this work
we provide a general construction of Bell expressions tailored to the graph states of any prime local
dimension. These form a broad class of multipartite quantum states that have many applications in
quantum information, including quantum error correction. We analytically determine their
maximal quantum values, a number of high relevance for device-independent applications of Bell
inequalities. Importantly, the number of expectation values to determine in order to test the
violation of our inequalities scales only linearly with the system size, which we expect to be the
optimal scaling one can hope for in this case. Finally, we show that these inequalities can be used
for self-testing of multi-qutrit graph states such as the well-known four-qutrit absolutely
maximally entangled state AME(4,3).

1. Introduction

The first Bell inequalities were introduced to show that certain predictions of quantum theory cannot be
explained by classical means [1]. In particular, correlations obtained by performing local measurements on
joint entangled quantum states are able to violate Bell inequalities and hence cannot arise from a local
hidden variable model. The existence of such non-local correlations is referred to as Bell non-locality or
simply non-locality.

Since then the range of applications of Bell inequalities has become much wider. In particular, they can
be used for certification of certain relevant quantum properties in a device-independent way, that is, under
minimal assumptions about the underlying quantum system. First, violation of Bell inequalities can be used
to certify the dimension of a quantum system [2] or the amount of entanglement present in it [3]. Then, Bell
violations are used to certify that the outcomes of quantum measurements are truly random [4], and to
estimate the amount of generated randomness [5–7].

The maximum exponent of the certification power of Bell inequalities is known as self-testing.
Introduced in [8], self-testing allows for almost complete characterisation of the underlying quantum system
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based only on the observed Bell violation. It thus appears to be one of the most accurate methods for
certification of quantum systems which makes self-testing a highly valuable asset for the rapidly developing
of quantum technologies. In fact, self-testing techniques have shown to be amenable for near-term quantum
devices, allowing for a proof-of-principle state certification of up to few tens of particles [9, 10]. For this
reason self-testing has attracted a considerable attention in recent years (see, e.g. [11]).

However, most of the above applications require Bell inequalities that exhibit carefully crafted features. In
the particular case of self-testing one needs Bell inequalities whose maximal quantum values are achieved by
the target quantum state and measurements that one aims to certify. Deriving Bell inequalities tailored to
generic pure entangled states turns out to be in general a difficult challenge. Even more so if one looks for
inequalities applicable to systems of arbitrary number of parties or arbitrary local dimension. The standard
geometric approach to derive Bell inequalities has been successful in deriving many interesting and relevant
inequalities [12–16], but typically fails to serve a self-testing purpose, providing inequalities with unknown
maximal quantum violation.

In order to construct Bell inequalities that are tailored to specific quantum states, a more promising path
is to exploit the ‘quantum properties’ of the considered system such as its symmetries. Two proposals in this
direction have succeeded in designing different classes of Bell inequalities tailored to the broad family of
multi-qubit graph states [17, 18] and the first Bell inequalities maximally violated by the maximally
entangled state of any local dimension [19]. The success of these methods was further confirmed by later
applications to design the first self-testing Bell inequalities for graph states [20] (see also [21] for the first
self-testing method for multi-qubit graph states which, however, is not directly based on violation of Bell
inequalities), for genuinely entangled stabilizer subspaces [22, 23] or maximally entangled two-qutrit states
[24], as well as to derive many other classes of Bell inequalities tailored to two-qudit maximally entangled
[25, 26] or many-qudit Greenberger–Horne–Zeilinger (GHZ) states [27]. Some of these constructions were
later exploited to provide self-testing schemes for the maximally entangled [25, 28] or the GHZ states [29] of
arbitrary local dimension.

In this work, taking inspiration from the above ideas, we provide the first general construction of Bell
expressions tailored to graph states of arbitrary prime local dimension. Graph states constitute one of the
most representative classes of genuinely entangled multipartite quantum states considered in quantum
information, covering the well-known GHZ, the cluster [30] or the absolutely maximally entangled states
[31], that have found numerous applications, e.g. in quantum computing [32–34] or quantum metrology
[35]. We analytically determine the maximal quantum value (called also Tsirelson’s bound) of each of our
Bell expressions by deriving a suitable sum-of-squares decomposition of the corresponding Bell operator. We
then show that this maximal value is achieved by the corresponding graph state. On the other hand, the
maximal classical values of our Bell expressions are yet to be determined. We nevertheless believe that our
inequalities are all nontrivial in the sense that their maximal quantum and classical values differ. In fact, in
the particular case of d= 3 we prove that they all allow for self-testing of the corresponding graph states, and
thus are certainly nontrivial in the above sense. Moreover, for the simplest bipartite graph corresponding to
the maximally entangled state of two qudits, the maximal classical value can be determined numerically for
the lowest values of d and it differs from the corresponding Tsirelson’s bound (see [24]). We thus believe that
all our Bell expressions feature this property and therefore in what follows, slightly abusing the terminology,
we also refer to them as to Bell inequalities.

Our construction thus provides the first example of Bell inequalities maximally violated by the absolutely
maximally entangled states of non-qubit local dimension such as the four-qutrit AME(4,3) state [31]. Our
Bell expressions are also scalable because the number of expectation values they are composed of scales only
linearly with the number of subsystems, which we expect to be the optimal scaling in the case of graph states.
This is a relevant factor as far as experimental tests of Bell non-locality or implementations of self-testing are
concerned; by lowering the number of expectation values one can lower the experimental effort to test a Bell
inequality violation. Let us finally notice that our construction generalizes and unifies in a way the recent
constructions of [20] and [24] to all graph states of arbitrary prime local dimension.

The manuscript is organized as follows. In section 2 we provide some background information which is
necessary for further considerations; in particular we explain in detail the notions of the multipartite Bell
scenario and graph states and also state the definition of self-testing we use in our work. Next, in section 3 we
introduce our general construction of Bell expressions for graph states. We then show in section 4 that our
new Bell inequalities allow for self-testing of all graph states of local dimension three. We conclude in
section 5 where we also provide a list of possible research directions for further studies that follow from
our work.
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2. Preliminaries

2.1. Bell scenario and Bell inequalities
Let us begin by introducing some notions and terminology. We consider a multipartite Bell scenario in which
N distant observers Ai share a quantum state ρ defined on the product Hilbert space

H = H1 ⊗ . . .⊗HN. (1)

Each observer Ai can perform one ofmi measurementsMi
xi ≡ {Mi

ai|xi}ai on their share of this state, where xi
stand for the measurement choices, whereas ai denote the outcomes; here we label them as xi = 1, . . . ,m and
ai = 0, . . . ,d− 1, respectively. Recall that the measurement operators satisfyMi

ai|xi ⩾ 0 for any choice of ai
and xi as well as

∑
ai
Mi

ai|xi = 1 for any xi.
The observers repeat their measurements on the local parts of the state ρ which creates correlations

between the obtained outcomes. These are captured by a collection of probability distributions
p⃗ ≡ {p(⃗a|⃗x)} ∈ R(md)N , where p(⃗a|⃗x) ≡ p(a1, . . . ,aN|x1, . . . ,xN) is the probability of obtaining the outcome ai
by the observer i upon performing the measurementMi

xi and can be represented by the Born rule

p(⃗a|⃗x) = Tr
[
ρ
(
M1

a1|x1 ⊗ . . .⊗MN
aN|xN

)]
. (2)

A behaviour p⃗ is said to be local or classical if for any a⃗ and x⃗, the joint probabilities p(⃗a|⃗x) factorize in the
following sense,

p(⃗a|⃗x) =
∑

λ

µ(λ)p1(a1|x1,λ) · . . . · pN(aN|xN,λ), (3)

where λ is a random variable with a probability distribution µ(λ) representing the possibilities for the parties
to share classical correlations and pi(ai|xi,λ) is an arbitrary probability distribution corresponding to the
observer Ai. On the other hand, if a behavior p⃗ does not admit the above form, we call it Bell non-local or
simply non-local. In any Bell scenario correlations that are classical in the above sense form a polytope with
finite number of vertices, denoted LN,m,d.

Any non-local distribution p⃗ can be detected to be outside the local polytope from the violation of a Bell
inequality. The generic form of such inequalities is

I :=
∑

a⃗,⃗x

αa⃗,⃗x p(⃗a|⃗x) ⩽ βL, (4)

where βL =max⃗p∈LN,m,d
I is the classical bound of the inequality and αa⃗,⃗x are some real coefficients defining

the inequality. Any p⃗ that violates a Bell inequality is detected as non-local.
Let us finally introduce another number characterizing a Bell inequality—the so-called quantum or

Tsirelson’s bound—which is defined as

βQ = sup
p⃗∈QN,m,d

I, (5)

where the maximisation runs on all quantum behaviours, i.e. all distributions p⃗ that can be obtained by
performing quantum measurements on quantum states of arbitrary local dimension. The set of quantum
correlations QN,m,d is in general not closed [36] and thus βQ is a supremum and not a strict maximum.
Determining the quantum bound for a generic Bell inequality is an extremely difficult problem. However,
interestingly, in certain cases it can still be found analytically. A way to obtain βQ or at least an upper bound
on it is to find a sum-of-squares decomposition of a Bell operator B corresponding to the Bell inequality.
More specifically, if for any choice of measurement operators one is able to represent the Bell operator as

B = η1−
∑

k

P†
kPk, (6)

where Pk are some operators composed ofMi
ni|xi , then η is an upper bound on βQ. Indeed, equation (6)

implies that for all |ψ⟩, ⟨ψ|B|ψ⟩ ⩽ η, and thus, βQ ⩽ η. If a quantum state saturates this upper bound, then it
follows from (6) that Pk|ψ⟩ = 0 for all k. As we will see later such relations are particularly useful to prove a
self-testing statement from the maximal violation of a Bell inequality.
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For further convenience we also introduce an alternative description of the Bell scenario in terms of
generalized expectation values (see, e.g. [27]). These are in general complex numbers defined through the
N-dimensional discrete Fourier transform of {p(⃗a|⃗x)},

⟨A1
n1|x1 . . .A

N
nN|xN⟩ =

∑

a⃗

ωa⃗·⃗np(⃗a|⃗x), (7)

where ω = exp(2π i/d) is the dth root of unity, a⃗ := (a1, . . . ,aN) ∈ {0, . . . ,d− 1}N and n⃗ := (n1, . . . ,nN)
∈ {0, . . . ,d− 1}N, and a⃗ · n⃗=∑i aini. The inverse transformation gives

p(⃗a|⃗x) = 1

dN

∑

n⃗

ω−a⃗·⃗n⟨A1
n1|x1 . . .A

N
nN|xN⟩. (8)

Combining equations (2) and (8) one finds that if the correlations p⃗ are quantum, that is, originate from
performing local measurements on composite quantum states, the complex expectation values can be
represented as

⟨A1
n1|x1 . . .A

N
nN|xN⟩ = Tr

[
ρ
(
A1
n1|x1 ⊗ . . .⊗AN

nN|xN

)]
, (9)

where Ai
ni|xi are simply Fourier transforms of the measurement operatorsMi

ai|xi given by

Ai
ni|xi =

d−1∑

ai=0

ωni aiM i
ai|xi . (10)

Clearly, due to the fact that the Fourier transform is invertible, for a given xi and i, the d operators Ai
ni|xi with

ni = 0, . . . ,d− 1 uniquely represent the corresponding measurementMi
xi .

Let us now discuss a few properties of the Fourier-transformed measurement operators that will prove
very useful later. For clarity of the presentation we consider a single quantum measurementM= {Ma} and
the corresponding An operators obtained via equation (10). First, one easily finds that A0 = 1. Second,

Ad−n = A−n = A†
n (11)

which is a consequence of the fact that ωd−n = ω−n = (ωn)∗ holds true for any n ∈ {0, . . . ,d− 1}. Third,
A†
nAn ⩽ 1 for any n= 0, . . . ,d− 1 (for a proof see [24]).
Let us finally mention that ifM is projective then all An are unitary and their eigenvalues are simply the

powers of ω; equivalently Ad
n = 1. It is also not difficult to see that in such a case, An are operator powers of

A1, that is, An = An
1 . Thus, a projective measurement can be represented by a single unitary (non-Hermitian

for d ⩾ 3) operator A1, which by slightly abusing the standard terminology we call here quantum observable.
We exploit these properties later in our construction of Bell expressions as well as in deriving the self-testing
statement. In fact, in what follows we denote the observables measured by the party i by Ai,xi .

2.2. Self-testing
Here we introduce the definition of N-partite self-testing that we adopt in this work. Let us consider again
the Bell scenario described above, assuming, however, that the shared state ρ, the Hilbert space it acts on as
well as the local measurements are all unknown. The aim of the parties is to deduce their form from the
observed correlations p(⃗a|⃗x). Since the dimension of the joint Hilbert space H is now unconstrained
(although finite) we can simplify the latter problem by assuming that the shared state is pure, i.e. ρ= |ψ⟩⟨ψ|
for some |ψ⟩ ∈ H, and the measurements are projective, in which case they are represented by unitary
observables Ai,xi acting on Hi.

Consider then a target state |ψ̂⟩ ∈ (Cd)⊗N and the corresponding measurements Âi,xi , giving rise to the
same behaviour {p(⃗a|⃗x)}. We say that the observed correlations self-test the given state and measurements if
the following definition applies.

Definition 1. If from the observed correlations {p(⃗a|⃗x)} one can identify a qudit in each local Hilbert space
in the sense that Hi = Cd ⊗H ′

i for some auxiliary Hilbert space H ′
i , and also deduce the existence of local

unitary operations Ui : Hi → Cd ⊗H ′
i such that

(U1 ⊗ . . .⊗UN)|ψ⟩ = |ψ̂⟩⊗ |aux⟩ (12)

4
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for some |aux⟩ ∈ H ′
i ⊗ . . .⊗H ′

N, and, moreover,

UiAi,xi U
†
i = Âi,xi ⊗1i, (13)

where 1i is the identity acting onH ′
i , then we say that the reference quantum state |ψ̂⟩ andmeasurements Âi,xi

have been self-tested in the experiment.

Importantly, only non-local correlations can give rise to a valid self-testing statement. Moreover, since it
is based only on the observed correlations {p(⃗a|⃗x)}, self-testing can characterise the state and the
measurements only up to certain equivalences. In particular, the statement above includes two possible
operations that keep the correlations {p(⃗a|⃗x)} unchanged: (i) the addition of an auxiliary state |aux⟩ on
which the measurements act trivially and (ii) the rotation by an arbitrary local unitary operations. It is worth
mentioning, however, that there exist yet another operation that does not change {p(⃗a|⃗x)}, which is the
transposition map applied to the state and all the measurements. Taking into account this extra degree of
freedom would lead to a weaker definition of self-testing than the one formulated above (see, e.g. [24, 37]).
Since in our work we are concerned only with self-testing of the graph states, which are real and thus
invariant under the action of transposition, we do not need to take into account this other definition of
self-testing.

2.3. Graph states
Let us finally recall the definition of multipartite graph states of prime local dimension [38–40]. Consider a
graph G = (V,E ,R,d), where d is any prime number such that d ⩾ 2, V := {1, . . . ,N} is the set of vertices of
the graph, E is the set of edges connecting vertices, and R := {ri,j} is a set of natural numbers from
{0, . . . ,d− 1} specifying the number of edges connecting vertices i, j ∈ V ; in particular, ri,j = 0 means there
is no edge between i and j. We additionally assume that ri,i = 0 for all i, meaning that the graph has no loops
as well as that the graph G is connected, meaning that it does not have any isolated vertices. By Ni we denote
the neighbourhood of the vertex i which consists of all elements of V that are connected to i.

Assume then that each vertex i ∈ V of the graph corresponds to a single quantum system held by the
party Ai and let us associate to it the following N-qudit operator

Gi = Xi ⊗
⊗

j∈Ni

Z
rij
j (i= 1, . . . ,N) (14)

with X and Z being the generalizations of the qubit Pauli matrices to d-dimensional Hilbert spaces defined
via the following relations

Z|i⟩ = ωi|i⟩, X|i⟩ = |i+ 1⟩ (i= 0, . . . ,d− 1), (15)

where the addition is modulo d. Due to the fact that XZ= ω−1ZX, it is not difficult to see that the operators
Gi mutually commute. It then follows that there is a unique pure state |G⟩ ∈ (Cd)⊗N, called graph state,
which is a common eigenstate of all Gi corresponding to the eigenvalue one, i.e.

Gi|G⟩ = |G⟩ (i= 1, . . . ,N). (16)

Given the above property, the Gi are usually referred to as stabilizing operators. Notice also that in the
particular case of d= 2 this construction naturally reproduces the N-qubit graph states [40], where vertices
can only be connected by single edges.

Let us illustrate the above construction with a couple of examples.

Example 1 (Maximally entangled two-qudit state). Let us start with the simplest possible graph, consisting
of two vertices connected by an edge (cf figure 1(a)). The corresponding generators are given by

G1 = X⊗Z, G2 = Z⊗X, (17)

and stabilize a single state in Cd ⊗Cd which is equivalent up to local unitary operations to the maximally
entangled state of two qudits,

|ψ+
d ⟩ = 1√

d

d−1∑

i=0

|ii⟩ (18)

5
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Figure 1. Three examples of graphs defining: (a) the maximally entangled state of two qudits, (b) the N-qudit GHZ state, (c) the
four-qutrit absolutely maximally entangled state AME(4,3).

in which both local Schmidt bases are the computational one. In fact, the above state is stabilized by another
pair of operators, namely,

G ′
1 = X⊗X, G ′

2 = Z⊗Z†, (19)

which are obtained from Gi by an application of the Fourier matrix to the second site.

Example 2 (GHZ state). The above two-vertex graph naturally generalizes to a star graph consisting of N
vertices (cf figure 1(b)). The associated generators are of the form

G1 = X1Z2 . . .ZN (20)

and

Gi = Z1Xi (i= 2, . . . ,N), (21)

and stabilize anN-qudit state which is equivalent under local unitary operations to the well-known GHZ state

|GHZN,d⟩ =
1√
d

d−1∑

i=0

|i⟩⊗N. (22)

Example 3 (AME(4,3)). The third and the last example is concerned with the four-qutrit absolutely maxim-
ally entangled state4, named AME(4,3) [31]. The graph defining it is presented in figure 1(c). The stabilizing
operators corresponding to this graph read

G1 = X1Z2Z4, G2 = Z1X2Z3, G3 = Z2X3Z
2
4, G4 = Z1Z

2
3X4. (23)

They stabilize a three-qutrit maximally entangled state AME(4,3) which is equivalent under local unitary oper-
ations and relabelling of the subsystems to (see, e.g. [42]),

|AME(4,3)⟩ = 1

3

2∑

i,j=0

|i⟩|j⟩|i+ j⟩|i+ 2j⟩, (24)

where the addition is modulo three.

3. Construction of Bell inequalities for arbitrary graph states of prime local dimension

Here we present our first main result: a general construction of Bell expressions whose maximal quantum
value is achieved by the N-qudit graph states of arbitrary prime local dimension and quantum observables
corresponding to mutually unbiased bases at every site. Our construction is inspired by the recent approach
to construct CHSH-like Bell inequalities for the N-qubit graph states presented in [20] and by another

4 A multipartite state is termed absolutely maximally entangled if any of its ⌊N/2⌋-partite subsystems is in the maximally mixed state
[41].
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construction of Bell inequalities maximally violated by the maximally entangled two-qudit state introduced
in [24].

First, in section 3.1 we recall the general class of Bell inequalities maximally violated by N-qubit graph
states of [20]. Then, in section 3.2 we introduce the main building block to generalise this construction to
arbitrary prime dimension. We illustrate the Bell inequality construction with some simple examples in
section 3.3 and then move to introduce the general form of the inequality valid of any N-qudit graph state of
prime dimension in section 3.4.

3.1. Multiqubit graph states
Let us assume that d= 2 and let us consider a graph G. Without any loss of generality we can assume that a
vertex with the largest neighbourhood is the first one, that is, N1 =maxi=1,...,N |Ni|. If there are many
vertices with the maximal neighbourhood in G, we are free to choose any of them as the first one.

To every generator Gi we associate an expectation value in which the X and Z Pauli matrices are replaced
by quantum observables or their combinations using the following rule. At the first qubit we make the
following assignment,

X → 1√
2
(A1,0 +A1,1), Z → 1√

2
(A0,1 −A1,1), (25)

whereas the Pauli matrices at the remaining sites are directly replaced by observables, that is,

X → Ai,0, Z → Ai,1 (26)

with i = 2, . . . ,N. Recall that the first index enumerates the parties, while the second one measurement
choices. This procedure gives us N expectation values which after being combined altogether lead us to the
following Bell inequality [20]:

IG : =
N1√
2

〈
(A1,0 +A1,1)

∏

i∈N (1)

Ai,1

〉
+

1√
2

∑

i∈N (1)

〈
(A1,0 −A1,1)Ai,0

∏

j∈N (1)\{1}
Aj,1

〉

+
∑

i/∈N (1)∪{1}

〈
Ai,0

∏

j∈N (i)

Aj,1

〉
⩽ βG

C , (27)

where the classical bound can directly be determined for any graph G and is given by βG
C = N+

(
√
2− 1)N1 − 1. More importantly, the maximal quantum value can also be analytically computed for

any graph and amounts to βG
Q = N+N1 − 1. This value is achieved by the graph state |G⟩ ∈ (C2)⊗N

corresponding to the graph G and the following observables:

A1,0 =
1√
2
(X+Z), A1,1 =

1√
2
(X−Z) (28)

for the first observer and Ai,0 = X and Ai,1 = Z for the remaining observers i = 2, . . . ,N.
It is worth stressing here that one of the key observations making the construction of [20] work is that for

any graph there exists a choice of observables at any site, given by the above formulas, turning the quantum
operators appearing in the expectation values of (27) into the stabilising operators Gi; in particular, it is a
well-known fact that combinations of the Pauli matrices in equation (28) are proper quantum observables
with eigenvalues ±1. Let us also mention that the replacement in equations (25) and (26) guarantees that the
maximal quantum and classical values of the inequalities (27) can be determined basically by hand and that
they differ for any graph state, implying that all these inequalities are nontrivial.

3.2. Replacement rule for operators of arbitrary prime dimension
We now move on to introduce the main ingredient needed to generalise the above construction to graph
states of prime local dimension d ⩾ 3.

A naive approach to constructing Bell inequalities for graph states of higher local dimensions would be to
directly follow the d= 2 strategy. That is, at a chosen site the X and Z operators are replaced by combinations
of general d-outcome observables A0 and A1. However, this simple approach fails to work beyond d= 3
because for any prime d ⩾ 3 it is impossible find nonzero complex numbers α,β ∈ C for which

O= αX+βZ, (29)

is a valid quantum observable; in fact, for no complex numbers the above combinations can be unitary,
unless d= 2 (cf fact 2 in appendix A). This makes the transformation (28) irreversible. Phrasing differently,

7
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there are no unitary observables A0 and A1 such that X= αA0 +βA1 and Z= δA0 + γA1 for some complex
numbers α,β,γ,δ ∈ C.

Nevertheless, there exist other sets of d-outcome quantum observables which can be linearly combined to
form quantum observables, and thus are convenient for our purposes. One such choice is the following set of
d unitary matrices

Ok := XZk (k= 0, . . . ,d− 1). (30)

It is not difficult to check that Od
k = 1d for any k= 0, . . . ,d− 1 and prime d, meaning that the eigenvalues of

each of these unitary matrices belong to the set {1,ω, . . . ,ωd−1}, and thus are proper d-outcome observables
in our formalism. It is also worth mentioning that for any prime d ⩾ 2 their eigenvectors together with the
standard basis in Cd form d+ 1 mutually unbiased bases.

Let us now assume that d is a prime number greater than two (d ⩾ 3) and consider the following linear
combinations of Ok and their powers,

O
(n)
x =

λn√
d

d−1∑

k=0

ωnxkωnk(k+1)On
k , (31)

where x= 0,1, . . . ,d− 1 and λn are complex coefficients defined as [24]:

λn =
[
εd

(n
d

)]−1
ω−g(n,d)/48, (32)

where

εd :=

{
1, if d ≡ 1 mod 4,

i, if d ≡ 3 mod 4.
(33)

(
n
d

)
is the Legendre symbol5, and, finally, the coefficients g(n,d) are given by

g(n,d) =





n[n2 − d(d+ 6)+ 3] if n ≡ 0mod 2 and n+ d+ 1/2 ≡ 0mod 2,

n[n2 − d(d− 6)+ 3] if n ≡ 0mod 2 and n+ d+ 1/2 ≡ 1mod 2,

n(n2 + 3)+ 2d2(−5n+ 3) if n ≡ 1mod 4,

n(n2 + 3)+ 2d2(n+ 3) if n ≡ 3mod 4.

(34)

Importantly, it was proven in [24] (see appendix D therein) that O
(n)
x are unitary and satisfy

[
O

(n)
x

]d
= 1d (35)

for any x= 0, . . . ,d− 1 and n= 1, . . . ,d− 1. What is more, O
(n)
x turns out to be the nth power of Ox, that is,

O
(n)
x = [Ox]

n. All this means that for any x the set {O(n)
x }n=0,...,d−1 represents a legitimate d-outcome

projective quantum measurement. Let us finally mention that the linear transformation (31) can be inverted,
giving

On
l =

ω−nl(l+1)

√
dλn

d−1∑

x=0

ω−nxlO
(n)
x . (36)

The fact that both Ok and Ok are unitary quantum observables that are related by a linear reversible
transformation given by equations (31) and (36) is the key ingredient in our construction. That is, we can
proceed in analogy to d= 2 case, where we used the replacement defined in equation (25) to define the Bell
inequality and we could later reverse it by a suitable choice of quantum observables (28) to obtain the
maximal quantum violation with a graph state.

The replacement rule we use for the case of arbitrary prime dimension becomes:

(
XZk

)n → Ã(n)
k :=

ω−nk(k+1)

√
dλn

d−1∑

t=0

ω−ntkAn
t , (37)

5 Recall that the Legendre symbol
(
n
d

)
equals+1 if n is a quadratic residue modulo d and−1 otherwise.
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where At with t= 0, . . . ,d− 1 are unitary observables. Notice that since we deal now with d-outcome
quantum measurements we need to also take into account the powers n of the corresponding observables. In
fact, these under the Fourier transform represent the outcomes of projective measurements. Crucially, this
transformation can be inverted in the sense that there exist a choice of observables Ai,t,

An
t =

λn√
d

d−1∑

k=0

ωntkωnk(k+1)
(
XZk

)n
. (38)

for which Ã(n)
k in equation (37) can be brought back to XZk.

These new operators Ã(n)
k satisfy the following relations (see fact 3 in appendix A for a proof):

(
Ã(n)
k

)†
= Ã(d−n)

k = Ã(−n)
k (39)

for any pair n,k= 0, . . . ,d− 1, and

d−1∑

k=0

Ã(d−n)
k Ã(n)

k = d1 (40)

for any n= 0, . . . ,d− 1.
The motivation for considering the above replacement rule to construct Bell inequalities tailored to

multi-qudit graph states stems from a few facts. First, the same rule was already used in [24] to derive Bell
inequalities maximally violated by the two-qudit maximally entangled states, which are the simplest
examples of the graph states. Second, the same rule in the simplest case of d= 2, outlined also in section 3.1,
allowed to construct nontrivial Bell inequalities for all multi-qubit graph states. We thus believe that,
similarly to the case d= 2, the assignment (37) prevents the local models achieve the maximal quantum
values of the resulting Bell expression. It also allows, as evidenced in [24], to easily construct sum-of-squares
decompositions of our inequalities, and thus analytically determine their maximal quantum vaues.

3.3. Examples
Before presenting our construction in full generality, let us first illustrate how to use the qudit replacement
rule to obtain valid Bell inequalities tailored to graph states by means of two examples.

Example 1 (AME(4,3)). Asmentioned in section 2.3, the four-qutrit absolutely maximally entangled state is a
graph state corresponding to the graph presented on figure 1. The stabilizing operators defining this state are
given in equation (23). We recall them here

G1 = X1Z2Z4, G2 = Z1X2Z3, G3 = Z2X3Z
2
4, G4 = Z1Z

2
3X4. (41)

Since the neighbourhood of all vertices of this graph is of size two, each vertex is equally good to implement
the transformation (37). For simplicity we choose it to be the first site. Moreover, as in the previous example,
we denote the observables measured by the four parties as Ax, By, etc.

Now, to create the set of matrices XZk (necessary for the transformation (37)) at the first site we consider
the stabilizing operators G1, G1G2, and G1G2

2. These are, however, insufficient to uniquely define |AME(4,3)⟩
as they do not include G3 and G4. Since G3 has the identity at the first position we can include it as it is,
whereas we need to take a product of G4 with G1 to create XZ at the first site. As a result, the final set of
stabilising operators which we use to construct a Bell inequality for |AME(4,3)⟩ consists of

G1 = X⊗Z⊗1⊗Z,

G1G2 = XZ⊗ZX⊗Z⊗Z,

G1G
2
2 = XZ2 ⊗ZX2 ⊗Z2 ⊗Z,

G3 = 1⊗Z⊗X⊗Z2

G1G4 = XZ⊗Z⊗Z2 ⊗ZX. (42)

Now, to each of these stabilising operators we associate an expectation value in which particular matrices
are replaced by quantum observables or their combinations. For pedagogical purposes, let us do it site by site.
As already mentioned, at the first site we use equation (37) which for d= 3 gives

9
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X → Ã0 :=
1√
3λ1

(A0 +A1 +A2) ,

XZ → Ã1 :=
1√
3λ1ω

(
A0 +ω−1A1 +ω−2A2

)
,

XZ2 → Ã2 :=
1√
3λ1

(
A0 +ω−2A1 +ω−1A2

)
, (43)

where λ1 = −iω2/3 = ω1/12 = exp(πi/18) and λ2 = λ∗
1 (cf equations (32)–(34)) and we denoted for

simplicity Ãi ≡ Ã(1)
i . We dropped the subscript n appearing in the transformation (37) because for n= 2 one

has (XZk)2 = (XZk)† for k= 0,1,2 and Ã(2)
i = Ã†

i (cf equation (39)); nevertheless, we need to take into
account the case n= 2 when constructing the Bell inequality.

We then note that at the second site we also have three independent unitary observables Z, ZX and ZX2

[note that (ZX)3 = (ZX2)3 = 1], and therefore we can directly substitute

Z → B0, ZX → B1, ZX2 → B2. (44)

At the third site we have Z, Z2 which represent a single measurement (cf section 2.1), and X which is
independent of the other two. We thus substitute Zk → Ck

0 with k= 1,2 and X → C1. Analogously, for the
fourth party we have Z → D0 and ZX → D1.

Taking all the above substitutions into account we arrive at the following assignments

G1 → ⟨Ã(1)
0 B0D0⟩, G1G2 → ⟨Ã(1)

1 B1C0D0⟩, G1G
2
2 → ⟨Ã(1)

2 B2C
2
0D0⟩, (45)

G1G4 → ⟨Ã(1)
1 B0C

2
0D1⟩, (46)

and for G3:

G3 → ⟨B0C1D0⟩. (47)

Notice that the expectation values corresponding to n= 2 in the assignment (37) are simply complex
conjugations of the above ones. By adding all the obtained expectation values, we finally obtain a Bell
inequality of the form

IAME :=
1√
3λ1

[
⟨(A0 +A1 +A2)B0D0⟩+ ⟨(A0 +ω2A1 +ωA2)B2C

2
0D0⟩

]

+
1

2
√
3λ1ω

[
⟨(A0 +ωA1 +ω2A2)B1C0D0⟩+ ⟨(A0 +ωA1 +ω2A2)B0C

2
0D1⟩

]

+ ⟨B0C1D0⟩+ c.c.⩽ βC
AME, (48)

where c.c. stands for the complex conjugation of all five terms and represents the expectation values obtained
for the case n= 2 of the assignment (37); in particular, it makes the Bell expression real. Moreover, the second
line comes with 1/2 coefficient for reasons that will become clear later. The classical value in this case is

βC
AME = 2+ 3(ω−1/3 +ω2/3 −ω4/3) = 7.638 16. (49)

Let us prove that the maximal quantum violation of this inequality is βQ
AME = 8. First, denoting by BAME a

Bell operator constructed from IAME, we can write the following sum-of-squares decomposition, which is
inspired by the sum-of-squares decompositions found in [24]:

81−BAME = (1− Ã0B0D0)
†(1− Ã0B0D0)+ (1− Ã2B2C

2
0D0)

†(1− Ã2B2C
2
0D0)

+
1

2
(1− Ã1B1C0D0)

†(1− Ã1B1C0D0)+
1

2
(1− Ã1B0C

2
0D1)

†(1− Ã1B0C
2
0D1)

+ (1−B0C1D0)
†(1−B0C1D0), (50)

where Ax, By, etc are arbitrary three-outcome unitary observables. To prove that this decomposition holds
true one simply expands its right-hand side and uses the property (cf equation (40)), which in the particular
case d= 3 reads,

Ã†
0Ã0 + Ã†

1Ã1 + Ã†
2Ã2 = 31. (51)

Now it becomes clear why the second line of IAME comes with 1/2.

10
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From this decomposition we immediately conclude that 81−BAME ⩾ 0 for any choice of the local
observables, which implies that also for any state |ψ⟩, ⟨ψ|BAME|ψ⟩ ⩽ 8. To show that this bound is tight it
suffices to provide a quantum realisation achieving it. Such a realisation can be constructed by inverting the
transformation in equations (43) and (44), that is, by taking

Ax =
λ1√
3

2∑

k=0

ωxkωk(k+1)Ok (k= 0,1,2), (52)

and By = ZXy with y= 0,1,2, C0 = Z and C1 = X, and Dw = ZXw with w= 0,1, we can bring the Bell
operator BAME to

BAME = G1 +G1G
2
2 +

1

2
(G1G2 +G1G4)+G3 + h.c., (53)

which is simply a sum of the stabilising operators of |AME(4,3)⟩. As a result, the latter achieves the maximal
quantum value of the Bell inequality (48).

Example 2 (Two-qudit maximally entangled state). Let us then consider the case of arbitrary prime d and
construct Bell inequalities for the simplest graph state which is the maximally entangled state (18) stabilised
by the two generators given in equation (19).

Since we are now concerned with the bipartite scenario we can denote the observables measured by the
parties by Ax and By; the numbers of observables on both sites will be specified later. As already explained, to
construct Bell inequalities we cannot simply use the replacement (25), we rather need to employ the one in
equation (37). Let us moreover assume that we implement this transformation at Alice’s site.

To be able to apply the above assignments, we need to consider a larger set of stabilising operators which
apart from X and Zk operators contain also (XZk)n with k= 0, . . . ,d− 1 and n= 1, . . . ,d− 1. To construct
such a set one can for instance take the following products of G ′

i given in equation (19):

G ′
1(G

′
2)

k = XZk ⊗XZ−k (k= 0,1, . . . ,d− 1). (54)

However, to take into account all the outcomes of the measurements performed by both parties we need to
also include the powers of the above stabilising operators (cf section 2.1) which leads us to the following
d(d− 1) stabilising operators of |ψ+

d ⟩:

Gn
k :=

[
G ′
1(G

′
2)

k
]n

=
(
XZk

)n ⊗
(
XZ−k

)n
(k= 0, . . . ,d− 1; n= 1, . . . ,d− 1). (55)

We can now construct Bell inequalities maximally violated by the two-qudit maximally entangled states.
Precisely, to each of the stabilising operators Gn

k we associate an expectation value in which the particular
matrices appearing at the first site are replaced by the combinations (37) of the observables Ax,

(
XZk

)n → Ã(n)
k , (56)

whereas at the second site we substitute directly

(
XZ−k

)n → Bn
k . (57)

In other words, we associate

Gn
k →

〈
Ã(n)
k Bn

k

〉
(58)

with k= 0,1,2 and n= 1,2.
Adding then all the obtained expectation values and exploiting the fact that λ−1

n = λ∗
n , we finally arrive at

Bell inequalities derived previously in [24]:

Imax :=
d−1∑

n=1

d−1∑

k=0

〈
Ã(n)
k Bn

k

〉

=
1√
d

d−1∑

n=1

λ∗
n

d−1∑

x,y=0

ω−nxy
〈
An
xB

n
y

〉
⩽ βC

max, (59)
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Table 1.Maximal classical values of the Bell expression Imax given in equation (59) for d= 3,5,7. For comparison we also present the
maximal quantum values.

d βL βQ βQ/βL

3 6cos(π/9) 6 1.064
5 4(2+

√
5) 20 1.1803

7 ≃ 33.3494 42 1.2594

where βC
max stands for the maximal classical value of Imax. It is in general difficult to compute βC

max

analytically, however, for the lowest values of d= 3,5,7 it was found numerically in [24]; for completeness
we listed these values in table 1.

On the other hand, these Bell inequalities are designed so that their maximal quantum value can be
determined straightforwardly. Let us formulate and prove the following fact.

Fact 1. The maximal quantum value of the Bell expressions I(d)max is βQ
max = d(d− 1).

Proof. The proof is straightforward and consists of two steps. First, we denote by

Bmax =
1√
d

d−1∑

n=1

1

λn

d−1∑

x,y=0

ω−nxyAn
x ⊗Bn

y (60)

a Bell operator associated to the expression I(d)max, where Ax and By are arbitrary d-outcome unitary observ-
ables. Second, one uses equation (40) as well as the fact that the Bell operator is Hermitian to observe that the
following sum-of-squares decomposition holds true

d(d− 1)1−Bmax =
1

2

d−1∑

n=1

d−1∑

y=0

(
1− Ã(n)

y ⊗Bn
y

)†(
1− Ã(n)

y ⊗Bn
y

)
. (61)

Consequently, d(d− 1)1−Bmax is a positive semi-definite operator for any choice of local observables,

and thus β(d)
max ⩽ d(d− 1). To prove that this inequality is tight we can construct a quantum realisation for

which I(d)max = d(d− 1). Precisely, we notice that for the following choice of observables for Alice and Bob (cf
equation (38)),

An
x =

λn√
d

d−1∑

k=0

ωnxkωnk(k+1)(XZk)n, Bn
y = (XZ−k)n (62)

the Bell operator Bmax simply becomes a sum of the stabilising operators of |ψ+
d ⟩,

Bmax =
d−1∑

n=1

d−1∑

k=0

[
G ′
1(G

′
2)

k
]n
, (63)

meaning that ⟨ψ+
d |Bmax|ψ+

d ⟩ = d(d− 1). As a result β(d)
max = d(d− 1), which completes the proof.

3.4. General construction
We are now ready to provide our general construction of Bell inequalities for arbitrary graph states. Let us
first set the notation.

Consider a graph G = (V,E ,R,d) and choose two of its vertices that are connected. Without any loss of
generality we can label them by 1 and 2. Let then N1 and N1 be respectively the neighbourhood of the first
vertex, i.e. the set of all vertices that are connected to it, and its cardinality. Clearly, we can relabel all the
other neighbours of vertex 1 by j ∈ N1 \ {2} ≡ {3, . . . ,N1 + 1}. We finally label the remaining vertices that
are not connected to the first vertex as l ∈ V \ {1,N1} ≡ {N1 + 2, . . . ,N}. The generators corresponding to
the graph G are denoted Gi (see equation (14) for the definition thereof), whereas the graph state stabilised
by them by |G⟩.

Let us then define the Bell scenario. It will be beneficial for our construction to slightly modify the way
we denote the observers and the observables they measure. Precisely, the observables measured by the first
two parties are denoted by Ax and By with x,y= 0, . . . ,d− 1, respectively; notice that both them can choose
among d different settings. Then, the other observers connected to the first party Ameasure three

12



New J. Phys. 25 (2023) 063018 R Santos et al

observables which we denote C(i)
z with z= 0,1,2 and i ∈ N1 \ {2}. The remaining observers (that do not

belong to N1) have only two observables at their disposal, denoted D(i)
0 ,D

(i)
1 where i ∈ {N1 + 2, . . . ,N}.

Before providing our construction in detail let us first present a short overview of it. Analogously to the
examples presented above, for a given graph G and the corresponding graph state |ψG⟩, we first construct a
sufficiently large set of stabilising operators (together with their matrix powers) obtained from the generators
Gi. Then, to each of these stabilising operators we associate an expectation value in which the local matrices
are replaced by arbitrary observables of their combinations; in fact, at the first site we implement the
replacement rule (37), whereas at the remaining sites the operators are directly replaced by the observables.
The motivation to use (37) is that it allows to obtain nontrivial Bell inequalities for which the quantum and
classical values differ (see [20, 24]). Then, a suitable combination of the obtained expectation values gives rise
to a Bell expression (cf equation (84)) whose maximal value can be analytically determined by constructing a
suitable sum-of-squares decomposition, as shown in theorem 2 below. Importantly, the above replacement
rule can be reversed in the sense that by choosing suitable observables for each of the observers—in particular
the first observer measures the observables defined in equation (38)—one can bring the corresponding Bell
operator to a sum of the stabilising operators of the given graph state (cf equation (97)), which allows one to
show that the graph state |ψG⟩ achieves the maximal quantum value of the given Bell expression.

Let us now present our construction in more detail. To derive a Bell inequality tailored to the graph state
|G⟩ we begin by rewriting the stabilising operators Gi corresponding to G by explicitly presenting operators
acting on the first two sites as well as on the neighbourhood N1. The first two stabilising operators read

G1 = X1 ⊗Z
r1,2
2 ⊗

⊗

m∈N1\{2}
Z
r1,m
m (64)

and

G2 = Z
r1,2
1 ⊗X2 ⊗

⊗

m∈N1\{2}
Z
r2,m
m ⊗

N⊗

m=N1+2

Z
r2,m
m . (65)

Then, those associated to the other vertices belonging to N1 are given by

Gi = Z
r1,i
1 ⊗Z

r2,i
2 ⊗Xi ⊗

⊗

m∈N1\{2,i}
Z
ri,m
m ⊗

N⊗

m=N1+2

Z
ri,m
m , (66)

where j = 3, . . . ,N1, whereas the remaining Gi’s for i ∈ {N1 + 2, . . . ,N} are of the following form

Gi = 11 ⊗Z
r2,i
2 ⊗

⊗

m∈N1\{2}
Z
ri,m
m ⊗Xi ⊗

⊗

m∈{N1+2,...,N}\{i}
Z
ri,m
m . (67)

It is worth adding here that since by assumption the first two vertices are connected, r1,2 ̸= 0. Moreover, G1

acts trivially on all sites that are outside N1 ∪{1}.
Given the stabilising operators, let us then follow the procedure outline already in the previous examples.

We begin by constructing a suitable set of stabilising operators. First, to create at the first site the operators
XZk required for the assignment (37), we consider products G1Gk

2 with k= 0, . . . ,d− 1. This set, however,
does not uniquely define the graph state |G⟩ as it lacks the other generators. To include them we first notice
that any Gi with i ∈ N1 \ {2} contains the Z operator or its power at the first position and therefore we take
their products with G1, that is, G1Gi with i ∈ N1 \ {2}, again to obtain XZk at the first site. On the other
hand, the remaining generators Gi for i ∈ {N1 + 2, . . . ,N} have the identity at the first position and therefore
we directly add them to the set.

Thus, the total list of the stabilizing operators that we use to construct a Bell inequality is

Gn
1,k := (G1G

k
2)

n (k= 0, . . . ,d− 1),

Gn
2,k := (G1Gk)

n
(k= 3, . . . ,N1 + 1), (68)

Gn
3,k := Gn

k (k= N1 + 2, . . . ,N),

where we have added powers to include all outcomes in the Bell scenario. Let us now write these operators
explicitly

Gn
1,k =

(
XZkr1,2

)n
1
⊗
(
Zr1,2Xk

)n
2
⊗

⊗

m∈N1\{2}
Z
n(r1,m+kr2,m)
m ⊗

⊗

m∈{N1+2,...,N}
Z
nkr2,m
m (69)
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for k= 0, . . . ,d− 1,

Gn
2,k = (XZr1,k)

n
1 ⊗Z

n(r1,2+r2,k)
2 ⊗ (Zr1,kX)nk ⊗

⊗

m∈N1\{2,k}
Z
n(r1,m+rk,m)
m ⊗

⊗

m∈{N1+2,...,N}
Z
nrk,m
m (70)

for k= 3, . . . ,N1 + 2, and

Gn
3,k = 11 ⊗Z

nr2,k
2 ⊗

⊗

m∈N1\{2}
Z
nrk,m
m ⊗Xn

k ⊗
⊗

m∈{N1+2,...,N}\{k}
Z
nrk,m
m (71)

for k ∈ {N1 + 2, . . . ,N}.
We associate to each of these stabilising operators an expectation value in which the local operators are

replaced by d-outcome observables or combinations thereof. Let us begin with the first site where we have
(XZkr1,2)n with k= 0, . . . ,d− 1, XZ r1,i with i = 3, . . . ,N1 and the identity. It is important to notice here that
due to the fact that d is a prime number, for any r1,2 ̸= 0, kr1,2 spans the whole set {0, . . . ,d− 1} for
k= 0, . . . ,d− 1; in other words, the function f(k) = kr1,2 defined on the set {0, . . . ,d− 1} is a one-to-one
function. Thus, XZkr1,2 contains all the d different matrices appearing in the transformation (37). We thus
substitute

(XZkr1,2)n → Ã(n)
kr1,2

:=
ω−nkr1,2(kr1,2+1)

√
dλn

d−1∑

x=0

ω−nkr1,2xAn
x . (72)

Analogously, we substitute

(XZ r1,i)n → Ã(n)
r1,i :=

ω−nr1,i(kr1,i+1)

√
dλn

d−1∑

x=0

ω−nr1,ixAn
x (73)

for i = 3, . . . ,N1 + 1; in both cases n= 1, . . . ,d− 1.
Let us then move to the second site. The matrices appearing there are Zr1,2Xk with k= 0, . . . ,d− 1 and

Z n(r1,2+r2,i) with i = 3, . . . ,N1 + 1. Since for any r1,2 the former are all proper observables in our scenario,
that is, they are unitary and their spectra belong to {1,ω1, . . . ,ωd−1}, we can directly substitute them by
observables Bk. Specifically, for k= 0 we assign

Zn → Bn
0 (74)

which implies in particular that

Znr1,2 → B
nr1,2
0 , (75)

and for the remaining k= 1, . . . ,d− 1,

(Zr1,2Xk)n → Bn
k . (76)

We distinguish the case k= 0 to simplify the assignment of observables to the other set of matrices Z n(r1,2+r2,i)

with i = 3, . . . ,N1 + 1. These are simply powers of Z and thus we associate with them a single observable B0;
precisely,

Z n(r1,2+r2,i) → B
n(r1,2+r2,i)
0 . (77)

Let us now consider all sites from N1 \ {2}. From equations (69), (70) and (71) it follows that the
operators appearing there are Z r1,iX with i = 3, . . . ,N1 + 1 and powers of Z, and thus we can make the
following replacements

Z → C(i)
0 and Z r1,iX → C(i)

1 (78)

for any i = 3, . . . ,N1. Finally, for the remaining sites we have simply the X operator at various sites and
powers of Z. Thus, for any i = N1 + 2, . . . ,N,

Z → D(i)
0 and X → D(i)

1 . (79)
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Collecting all these substitutions together we have

Gn
1,0 → G̃(n)

1,0 := Ã(n)
0 ⊗B

nr1,2
0 ⊗

N1+1⊗

i=3

[
C(i)
0

]nr1,i
(80)

and

Gn
1,k → G̃(n)

1,k := Ã(n)
kr1,2

⊗Bn
k ⊗

N1+1⊗

i=3

[
C(i)
0

]n(r1,i+kr2,i)
⊗

N⊗

i=N1+2

[
D(i)
0

]nkr2,i
(81)

for k= 1, . . . ,d− 1. Then,

Gn
2,k → G̃(n)

2,k := Ã(n)
r1,k ⊗B

n(r1,k+r2,k)
0

k−1⊗

i=3

[
C(i)
0

]n(r1,i+rk,i)
⊗
[
C(k)
1

]n
⊗

N1+1⊗

i=k+1

[
C(i)
0

]n(r1,i+rk,i)
N⊗

i=N1+2

[
D(i)
0

]nrk,i

(82)
with k ∈ {3, . . . ,N1 + 1}, and, finally,

Gn
3,k → G̃(n)

3,k := B
nr2,k
0

N1+1⊗

i=3

[
C(i)
0

]nrk,i k−1⊗

i=N1+2

[
D(i)
0

]nrk,i
⊗
[
D(k)
1

]n
⊗

N⊗

i=k+1

[
D(i)
0

]nrk,i
(83)

for k ∈ {N1 + 2, . . . ,N}.
Lastly, by taking a weighted sum of expectation values of the above operators, we arrive at the following

class of Bell expressions for a given graph state:

IG :=
d−1∑

n=1



〈
G̃(n)
1,0

〉
+

d−1∑

k=1

c1,k
〈
G̃(n)
1,k

〉
+

N1+1∑

k=3

c2,k
〈
G̃(n)
2,k

〉
+

N∑

k=N1+2

〈
G̃(n)
3,k

〉

 , (84)

where ci,k > 0 are some free parameters that satisfy

c1,k +
N1+1∑

j=3
{j:r1,j=kr1,2}

c2,j = 1 (85)

for each k= 1, . . . ,d− 1, where the second sum goes over all j such that for a fixed k, r1,j = kr1,2. As we will
see below the conditions (85) are used for constructing sum-of-squares decompositions of the Bell operators
corresponding to IG , which in turn are crucial for determining the maximal quantum values of IG . In fact, we
can prove the following theorem.

Theorem 2. The maximal quantum value of IG is

βQ
G = (d− 1)(N−N1 + d− 1). (86)

Proof. To prove this statement let us consider a Bell operator corresponding to IG ,

BG =
d−1∑

n=1


G̃(n)

1,0 +
d−1∑

k=1

c1,k G̃(n)
1,k +

N1+1∑

k=3

c2,k G̃(n)
2,k +

N∑

k=N1+2

G̃(n)
3,k


 , (87)

where G̃(n)
i,k are defined in equations (80)–(83). We show that BG admits the following sum-of-squares decom-

position

BG = (d− 1)(N−N1 + d− 1)1

− 1

2

d−1∑

n=1

[(
1− G̃(n)

1,0

)†(
1− G̃(n)

1,0

)
+

d−1∑

k=1

c1,k
(
1− G̃(n)

1,k

)†(
1− G̃(n)

1,k

)

+

N1+1∑

k=3

c2,k
(
1− G̃(n)

2,k

)†(
1− G̃(n)

2,k

)
+

N∑

k=N1+2

(
1− G̃(n)

3,k

)†(
1− G̃(n)

3,k

)

 . (88)
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To verify that this decomposition holds true let us expand the expression appearing in the square brackets
for a particular n,

(
1+

d−1∑

k=1

c1,k +
N1+1∑

k=3

c2,k +N−N1 − 1

)
1−B(n)

G −
[
B(n)

G

]†
+
(
G̃(n)
1,0

)†
G̃(n)
1,0

+
d−1∑

k=1

c1,k
(
G̃(n)
1,k

)†
G̃(n)
1,k +

N1+1∑

k=3

c2,k
(
G̃(n)
2,k

)†
G̃(n)
2,k +

N∑

k=N1+2

(
G̃(n)
3,k

)†
G̃(n)
3,k , (89)

where B(n)
G is a part of the Bell operator corresponding to a particular n, that is,

B(n)
G = G̃(n)

1,0 +
d−1∑

k=1

c1,k G̃(n)
1,k +

N1+1∑

k=3

c2,k G̃(n)
2,k +

N∑

k=N1+2

c3,k G̃(n)
3,k . (90)

We now notice that by summing all the conditions (85) one can deduce that

d−1∑

k=1

c1,k +
N1+1∑

k=3

c2,k = d− 1, (91)

which implies that the coefficient in front of the identity simplifies to d+N−N1 − 1. Using the definitions of

G̃(n)
i,k one then has that

(
G̃(n)
1,0

)†
G̃(n)
1,0 +

d−1∑

k=1

c1,k
(
G̃(n)
1,k

)†
G̃(n)
1,k +

N1+1∑

k=3

c2,k
(
G̃(n)
2,k

)†
G̃(n)
2,k +

N∑

k=N1+2

(
G̃(n)
3,k

)†
G̃(n)
3,k

=
(
Ã(n)
0

)†
Ã(n)
0 +

d−1∑

k=1

c1,k
(
Ã(n)
kr1,2

)†
Ã(n)
kr1,2

+

N1+1∑

k=3

c2,k
(
Ã(n)
r1,k

)†
Ã(n)
r1,k +(N−N1 − 1)1

=
d−1∑

k=0

(
Ã(n)
k

)†
Ã(n)
k +(N−N1 − 1)1= (d+N−N1 − 1)1, (92)

where the second line follows from the fact that apart from the first position all the local operators in G̃(n)
i,k are

unitary (notice also that G̃(n)
3,k have the identity at the first position), whereas the second line stems from the

conditions (40) and (85). All this allows us to rewrite (89) simply as 2(d+N−N1 − 1)1−B(n)
G −B(n)†

G . Taking
finally the sum of these terms over n= 1, . . . ,d− 1 we arrive at the decomposition (88), which completes the
first part of the proof.

From the decomposition (88) one directly infers that (d− 1)(d+N−N1 − 1)1−BG is a positive semi-
definite operator for any choice of the local observables, which is equivalent to say that for any Bell operator
BG corresponding to IG and any pure state |ψ⟩, the following inequality is satisfied

⟨ψ|BG |ψ⟩ ⩽ (d− 1)(d+N−N1 − 1). (93)

To show that this inequality is tight, and at the same time complete the proof, let us provide a particu-
lar quantum realisation that achieves it. To this end, we can invert the transformation we used to con-
struct IG . Precisely, we let the first party measure d observables Ak with k= 0, . . . ,d− 1 which are defined

in equation (38); for them Ã(n)
k = (XZk)n. The remaining parties measure

Bn
0 = Z n, Bn

k = (Zr1,2Xk)n (k= 0, . . . ,d− 1) (94)

C(i)
0 = Z, C(i)

1 = Z r1,iX (95)

for i = 3, . . . ,N1 + 1, and, finally,

D(i)
0 = Z, D(i)

1 = X (96)

for i = N1 + 2, . . . ,N.
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It is not difficult to see that for this choice of quantum observables the Bell operator reduces to a combin-
ation of the stabilising operators of the given graph state |G⟩, that is,

BG =
d−1∑

n=1


Gn

1 +
d−1∑

k=1

c1,k(G1G
k
2)

n +

N1+1∑

k=3

c2,k(G1Gk)
n +

N∑

k=N1+2

Gn
k


 . (97)

Owing to the conditions (85) as well as (91), one finds that

⟨G|BG |G⟩ = (d− 1)(N−N1 + d− 1), (98)

which is what we aimed to prove.

We have thus obtained a family of Bell expressions whose maximal quantum values are achieved by graph
states of arbitrary prime local dimension. To turn them into nontrivial Bell inequalities one still needs to
determine their maximal classical values which is in general a hard task. For the simplest cases such as Bell
inequalities for the AME(4,3) state or those tailored to the maximally entangled state of two qudits for low
d’s, the classical bounds can be determined numerically (cf equation (49) and table 1). On the other hand, in
the next section we show that our inequalities allow to self-test the graph states of local dimension three, and
thus for all of them the classical bound is strictly lower than the Tsirelson’s bound. It is also worth
mentioning that the ratio between the maximal quantum and classical values will certainly depend on the
choice of vertices 1 and 2, in particular on the number of neighbours of the first vertex N1 because this
number appears in the formula for βQ (86).

Let us finally mention that our inequalities are scalable in the sense that the number of expectation values
they are constructed from scales linearly with N. Indeed, it follows from equation (84) that the number of
expectation values in IG is

(d− 1)[N+(N1 + d)(d− 1)] (99)

which in the worst case N1 = N− 1 reduces to (d− 1)[Nd+(d− 1)2]. This number can still be lowered twice
because the expectation values in IG for n= ⌈d/2⌉, . . . ,d− 1 are complex conjugations of those for
n= 1, . . . ,⌊d/2⌋. Another possibility for lowering it number is to choose as the first vertex the one with the
lowest neighbourhood. While it is an interesting question whether it is possible to design another
construction which requires measuring even less expectation values, it seems that the linear scaling in N is
the best one can hope for.

4. Self-testing of qutrit graph states

Here we show our second main result: we demonstrate that our Bell inequalities can be used to self-test
arbritrary graph states of local dimension d= 3. In this particular case the general Bell expression (84) can be
written as

IG :=
〈
G̃(n)
1,0

〉
+

d−1∑

k=1

c1,k
〈
G̃(n)
1,k

〉
+

N1+1∑

k=3

c2,k
〈
G̃(n)
2,k

〉
+

N∑

k=N1+2

〈
G̃(n)
3,k

〉
+ c.c., (100)

or explicitly as,

IG :=

〈
Ã0B

r1,2
0

N1+1∏

i=3

[
C(i)
0

]r1,i
〉

+
2∑

k=1

c1,k

〈
Ãkr1,2Bk

N1+1∏

i=3

[
C(i)
0

]r1,i+kr2,i
N∏

i=N1+2

[
D(i)
0

]kr2,i
〉

+

N1+1∑

k=3

c2,k

〈
Ãr1,kB

r1,k+r2,k
0

k−1∏

i=3

[
C(i)
0

]r1,i+rk,i
C(k)
1

N1+1∏

i=k+1

[
C(i)
0

]r1,i+rk,i
N∏

i=N1+2

[
D(i)
0

]rk,i
〉

+
N∑

k=N1+2

〈
B
r2,k
0

N1+1∏

i=3

[
C(i)
0

]rk,i k−1∏

i=N1+2

[
D(i)
0

]rk,i
D(k)
1

N∏

i=k+1

[
D(i)
0

]rk,i
〉
+ c.c., (101)
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where c.c. stands for the complex conjugation and represents the n= 2 term in equation (84), whereas the
coefficients c1,k and c2,k satisfy the condition (85).

Let us now prove that maximal violation of IG can be used to self-test the corresponding graph state
according to definition 1. To this aim, we state the following theorem.

Theorem 3. Consider a connected graph G and assume that the maximal quantum value of the corresponding
Bell expression IG is achieved by a pure state |ψ⟩ ∈ H1 ⊗ . . .⊗HN and observables Ax, By, etc acting on the local
Hilbert spaces Hi. Then, each Hilbert space Hi decomposes as Hi = C3 ⊗H ′

i and there exist local unitary
operators Ui with i = 1, . . . ,N such that

(U1 ⊗ . . .⊗UN)|ψ⟩ = |ψG⟩⊗ |aux⟩ (102)

with |aux⟩ being some state from the auxiliary Hilbert space H ′
1 ⊗ . . .⊗H ′

N.

Before we present our proof let us mention that it is follows a similar reasoning to the proof of self-testing
of N-qubit graph states in [20], but since we deal here with qutrits it also makes a use of one of the results of
[24], which for completeness we state in appendix B as fact 5.

Proof. Let us first notice that it is convenient to assume that the local reduced density matrices of the state
|ψ⟩ are full rank; otherwise we are able to characterize the observables only on the supports of these reduced
density matrices. Moreover, we assume for simplicity that r1,2 = 1; recall that by construction r1,2 ̸= 0. The
proof for the other case of r1,2 = 2 goes along the same lines.

The sum-of-squares decomposition (88) implies the following relations for the state and observables that
achieve the maximal quantum value of the Bell expression IG ,

G̃(n)
1,k |ψ⟩ = |ψ⟩ (103)

for k= 0,1,2,

G̃(n)
2,k |ψ⟩ = |ψ⟩ (104)

for k= 3, . . . ,N1 + 1, and

G̃(n)
3,k |ψ⟩ = |ψ⟩ (105)

for k= N1 + 2, . . . ,N.
Before we employ the above relations in order to prove our self-testing statement let us recall that Ã(n)

x

(x= 0,1,2) are combinations of the first party’s observables and are not unitary in general; still, they satisfy

Ã(2)
x = Ã(1)†

x . At the same time By, C
(i)
z , and D(i)

w are all unitary observables which in the particular case d= 3

satisfy B2
y = B†

y etc. This implies that G̃(2)
i,k = G̃(1)†

i,k .
The main technical step we need is to identify at each site two unitary observables whose anticommutator

is unitary. This allows us tomake use of fact 5 and corollary 4 (see appendix B) to define local unitary operators
that map the two unkown observables to the qutrit ones. For parties having three measurement choices, the
remaining observable will be directly mapped to other qutrit operators thanks to anticommutation relations
that can be inferred from the sum-of-squares decompositions.

Our proof is quite technical and long and therefore to make it easier to follow we divide it into a few steps.
In the first four we characterize every party’s observables that give rise to the maximal quantum violation of
the inequality, while in the last one we prove the self-testing statement for the state.

Step 1. (Ax observables). Let us first determine the form of the first party’s observables Ax. To this end, we
concentrate on conditions (103) which for n= 1 and r1,2 = 1 can be rewritten as

Ã0 ⊗B0 ⊗C1|ψ⟩ = |ψ⟩,
Ã1 ⊗B1 ⊗C1C2 ⊗D|ψ⟩ = |ψ⟩,
Ã2 ⊗B2 ⊗C1C

†
2 ⊗D

†|ψ⟩ = |ψ⟩, (106)

where Ci and D are short-hand notations for

Ci =

N1+1⊗

m=3

[
C(m)
0

]ri,m
, D=

N⊗

m=N1+2

[
D(m)
0

]r2,m
, (107)
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where i = 1,2, and, finally,

Ãk ≡ Ã(1)
k =

ω−k(k+1)

√
3λ1

2∑

t=0

ω−tkAt. (108)

Recall that in the case d= 3, Ã(2)
k = Ã(1)†

k . Moreover, since G̃(2)
i,k = G̃(1)†

i,k , equation (103) for n= 2 gives another
set of conditions, similar to (106) but with all local operators being Hermitian-conjugated. By the very defin-

ition, Bi, Ci and D are unitary and satisfy B3
i = C

3
i = D

3
= 1.

The above equations contain all three operators Ãi (i = 0,1,2). Let us then concentrate on the first condi-
tion in (106) and use the fact that B0 and C1 are unitary to rewrite it as

Ã0|ψ⟩ = B†
0 ⊗C

†
1|ψ⟩, (109)

which, taking into account that B3
0 = 1 as well as C

3
1 = 1, implies also that

Ã2
0|ψ⟩ = B0 ⊗C1|ψ⟩. (110)

We can now use again the first condition in equation (106) but with all local operators being ‘daggered’ (recall
that it follows from equation (103) for n= 2), which allows us to obtain Ã2

0|ψ⟩ = Ã†
0|ψ⟩. Since the reduced

density matrix corresponding to the first subsystem of |ψ⟩ is full rank, the latter is equivalent to the following
relation

Ã2
0 = Ã†

0. (111)

Using similar arguments one then shows that Ã0 is unitary, which together with (111) implies that Ã3
0 = 1 and

thus Ã0 is a proper quantum observable.
Employing then the second and the third relation in equation (106), one can draw the same conclusions

for the other two operators on Alice’s side, Ã1 and Ã2. As a consequence, all three Ãi are quantum observables;
in particular, they satisfy

Ã2
i = Ã†

i (i= 1,2,3). (112)

Let us now use (112) to characterize Ax observables. By substituting equation (108) into it one finds, after
a bit of algebra, that the observables Ax are related via the following formula:

{Ai,Aj} = −ωA†
k , (113)

where i, j,k= 0,1,2 and i ̸= j ̸= k. Using again equation (108) one can also derive similar relations for the tilted
observables,

{Ãi, Ãj} = −Ã†
k (114)

with i, j,k= 0,1,2 such that i ̸= j ̸= k.
Importantly, equation (113) and, analogously, (114) were solved in [24]. In fact, it was proven there (cf

fact 5 and corollary 4 in appendix B) that one can identify a qutrit Hilbert space in H1 in the sense that
H1 = C3 ⊗H ′

1 for some auxiliary Hilbert space H ′
1, and that there exists a unitary operation U1 : H1 → H1

such that (notice that the third observable Ã2 is obtained from the first two by using (114))

U1 ÃiU1 = XZi ⊗ P(1)1 +(XZi)T ⊗ P(1)2 (i= 0,1,2), (115)

where P(1)i (i = 1,2) are two projectors such that P(1)1 + P(1)2 = 1 ′
1, where 1

′
1 is the indentity on H ′

1. There are
thus two inequivalent sets of observables at the first site that give rise to the maximal quantum value of our
Bell expressions: XZi with i = 0,1,2 and their transpositions.

Step 2. (By observables).We can now move on to characterizing the By observables. First, by combining the

identities in (106) with equation (114) and then by using the fact that C1 and C2 commute as well as that Ãi

are unitary, one finds the following equations

{Bi,Bj}|ψ⟩=−B†
k |ψ⟩ (116)
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for all triples i, j,k such that i ̸= j ̸= k. By virtue of the fact that all the single-party reduced density matrices of
|ψ⟩ are full rank, these are equivalent to the following matrix equations

{B0,B1} = −B†
2,

{B0,B2} = −B†
1,

{B1,B2} = −B†
0, (117)

and thus the By observables satisfy analogous relations to Ax. This implies that H2 = C3 ⊗H ′
2 for some auxil-

iary Hilbert space H ′
2, and there exists a unitary operation U2 : H2 → H2 such that (cf fact 5 and corollary 4)

U2BiU
†
2 = ZX i ⊗ P(2)1 +(ZX i)T ⊗ P(2)2 . (118)

for i = 0,1,2, where P(2)1 and P(2)1 are two orthogonal projectors such that P(2)2 + P(2)2 = 1 ′
2, where 1

′
2 is the

identity acting on H ′
2 (notice that as before the form of the third observable B2 follows from (117)).

Step 3. (C(i)
z observables). Let us now move on to the C(i)

z observables that are measured by the observ-
ers numbered by i = 3, . . . ,N1 + 1, and consider the first equation in (106) and the conditions that follow
from (104), which for our purposes we state as

Ã0 ⊗B0 ⊗
[
C(k)
0

]r1,k
⊗C0,k|ψ⟩ = |ψ⟩ (119)

and

Ãr1,k ⊗B
r1,k+r2,k
0 ⊗C(k)

1 ⊗C
′
0,k ⊗Dk|ψ⟩ = |ψ⟩ (120)

with k= 3, . . . ,N1 + 1, and

C0,k =

N1⊗

m=3
m̸=k

[
C(m)
0

]r1,m
, C

′
0,k =

N1⊗

m=3
m̸=k

[
C(m)
0

]r1,m+rk,m
, Dk =

N⊗

m=N1+1

[
D(m)
0

]rk,m
. (121)

Importantly, r1,k ̸= 0 for any k= 3, . . . ,N1 + 1, and hence all equations in (120) contain either Ã1 or Ã2.
Let us then exploit the fact that all local operators in both equations (119) and (120) are unitary and therefore
these equations can be rewritten as

[
C(k)
0

]r1,k
|ψ⟩ = Ã†

0 ⊗B†
0 ⊗C

†
0,k|ψ⟩,

C(k)
1 |ψ⟩ = Ã†

1 ⊗B
−(r1,k+r2,k)
0 ⊗

[
C

′
0,k

]†
⊗D

†
k |ψ⟩. (122)

Crucially, C0,k, C
′
0,k commute and therefore we deduce that

{[
C(k)
0

]r1,k
,C(k)

1

}
|ψ⟩ = {Ã0, Ã1}† ⊗Bλk

0 ⊗C
†
0,k

[
C

′
0,k

]†
⊗D

†
k |ψ⟩, (123)

where for simplicity we denoted λk = −(1+ r1,k + r2,k). In a fully analogous way we can derive

{[
C(k)
0

]r1,k
,C(k)

1

}†
|ψ⟩ = {Ã0, Ã1}⊗B−λk

0 ⊗C0,kC
′
0,k ⊗Dk|ψ⟩. (124)

Both these conditions when combined with equation (114) allow us to conclude that

{[
C(k)
0

]r1,k
,C(k)

1

}†{[
C(k)
0

]r1,k
,C(k)

1

}
=
{[

C(k)
0

]r1,k
,C(k)

1

}{[
C(k)
0

]r1,k
,C(k)

1

}†
= 1k, (125)

i.e. the above anticommutator is unitary. We can therefore use fact 5 and corollary 4 (see appendix B) which
say that for any k= 3, . . . ,N1 + 1, Hk = C3 ⊗H ′

k with H ′
k being some auxiliary Hilbert space of unknown

dimension, as well as that there exist unitary operations Uk such that

Uk

[
C(k)
0

]r1,k
U†

k = Zr1,k ⊗1 ′
k, (126)
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and

UkC
(k)
1 U†

k = Zr1,kX⊗ P(k)1 +(Zr1,kX)T ⊗ P(k)2 , (127)

where P(k)1 + P(k)2 = 1 ′
k.

Step 4. (D(i)
w observables). Let us finally focus on the D observables. We first consider all vertices i ∈ {N2 +

2, . . . ,N} that are connected to the second vertex. For them r2,k ̸= 0 and therefore we have from equation (105),

B
r2,k
0 ⊗ C̃0,k ⊗D

′
0,k ⊗D(k)

1 |ψ⟩ = |ψ⟩, (128)

where

C̃0,k =

N1⊗

m=3

[
C(m)
0

]rk,m
, D

′
0,k =

N⊗

i=N1+1
i̸=k

[
D(i)
0

]rk,i
. (129)

At the same time, equation (103) for k= 1 gives

Ãr1,2 ⊗B1 ⊗C1C2 ⊗
[
D(k)
0

]r2,k
⊗D0,k |ψ⟩ = |ψ⟩ (130)

where

D0,k =
N⊗

i=N1+1
i̸=k

[
D(i)
0

]r2,i
. (131)

We then rewrite both equations (128) and (131) as

D(k)
1 |ψ⟩ = B

−r2,k
0 ⊗ C̃†

0,k ⊗
[
D

′
0,k

]†
|ψ⟩,

[
D(k)
0

]r2,k
|ψ⟩ = Ã†

1 ⊗B†
1 ⊗C

†
1C

†
2 ⊗D

†
0,k|ψ⟩. (132)

Since as already proven, the anticommutator of B
−r2,k
0 and B1 is unitary for any k such that r2,k ̸= 0, the above

equations imply that for all k= N1 + 2, . . . ,N for which r2,k ̸= 0, the anticommutator of D(k)
1 and [D(k)

0 ]r2,k is
unitary too.

We can nowmove on to those vertices i ∈ {N1 + 2, . . . ,N} that are connected to the remaining neighbours
of the first vertex. In this case we proceed in the same way as above, however, we now combine the condi-

tions (104) and (105) as well as we employ the forms of C(i)
z operators given in equations (126) and (127) to

observe that for any site k which is connected to a neighbourm of the first vertex the anticommutator of D(k)
1

and [D(k)
0 ]rm,k is unitary and therefore D(k)

0/1 satisfy the assumptions of fact 5 in appendix B.
Let us finally consider the remaining vertices that are not neighbours of the first vertex. For each of them

we can prove that the anticommutator of the local observablesD(k)
0/1 or powers thereof is unitary in a recursive

way starting from vertices connected to those that are connected to the neighbours of the first vertex and
employing the relations (105). Step by step we can prove the same statement for all D sites exploiting the fact
that the graph is connected and therefore for each vertex there is a path connecting it with any other vertex in
the graph.

We thus conclude that for all vertices k= N1 + 2, . . . ,N the local Hilbert is Hk = C3 ⊗H ′
k for some finite-

dimensional H ′
k and that there exists a unitary Uk such that (cf fact 5 and corollary 4 in appendix B)

UkD
(k)
0 U†

k = Z⊗1 ′
k (133)

and

UkD
(k)
1 U†

k = X⊗ P(k)1 +XT ⊗ P(k)2 . (134)
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The state.Having determined the form of all local observables we can nowmove on to proving the self-testing
statement for the state. After substituting the above observables, the ‘rotated’ Bell operator corresponding to
the Bell inequality which is maximally violated can be expressed as

UBG U
† =

1∑

m1,...,mN=0

Bm ⊗ P(1)m1
⊗ . . .⊗ P(N)mN

, (135)

where U= U1 ⊗ . . .⊗UN and P(i)mi are projections introduced above that satisfy P(i)1 P(i)2 = 0 for any site i =
1, . . . ,N, Bm withm :=m1 . . .mN, wheremi = 0,1, are N-qutrit Bell operators obtained from

B= G1,0 +
2∑

l=1

c1,lG1,l +

N1+1∑

l=3

c2,lG2,l +
N∑

l=N1+2

G3,l + h.c., (136)

through the application of the identity map (mi = 0) or the transposition map (mi = 1) to the observables
appearing at site i. Here, Ga,b are the stabilising operators of the graph state |G⟩ defined in equations (68) for
n= 1 and d= 3, which for completeness we restate here as

G1,0 = X1 ⊗Z2 ⊗
N1+1⊗

i=3

Z
r1,i
i , (137)

G1,k =
(
XZk

)
1
⊗
(
ZXk

)
2
⊗

N1+1⊗

i=3

Z
r1,i+kr2,i
i ⊗

N⊗

i=N1+2

Z
kr2,i
i , (138)

with k= 1,2,

G2,k = (XZr1,k)1 ⊗Z
r1,k+r2,k
2 ⊗

k−1⊗

i=3

Z
r1,i+rk,i
i ⊗ (Zr1,kX)k ⊗

N1+1⊗

i=k+1

Z
r1,i+rk,i
i ⊗

N⊗

i=N2+2

Z
rk,i
i (139)

with k= 3, . . . ,N1 + 1

G3,k = Z
r2,k
2 ⊗

N1+1⊗

i=3

Z
rk,i
i ⊗

k−1⊗

i=N1+2

Z
rk,i
i ⊗Xk ⊗

N⊗

i=k+1

Z
rk,i
i , (140)

with k= N1 + 2, . . . ,N. The subscripts were added to X and Z to denote the site at which these operators act;
recall also that we fixed r1,2 = 1.

The formula (135) takes into account the fact that at each site we have two choices of measurements,
with and without the transposition. Thus, the Bell operator is composed of 2N N-qutrit Bell operators. For
instance, for m1 = . . .=mN = 0 no partial transposition is applied to B and therefore B0...0 ≡ B, whereas for
m1 = . . .=mN = 1 the partial transposition is applied to every site and hence B1...1 = BT, where T stands for
the global transposition.

In order to find the form of the state maximally violating our inequality we now determine the eigen-
vector(s) of the Bell operator BG corresponding its maximal eigenvalue which is 2(N−N1 + d− 1) (cf
equation (86)). To this end, let us focus on the N-qutrit operators Bm and prove that the latter number is an
eigenvalue of only two of them, B and BT , which correspond to the casesm1 =m2 = . . .=mN = 0,1, whereas
the eigenvalues of the remaining operators are all lower.

Clearly, B is composed of the stabilising operators of the graph state |G⟩ and therefore its maximal eigen-
value coincides with the maximal quantum violation of the inequality which is 2(N−N1 + d− 1). The same
applies to BT because the transposition does not change the eigenvalues and the graph state is real.

Let us then move on to the remaining cases, i.e. mi are not all equal. We will show that in all those 2N − 2
cases the Bm operators have eigenvalues lower than 2(N−N1 + 2) because for all those cases one can pick a
few stabilizing operators Ga,b whose partial transpositions cannot stabilize a common pure state anymore. For
further benefits let us denote by Gm

a,b the stabilizing operators which are partially transposed with respect to
those subsystems i for which mi = 1. We divide the proof into three parts corresponding to three cases: (i)
m1 =m2 = 0, (ii)m1 =m2 = 1 and (iii)m1 = 0,m2 = 1 orm1 = 1,m2 = 0, and also a few sub-cases.

• The first one assumes that either m1 = 1 and m2 = 0 or m1 = 0 and m2 = 1, i.e. we take the transposed
observables at the first or the second site, but not both at the same time. For simplicity let us then fixm1 =
1 and m2 = 0. We consider three operators GT1

1,i with i = 0,1,2, where T1 is the transposition applied to
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the observables at the first site. It is not difficult to observe that using the explicit forms of the stabilizing
operators (cf equations (137) and (138)) and including the transposition at the first site, one obtains

GT1
1,0GT1

1,1GT1
1,2 = [XT(XZ)T(XZ2)T]1 ⊗ [ZZXZX2]2, (141)

where we also used the fact that the products of the observables at the remaining sites amounts to identity.
Using then the fact that ZX= ωXZ, the above simplifies to

GT1
1,0GT1

1,1GT1
1,2 = ω1. (142)

This simple fact precludes that there exists a common eigenvector of GT1
1,i (i = 1,2,3) with eigenvalue one.

• Next, we consider the case when the observables at the first two sites are not transposed, i.e. m1 =m2 = 0.
There thus exists i ̸= 1,2 such that mi = 1. Let us first assume that this particular vertex belongs to i ∈
{3, . . . ,N1 + 1}, i.e. we take the transposed observables for this site. We then consider two operators G1,0

and G2,i. Notice then that the first of these operators has the Z observable at site i because i ∈ N1, i.e. it is
connected to the first vertex, whereas the second one has Z r1,iX at this position. At the remaining positions
different than the first two they have only Z observable or the identity which do not feel the action of trans-
position. All this means that in this case Gm

1,0 = G1,0 and Gm
2,i = GTi

2,i. Due to the fact that the transposition

at site i modifies X appearing in G2,i to X†, the operators G1,0 and GTi
2,i do not commute (recall that by the

very definition the stabilising operators without the transposition commute). By virtue of fact 4 stated in
appendix A this implies that G1,0 and GTi

2,i do not stabilize a common pure state.

Let us now move on to the second sub-case in which mi = 1 for any i ∈ N1 and there exist i ∈ {N1 +
2, . . . ,N} such that mi = 2. Since the graph is connected there exist another vertex j ̸= 1, i which is con-
nected to i. Analogously to the previous case, we consider two operators: Gm

3,i and one of Gm
a,b, where the

choice of the latter operator is dictated by the choice of the vertex j which i is connected to: for j= 2 we take
Gm
1,1; for j ∈ {3, . . . ,N1 + 1} we take Gm

2,j; finally, for j ∈ {N1 + 2, . . . ,N} we take Gm
3,j.

Now, Gm
3,i has theX operator at site i and the Z operator at the remaining ‘D’ sites, whereas all the other oper-

ators Gm
a,b for a= 1,2,3 and b ̸= i listed above have only either the Z operator or the identity at all ‘D’ sites.

Thus, Gm
a,b = Ga,b for any a= 1,2,3 and b ̸= i and any sequencem in whichml = 1 for l= 1, . . . ,N1 + 1, and

Gm
3,i = GTi

3,i. Now, it clearly follows that Gm
3,i does not commute with the chosen Ga,b because the transposition

at site i changes the X operator to X2 and because, by the very definition, G3,i (without the transposition)
commutes with any other Ga,b. As before this implies that Gm

3,iGa,b = ωqGa,bGm
3,i for some q= 1,2, and there-

fore these two operators cannot stabilize a common pure state (cf fact 4 in appendix A).
• The last case to consider is when m1 =m2 = 1; the remaining mi can take arbitrary values except for being
all equal to one, which corresponds to the already-considered case of all observables being transposed. Here
we can use the fact that Gm

a,b for all a,b stabilize the graph state |G⟩ if and only if [Gm
a,b]

T does, where T is the
global transposition. We can thus apply the global transposition to all the operators Gm

a,b and consider again
the case whenm0 =m2 = 0 and there is some i ̸= 1,2 such thatmi = 1, which has already been considered
above.

Knowing that among all the Bm operators only B and BT give rise to the maximal quantum violation of the
Bell inequality corresponding to the considered graph, we can determine the form of the state |ψ⟩ maximally
violating the inequality. Due to the fact that each local Hilbert space decomposes as Hk = C3 ⊗H ′

k we can
write the state as

|ψ⟩ =
∑

i1,...,iN

|ψi1,...,iN⟩⊗ |i1⟩1 ⊗ . . .⊗ |iN⟩N, (143)

where |ψ ′⟩ = (U1 ⊗ . . .⊗UN)|ψ⟩, |ψi1,...,iN⟩ are some vectors from (C3)⊗N and the local bases |ik⟩ are the

eigenbases of the projectors P(k)mk . The fact that |ψ⟩ achieves the maximal quantum value of the inequality,
βQ = 2(N−N1 + 2), means that the following identity

BG |ψ⟩ = 2(N−N1 + 2)|ψ⟩ (144)

holds true. Plugging equations (143) and (135) into the above equation one finds that it is satisfied iff for every
sequencem,

Bm|ψi1,...,iN⟩ = 2(N−N1 + 2)|ψi1,...,iN⟩, (145)

holds true for all those sequences i1, . . . , iN for which the local vectors |i⟩k at site k are the eigenvectors of the
operator P(k)mk . As already discussed above, this condition can be met for only two of these operators, B and BT .
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Moreover, the stabilising operators that B (and thus also BT) are composed of stabilize a unique state, which
is the graph state |G⟩. Consequently, |ψi1,...,iN⟩ = |G⟩ for any sequence i1, . . . , iN for which the corresponding

local vectors are the eigenvectors of P(k)0 (or P(k)1 in the case of BT).
On the other hand, we showed that the eigenvalues of the remaining operators Bm are lower than the

maximal violation of the Bell inequality and thus in all those cases equation (145) can be satisfied iff the
corresponding vectors vanish, |ψi1,...,iN⟩ = 0. Taking all this into account, we conclude that the state |ψ ′⟩ has
the following form

(U1 ⊗ . . .⊗UN)|ψ⟩ = |ψG⟩⊗ |φ⟩, (146)

where |φ⟩ is some state from the auxiliary Hilbert spaces H ′
1 ⊗ . . .⊗H ′

N that satisfies

(
P(1)i ⊗ . . .⊗ P(N)i

)
|φ⟩ = |φ⟩ (i= 0,1). (147)

This completes the proof.

5. Conclusions and outlook

In this work we introduced a family of Bell expressions whose maximal quantum values are achieved by
graph states of arbitrary prime local dimension. While at the moment we are unable to compute their
maximal classical values, we believe the corresponding Bell inequalities are all nontrivial. This belief is
supported by a few examples of Bell expressions for which the classical bound was found numerically, and
the fact that in the particular case of qutrit states they enable self-testing of all graph states. We thus
introduced a broad class of Bell inequalities that can be used for testing non-locality of many interesting and
relevant multipartite states, including the absolutely maximally entangled states. Moreover, in the particular
case of many-qutrit systems our inequalities can also be employed to self-test the graph states, in particular
the four-qutrit absolutely maximally entangled state.

There is a few possible directions for further research that are inspired by our work:

• First, it would be interesting to generalize our method to the case of composite d, in particular for prime
powers. The present approach is based on that of [24] which, in order to prove that the linear combinations
in equation (31) are unitary operators which when raised to d are identities employed certain relations for
quadratic Gauss sums that hold true for prime d.

• Second of all, as far as implementations of self-testing are concerned it is a problem of a high relevance to
understand how robust our self-testing statements are against noises and experimental imperfections.

• Another possible direction that is related to the possibility of experimental implementations of self-testing
is to find Bell inequalities maximally violated by graph states that require performing the minimal number
of two measurement per observer to self-test the state. For instance, for the GHZ state such a Bell inequality
[27] and a self-testing scheme [29] (see also [28]) based on the maximal violation of this inequality were
introduced recently; this inequality is based, however, on a slightly different construction which is not dir-
ectly related to the stabilizer formalism used by us here.

• Fourth, it is interesting to explore whether one can derive self-testing statements based on the maximal
violation of our inequalities for higher prime dimensions d ⩾ 0. While it is already known (see [24]) that
these inequalities do not serve the purpose as far as quantum observables are concerned because there exist
many different choices of them that are not unitarily equivalent (such as those appearing in the proof of
theorem 3 for d= 3 which are related by the transposition), whether they enable self-testing of graph states
remains open. In other words, it is unclear whether the given graph state is the only one (up to the above
equivalences) that meets the necessary and sufficient conditions for the maximal quantum violation of the
corresponding Bell inequality stemming from the sum-of-squares decomposition.

• The fifth possible direction is to generalize our construction so that it allows for designing Bell inequalities
that are maximally violated by other classes of states such as for instance the hyper-graph states [43] (see
also [44] in this context).

• Last but not least, one can also explore the possibility of self-testing of genuinely entangled subspaces within
the stabiliser formalism in Hilbert spaces of arbitrary prime local dimension along the lines of [22, 23].
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Appendix A. A few facts

Fact 2. Consider the generalized Pauli matrices defined through the following formulas

X|i⟩ = |i+ 1⟩, Z|i⟩ = ωi|i⟩, (148)

where |i⟩ (i = 0, . . . ,d− 1) are the elements of the standard basis ofCd. There are no complex numbersα,β ̸=
0 for which αX+βZ is unitary.

Proof. The proof is elementary. We first expand

(αX+βZ)†(αX+βZ) = (|α|2 + |β|2)1+α∗βX†Z+β∗αZ†X. (149)

Let us then show that for any d ⩾ 3, the operators X†Z and Z†X are linearly independent. To this end, we
assume that X†Z and Z†X are linearly dependent and thus X†Z= ηZ†X for some η ∈ C. By using the fact that
ZX= ωXZ, we can rewrite this equation as X†Z= ηωd−1XZ†, which, taken into account the fact that X and Z
are unitary further rewrites as Z2 = ηωd−1X2 which for d ⩾ 3 is satisfied iff η= 0.

It now follows that the expression (149) equals 1 if and only if α or β vanishes. This completes the proof.

Let us notice that the above fact fails to be true for d= 2 because in this case ZX= −XZ and therefore XZ
and ZX are linearly dependent, which makes it possible to find α,β such that αX+βZ is unitary. In fact, any
pair of real positive numbers obeying α2 +β2 = 1 makes this matrix unitary.

Let us finally provide a proof of the properties (39) and (40). For this purpose we recall Ã(n)
k to be given by

Ã(n)
k :=

ω−nk(k+1)

√
dλn

d−1∑

t=0

ω−ntkAn
t , (150)

where At are unitary observables.

Fact 3. Consider the following matrices

Ã(n)
k :=

ω−nk(k+1)

√
dλn

d−1∑

t=0

ω−ntkAn
t , (151)

where At are unitary observables. For any n= 0, . . . ,d− 1, the following identity holds true:

d−1∑

k=0

Ã(d−n)
k Ã(n)

k =
d−1∑

k=0

[
Ã(n)
k

]†
Ã(n)
k = d1. (152)

Proof. After plugging equation (151) into equation (152), one obtains

d−1∑

k=0

Ã(d−n)
k Ã(n)

k =
1

d|λn|2
d−1∑

s,t=0

d−1∑

k=0

ωnk(s−t)A−n
s An

t . (153)

Employing then the following identity

d−1∑

k=0

ωnk(s−t) = dδs,t (154)

and the fact that |λn|2 = 1 for any n, one directly arrives at equation (152), which completes the proof.
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Fact 4. Consider two N-qudit operators S1 and S2 which are N-fold tensor products of XiZj with i, j =
0, . . . ,d− 1 with prime d. Assume also that Sd1 = Sd2 = 1. If [S1,S2] ̸= 0, then they cannot stabilize a common
pure state in; in other words, no nonzero |ψ⟩ ∈ (Cd)⊗N exists such that Si|ψ⟩ = |ψ⟩ for i = 1,2.

Proof. Let us first notice that the Weyl–Heisenberg matrices Wi,j = XiZj satisfy the following commuta-
tion relations Wi,jWk,l = ωf(i,j,k,l)Wk,lWi,j with f : {0, . . . ,d− 1}4 → {0, . . . ,d− 1}, and thus there exists q=
{1, . . . ,d− 1} such that

S1S2 = ωqS2S1 (q= 1, . . . ,d− 1), (155)

where q ̸= 0 due to the assumption that Si do not commute.
Now, let us assume that Si stabilise a common pure state, Si|ψ⟩ = |ψ⟩ for i = 1,2. Then, the relation (155)

implies |ψ⟩ = ωq|ψ⟩ which is satisfied iff |ψ⟩ = 0, which leads to a contradiction. This ends the proof.

Appendix B. Characterisation of observables

The following proposition was proven in appendix B of [24].

Fact 5. Let R0 and R1 acting on some finite-dimensional Hilbert space B be unitary operators satisfying R3
0 =

R3
1 = 1. If the anticommutator {R0,R1} is unitary, then H = C3 ⊗H ′ for some Hilbert space H ′ and there

exists a unitary U : H → C3 ⊗H ′ such that

UR0U
† = X⊗Q+X⊗Q⊥ = X⊗1 ′,

UR1U
† = X2Z⊗Q+Z2 ⊗Q⊥, (156)

where Q and Q⊥ are orthogonal projections satisfying Q+Q⊥ = 1 ′ and 1 ′ stands for the identity acting
on H ′.

Based on the above fact let us now show demonstrate that for each of the subsets of observables Ax, By,

C(i)
z and D(i)

w there exist local unitary operations bringing them to the forms used in equations (115), (118),
(126) and (127), and finally, (133) and (134).

Corollary 4. The following statements can be verified by a direct check:

• (Ax observables) By using U1 = F†V1F⊗Q1 + F†V∗
1V2F⊗Q2, where F, V1 and V2 are unitary operations

given by

F=
1√
3




1 1 1
1 ω ω2

1 ω2 ω


 , V1 =




1 0 0
0 1 0
0 0 ω


 , V2 =




1 0 0
0 0 1
0 1 0


 , (157)

one can bring the observables in equation (156) into the following form used in equation (115):

X⊗Q+XT ⊗Q⊥,

XZ⊗Q+(XZ)T ⊗Q⊥. (158)

• (By and C(i)
z observables) By using U2 = V3F⊗Q+(V1V3)

∗F⊗Q⊥, and relabelling Q ↔ Q⊥ one brings
the observables (156) to those in equation (118), that is,

Z⊗Q+Z⊗Q⊥ = Z⊗1,

ZX⊗Q+(ZX)T ⊗Q⊥, (159)

where

V3 =




1 0 0
0 ω2 0
0 0 ω2


 . (160)

Then, by applying U3 = (V1V3)
∗ ⊗Q+V ′

2 ⊗Q⊥ operation we can bring (159) to

Z⊗Q+Z⊗Q = Z⊗1,

Z2X⊗Q+(Z2X)T ⊗Q⊥. (161)

Depending on the value of r1,k ̸= 0, both (159) and (161) are used in equations (126) and (127).
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• (D(i)
w observables) By applying U4 = V1V3 ⊗Q+(V1V3)

∗ ⊗Q⊥ to the above observables (159) one can
bring them to the following form

Z⊗Q+Z⊗Q⊥ = Z⊗1,

X⊗Q+XT ⊗Q⊥, (162)

which is used in equations (133) and (134).
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Chapter 5

Concluding remarks

In this thesis, we proposed schemes for certification of quantum systems based on maximal violation

of noncontextuality inequalities and Bell inequalities targeted to special quantum realizations. It is

known from some recent works that Bell inequalities and noncontextuality inequalities are useful for

such a purpose [18]. In this thesis, we generalized some results known from the literature [75]-[22]-

[88]-[89]-[68]-[10] and we were able to drop some strong assumptions made about the quantum devices

used in the protocol of certification. One of the main challenges targeted in this thesis was to find

noncontextuality or Bell inequalities that are maximally violated by certain states and measurements.

Another challenge was to design contextuality-based certification schemes that rely on less assumptions

about the considered physical systems as compared to the existing results [25], [77] and thus make

them as device-independent as possible.

In order to find the desired inequalities, we extensively exploited the stabilizer formalism which

often allows to construct the related the sum-of-squares (SOS) decompositions. We believe that

suitable adaptations of our approach may lead to noncontextuality or Bell inequalities tailored to

other states and measurements beyond those considered in this thesis. Also, beyond the analytical

approaches presented in this thesis, the numerical techniques such as those based on the semi-definite

programming [21], [77], can be very helpful in achieving this aim.

Let us also comment here about the scalability of our methods with the system size. While an

increasing number of measurements and expectation values that the certification schemes are based

on can facilitate the mathematical solutions, they might be a problem as far as experimental imple-

mentations are concerned. Moreover, it is a highly non-trivial question to explore what is the minimal

amount of information about the observed nonclassical correlations that enable making non-trivial

statements about the underlying quantum system.

Another direction for further study, as far as implementations of our certification schemes are

concerned is to explore whether they are robust to noises and experimental imperfections. When

dealing with experimental errors, we have to be aware on how sensitive our methods are to small

deviations close to the optimal quantum violation. However, such a robustness analysis is in general

a highly nontrivial problem as far as analytical methods are concerned, and therefore in this thesis

we present such an analysis only in a particular case. A possible alternative to handle such problems

would be to implement numerical methods.

From a more general perspective, it would be interesting to design a unifying approach to self-

testing based on Bell nonlocality and contextuality. Despite nonlocality being a specific instance of

92



CHAPTER 5. CONCLUDING REMARKS

contextuality, practical challenges emerge when formulating certification schemes based on these forms

of non-classicality. For instance, in the case of spatially separated systems, commutativity between

measurements performed in different locations is a natural consequence, while for systems for which

spatial separation cannot be guaranteed, compatibility of measurements can be an issue to be tackled

and this was one of the challenges we addressed in this thesis.
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[10] A. A. Klyachko, M. A. Can, S. Binicioğlu, and A. S. Shumovsky,“Simple test for hidden variables

in spin-1 systems,”Phys. Rev. Lett., vol. 101, 020403, 2 2008. [Online]. Available: https://link.

aps.org/doi/10.1103/PhysRevLett.101.020403.

[11] R. Cleve and H. Buhrman, “Substituting quantum entanglement for communication,” Phys.

Rev. A, vol. 56, 1201–1204, 2 1997. [Online]. Available: https://link.aps.org/doi/10.1103/

PhysRevA.56.1201.

95

https://link.aps.org/doi/10.1103/PhysRev.47.777
https://link.aps.org/doi/10.1103/PhysRev.47.777
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
https://link.aps.org/doi/10.1103/PhysRevLett.28.938
https://link.aps.org/doi/10.1103/PhysRevLett.28.938
https://link.aps.org/doi/10.1103/PhysRevLett.49.1804
https://link.aps.org/doi/10.1103/PhysRevLett.49.1804
https://www.nature.com/articles/nature15759#citeas
https://www.nature.com/articles/nature15759#citeas
https://doi.org/10.1103%2Frevmodphys.86.419
https://doi.org/10.1103%2Frevmodphys.86.419
https://link.aps.org/doi/10.1103/PhysRevLett.23.880
https://link.aps.org/doi/10.1103/PhysRevLett.23.880
https://link.aps.org/doi/10.1103/PhysRevLett.101.020403
https://link.aps.org/doi/10.1103/PhysRevLett.101.020403
https://link.aps.org/doi/10.1103/PhysRevA.56.1201
https://link.aps.org/doi/10.1103/PhysRevA.56.1201


BIBLIOGRAPHY

[12] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, “Entanglement-assisted capacity

of a quantum channel and the reverse shannon theorem,” 2001. [Online]. Available: https:

//arxiv.org/abs/quant-ph/0106052.

[13] T. S. Cubitt, D. Leung, W. Matthews, and A. Winter, “Zero-error channel capacity and sim-

ulation assisted by non-local correlations,” IEEE Transactions on Information Theory, vol. 57,

no. 8, 5509–5523, 2011. [Online]. Available: https://doi.org/10.1109%2Ftit.2011.2159047.
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to maximally entangled states,” Phys. Rev. Lett., vol. 119, 040402, 4 2017. [Online]. Available:

https://link.aps.org/doi/10.1103/PhysRevLett.119.040402.
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