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Abstract

The goal of this thesis is to provide a conceptual basis and general formal machin-
ery for a relational and operational approach to the foundations of quantum theory.
The framework builds on the ideas of so-called quantum reference frames (QRF) and
previous work on quantum measurement theory in the presence of symmetries. In
a nutshell, the QRF program is based on the idea that reference frames should be
treated as physical systems, combined with an assumption that as such they should
be modeled within quantum mechanics. This perspective is aligned with insisting on
relationality in physics, which is understood as justifying the fact that observations
are always made with respect to some other, reference, system. Broadly speaking,
physics should then be primarily concerned with relations between physical systems.
In this work, we combine these insights with the emphasis on operationality, under-
stood as refraining from introducing into the framework objects not directly related
to in principle verifiable probabilities of measurement outcomes, and identifying the
setups indistinguishable as such. Combining these insights with intuitions from special
relativity and gauge theory, we introduce an operational notion of a quantum refer-
ence frame—which is defined as a quantum system equipped with a covariant positive
operator-valued measure (POVM)—and build a framework based on the concept of
operational equivalence that allows us to enforce operationality by quotienting the
quantum state spaces with equivalence relation of indistinguishability by the available
effects, assumed to be invariant under gauge transformations, and framed in the sense
of respecting the choice of the frame’s POVM. Such effects are accessed via the yen
(¥R) construction introduced in previous work, which maps effects on the system to
those on the composite system, satisfying gauge invariance and framing. Such effects
are called relative, and the classes of states indistinguishable by them are referred to as
relative states. These can be identified with states on the system since they correspond
to the image of the predual map ¥R

∗ . We show that when the frame is localizable,
meaning that it allows for states that give rise to a highly localized probability dis-
tribution of the frame’s observable, by restricting the relative description upon such
localized frame preparation we recover the usual, non-relational formalism of quantum
mechanics. We also provide a consistent way of translating between different relative
descriptions by means of frame-change maps, and compare these with the correspond-
ing notions in other approaches to QRFs, establishing operational agreement in the
domain of common applicability.
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Streszczenie

Niniejsza rozprawa omawia podstawy koncepcyjne i wprowadza aparat matematyczny
dla relacyjnego i operacyjnego podejścia do teorii kwantowej. Formalizm jest oparty
na pojęciu kwantowego układu odniesienia (Quantum Reference Frames – QRF) i
wcześniejszych rezultatach teorii pomiaru kwantowego w obecności symetrii. W skró-
cie, program QRF party jest na założeniu, że układy odniesienia powinny być trak-
towane jako systemy fizyczne, w połączeniu z przekonaniem, że jako takie powinny
być one modelowane w ramach mechaniki kwantowej. Perspektywa ta jest zgodna z
postulatem relacyjności w fizyce, który mówi, że obserwacje zawsze są dokonywane
w odniesieniu do jakiegoś ukłądu odniesienia. Szerzej rzecz ujmując, fizyka powinna
zatem przede wszystkim zajmować się relacjami między systemami fizycznymi. W tej
pracy łączymy te spostrzeżenia z naciskiem na operacyjność, rozumianą jako pow-
strzymywanie się od wprowadzania do formalizmu obiektów niezwiązanych bezpośred-
nio z prawdopodobieństwami wyników co do zasady weryfikowalnych pomiarów, i co za
tym idzie identyfikację opisów nierozróżnialnych jako takie. Dodając intuicje z Teorii
Względności i Teorii Cechowania proponujemy operacyjną definicję kwantowego układu
odniesienia - jako systemu kwantowego wyposażonego w kowariantną pozytywną miarę
operatorową (Positive Operator-Valued Measure – POVM). Formalizm jest oparty na
koncepcji ekwiwalencji operacyjnej, która pozwala na wprowadzenie operacyjności w
naszym rozumieniu poprzez zastosowanie relacji równoważności na przestrzeni stanów
kwantowych ze względu na nierozróżnialność przez dostępne obserwable. Zakładamy,
że są one niezmiennicze wobec transformacji cechowania, rozumianych jako działanie
elementu odpowiedniej grupy na układzie złożonym z systemu i układu referancyjnego,
i referencyjne w sensie poszanowania wyboru POVM układu odniesienia. Takie obserw-
able są dostępne za pośrednictwem konstrukcji yen (¥R), wprowadzonej w poprzednich
pracach, która przekształca obserwable systemu na niezmiennicze względem transfor-
macji cechowania i referencyjne obserwable układu złożonego. Takie efekty nazy-
wane są względnymi, a klasy stanów nierozróżnialnych przez nie stanami względnymi.
Mogą być one rozumiane jako stany systemu, ponieważ odpowiadają obrazowi mapy
sprzężonej ¥R

∗ . Udowadniamy, że gdy układ odniesienia jest lokalizowalny, co oz-
nacza, że pozwala na stany prowadzące do silnie zlokalizowanych rozkładów praw-
dopodobieństwa obserwabli układu odniesienia, opis względem zlokalizowanego układu
odniesienia odpowiada zwykłemu, nierelacyjnemu opisowi kwantowemu. Zapewniamy
również spójny sposób tłumaczenia między różnymi opisami względnymi za pomocą
map zmiany układów i porównujemy je z odpowiadającymi pojęciami w innych pode-
jściach do QRF - okazuje się, że procedury są operacyjnie nierozróżnialne w obszarze
wspólnej stosowalności.
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Preface

This thesis would not have been written had I never met Dr. Leon Loveridge. Our
intense collaboration spanned over the last year, and was made possible by the ulti-
mate freedom to follow my intuitions and engage in the research that I find worthy,
granted by my Ph.D. supervisor Prof. Marek Kuś. It is not a summary of my research
as a Ph.D candidate, that concerned areas as remote as categorical foundations for
smooth geometry, the origin of the constraint’s bracket of General Relativity, or re-
constructions of quantum mechanics. This is because I feel the framework Leon was
developing for the last decade, which I only discovered after meeting him at the Sejny
Summer Institute workshop in 2021, approaches a complete form that deserves a fresh
and perhaps more accessible presentation. I have to say that the progress we have
made in understanding these ideas and developing the foundations and tools of the
framework felt like a rapid development. Due to this intensity, part of me that is really
glad that the process of writing the paper on operational quantum reference frame
transformations, and this thesis, is almost behind me, while the other part can not
wait to resolve the questions that remain open and complete the framework, which
now seems within reach. Discovering Leon’s universe of functional analysis employed
in capturing relational paradigm for quantum physics was a revelation to me. It felt
like I finally found myself in the realm of concepts and tools very natural to my taste
and also powerful enough to allow turning my long-held intuitions into theorems that
can be proved. This research influenced my thinking not only about operationality, re-
lationality, and gauge principles but also about spatiotemporality, agency, space-time,
and the emergence of gravity.
The work presented in this thesis stems from a project that seemed to be just a little
note on frame changes based on the relativization construction when it was started,
together with Titouan Carette, but then requested more and more care to fill in the
gaps and forced a deeper understanding of the formalism as a whole. On the way,
we were led to develop the concept of operational equivalence which is now of crucial
importance and discover the class of framed effects that shed light on the relativization
procedure on which the whole formalism was based and allowed for an operational
understanding of the frame-change maps. As it stands now, besides filling the gaps
along the lines already sketched, the algebraic and convex-theoretic generalizations of
this formalism seem within reach, a whole world of possible applications waits to be
analyzed, and novel perspectives on space-time emergence and understanding agency
in quantum theory call to be explored, all within the broad operationally-relational
paradigm that begins to stand on a firm formal foundation.
I need to confess, that entering the academic world as a job market made me treat
the writing process a bit like leaving a testament. Hopefully, this is not the case – I
would miss ¥ a lot! It’s been a demanding but beautiful journey.
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Chapter 1

Introduction

The purpose of theoretical physics, as we understand it, is, or maybe should be, to
provide coherent narratives for ‘how the physical world works’ or, more modestly,
for the ways we interact with it, accompanied by mathematically sound formalisms
powerful enough to phrase and analyze measurement scenarios and derive predic-
tions non-conflicting the experimental results. One such narrative, lacking to date
both a firm mathematical foundation and verifiable experimental predictions not to
be achieved otherwise, is that of the quantum reference frames (QRF) program. In
short, it amounts to intersecting Einstein’s view of reference frames being actual phys-
ical systems with the universality of quantum mechanics, thus forcing the reference
frames to be modeled by quantum mechanics. Perhaps the main hopes driving the
development of this research idea are that it may let us achieve the following:

• resolve the problem of the arbitrariness of the Heisenberg’s cut,
• make justice to the fact that observable quantities are relational,
• set the stage for the resolution of the problem of quantum gravity.

Besides that, we believe that a properly developed QRF formalism will also point to:
• alternative to the troubled quantum field theoretic paradigm for foundations of

relativistic quantum physics and beyond,
• deeper understanding of the interplay of quantum mechanics and relativity,
• novel reconstructions of quantum formalism from plausible physical principles,
• feasible approaches to space-time emergence.

We briefly comment on these hopes now, addressing them more formally either in the
course of the presentation or in the discussion chapter 6.
One may argue that the textbook quantum mechanics is a theory of quantum systems
interacting with classical measuring instruments, thus making the relation between
the classical and quantum theories somewhat obscure – we would like to think about
classical physics as being approximated by the more fundamental quantum formalism,
while we still require the classical world for phrasing quantum mechanics. This unsatis-
factory state of affairs was famously argued to be unavoidable by Bohr on the grounds
of operationality understood as the need for classical communication of measurement
results to assure the intersubjectivity of the theory. The QRF programs emphasize
the need for treating all the systems taking part in deriving experimental results as
quantum, contesting Heisenberg’s cut and thus clarifying the desired ordering in the
space of theories with quantum formalism being strictly more fundamental than the
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2 CHAPTER 1. INTRODUCTION

classical one. The strong form of operationality requested by Bohr is then lost, but we
argue that its weaker, in our view more reasonable, form can be reconciled with the
QRF ideas – this is the subject of this thesis.
In QRF frameworks, the observable quantities are always understood as relational – rel-
ative to a (quantum) reference frame, thus dealing with the relationality of observation
explicitly, at least on the declarative/interpretational level.
The hope that such a way of thinking may help us understand gravity in the quantum
realm stems from the realization that, when viewed relationally, space-time should
rather be thought of as a collection of relative distances and time differences, and
not as a background manifold with varying geometry. Thus taking the frames of
reference that give rise to relational spatiotemporal quantities into the quantum realm
may allow for the fully quantum picture of these notions, which we use to capture
gravitational interactions in our best classical theories. Space-time as a, possibly
dynamic, background is neither operational nor relational.
Due to the lack of its rigorous non-perturbative implementation, the framework of
quantum field theory (QFT), besides its tremendous success in providing correct pre-
dictions for the outcomes of experiments carried out in the quantum and relativistic
regimes, is not fully satisfactory as a fundamental formalism for physics. When pushed
further to the realm of theories of gravitation the situation gets only worse, and since
this situation persists over many decades now, it is perfectly reasonable to search for
alternative paradigms and mathematical tools.
Quantum theory of systems embedded in space-time, as we normally view them, seems
not to be independent of the features of this space-time. This manifests itself e.g. in
the interplay of the allowed communication tasks and correlations with the group of
symmetries of space (see e.g. [1, 2]).
Understanding such interplay may be useful for reconstructing quantum mechanics –
perhaps we should try reconstructing a relational framework, requiring compatibility
with the spatiotemporal relations as we know them. Such a restatement of the problem
may provide the missing ingredients of a satisfactory reconstruction.
There seems to be growing agreement in the foundations community that space-time
should perhaps not be treated as a fundamental notion, and thus should somehow
emerge from more fundamental ingredients of a framework, possibly alongside its non-
trivial geometry capturing the presence of gravity. A framework concerned solely with
quantum systems and their relations is a natural starting point for such considerations,
aligned with the so-called ‘quantum first’ approach to the matter.
The ideas underlying the QFR program are not new; they can be traced back to Arthur
Eddington [3], with the contributions funding the subject due to Yakir Aharonov et.al
[4, 5]. Besides the one presented here, the modern approaches, each aimed to some
extent at addressing the high hopes summarised above, can be organized, with respect
to their main sources of inspiration, into the following three non-independent sub-
programs. The currently most popular approach is motivated by gauge theory and
Dirac quantization of constrained systems, known as the perspective-neutral approach
[6, 7, 8]. Another one is founded on a direct description of frame-change maps [9, 10],
and in some sense can be seen as semi-embedded in the perspective-neutral approach.
The older developments, establishing the field, are based on information-theoretic ideas
[11, 12]. The framework presented here, however very different in the motivations and
concepts, is formally closest to this last theoretical development.



CHAPTER 1. INTRODUCTION 3

Before presenting the approach grounded in Quantum Measurement Theory and ex-
plicitly operational (see below for our definition), we would like to briefly point out
the shortcomings and difficulties encountered by the existing approaches. We only
mention our personal points of dissatisfaction, a full analysis of the landscape of QRF
frameworks being far from the scope of the present work which is primarily aimed to
communicate the operational framework in its fullest form.
Besides compromising operationality, all the formalisms developed so far lack solid
mathematical foundations in the context of general topological groups. Depending on
the framework and acceptable level of rigor, they are well-formulated for countable or
compact groups. With a generous dose of optimism, the perspective-neutral approach
may be believed to admit rigorous implementation in the realm of unimodular groups at
the price of leaving the usual Hilbert space based framework for quantum mechanics
and entering the realm of rigged Hilbert spaces and refined algebraic quantization.
None of these frameworks is developed, even on the declarative level, for arbitrary (non-
compact, non-unimodular) topological (locally compact, second countable, Hausdorff)
groups, which is the case for the operational approach presented here.
We also do not find the available definitions of quantum reference frames, or relative
states (if given at all), to be clearly motivated or general enough, the ones presented
here encompassing all the ones previously studied. In our view, the main source of
the shortcomings of most other approaches stems from hanging the formalisms on
classical intuitions of coordinate systems, being replaced with some sort of coherent
state systems as quantum analogs. We propose a more radically quantum approach
by beginning with general considerations of operationality and relationality in the pres-
ence of symmetries, with the framework taking a definite shape upon requiring the
universality of quantum mechanics.
It is not our task to verify if we do any better, but we do not find any of the so far
formulated frameworks to be conceptually well-grounded and clearly motivated outside
of specific examples, usually treated without much mathematical care. We attempt
to improve the situation by stating principles that an operational QRF framework
should satisfy and hope to be able to recover the advertised formalism as a unique
one satisfying them in the future. Recognizing the need for developing heuristics to
guide our intuitions, we insist on ultimately phrasing the ideas correctly; unfortunately,
in our view, the available formalisms fall short of such expectations in the realm of
non-compact groups, which are ubiquitous in physics.
Let us now present the bird-eye view on the operational approach to quantum reference
frames that is the focus of this thesis. It is a continuation of the theoretical efforts
of [13, 14, 15, 16, 17, 18, 19] that, as we will argue throughout this work, are
beginning to culminate into a closed, full-fledged formalism for operational relational
quantum kinematics. The resulting framework as we see it now can be understood as
an implementation of the following principles.

I. Operationality. Since a physical theory is meant to model the aspects of the
world that can (in principle) be falsified by means of experiment, it should be
concerned with assigning probabilities to propositions, verifiable in measurement
scenarios. We call a framework operational if its subject is limited to such
probability assignments. In other words, an operational framework should be
primarily concerned with probability distributions of (in principle) observable
quantities and refrain from introducing notions non-aligned with this purpose.
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II. Relativity of measurement. The only meaningful observables should be rel-
ative, i.e. contingent upon the choice of the measuring instrument. This is a
generalization of the underlying idea of relativity that observable quantities are
only meaningful after the frame of reference has been specified.

III. Gauge-invariance and frame-covariance. In the presence of an underlying
symmetry structure of the theory, the relative observables should be invariant,
while the measuring instruments should transform covariantly.

IV. Universality of quantum mechanics. We understand it to state that Hilbert
space based quantum mechanical formalism is rich enough to describe the physi-
cal world, which should then be modeled as composed of quantum systems alone.

The last principle constrains the framework considerably, also allowing for concrete
realizations of the previous three principles. To satisfy operationality as stated above,
the formalism based on quantum mechanics should be primarily concerned with positive
operator-valued measures (POVMs).1 Indeed, if a physical system is modeled on a
Hilbert space H, with the states ω ∈ S(H) given by the density operators, and
probability distributions are understood as non-negative countably additive normalized
measures2 p : F(Σ) → [0, 1] on a measurable sample space (Σ,F), the most general
continuous (in ω) procedure of assigning the latter to the former is an assignment

S(H) × F(Σ) ∋ (ω,X) 7→ pE
ω(X) := tr[ωE(X)]

satisfying 0 ≤ E(X) for every measurable X ∈ F(Σ), E(Σ) = 1S and E(X ∪ Y ) =
E(X) + E(Y ) for disjoint X, Y ∈ F(Σ). It then follows that each E(X) is an ef-
fect, i.e.

E(X) ∈ E(H) = {F ∈ B(H)|0 ≤ F ≤ 1S}

for all X ∈ F(Σ), and thus such assignment of probability distributions is uniquely
described by the positive operator-valued measure (POVM)

E : F(Σ) → E(H)

on Σ with the collection of effects E(X) satisfying the mentioned properties. The
measurable subsets X ∈ F(Σ) represent propositions about the system S, and the
numbers pE

ω(X) ∈ [0, 1] probabilities of these propositions being true given that the
system S has been prepared in the state ω ∈ S(H).3

The gauge-invariance principle (III) is understood here similarly to the perspective-
neutral approach in the sense of referring to some sort of global picture that should
be invariant with respect to the action of the underlying group. However, as we will
see, its implementation is very different – in the presented framework, in an analogy

1A reader not familiar with the operator-algebraic setup for quantum mechanics is advised to first
consult the concise Appendix .2 for the necessary background.

2In the Discussion 6 we present conceptual arguments in favor of slightly restricting the class of
considered probability measures.

3Such propositions indeed form a Boolean algebra, a subalgebra of the powerset P(Σ). We avoid
the usage of phrases such as “the outcome of the measurement of an observable E will be contained
in the subset X” as they only apply to the case when the sample space is discrete and hence we can
speak of the outcome – otherwise, due to the always constrained precision of our observations, the
verifiable claims will always concern subsets of the sample space. We like to think about the Boolean
algebras of actually verifiable claims as more fundamental than the underlying sample spaces. See
chapter 6 for a further discussion of this issue and the corresponding research direction.
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to gauge theories, it concerns observables rather than the vectors in H. We will then
have an action of the underlying symmetry group G on the composite systems R ⊗ S
and assume ‘physical’ observables to be invariant, i.e. they will be POVMs with the
image in the invariant algebra B(HR ⊗ HS)G.
The frame-covariance principle (III) can be understood as a generalization of the
situation encountered in the Special Theory of Relativity. The frames of reference
considered there are mutually inertial coordinate systems, which are all equivalent
– this is the content of the relativity principle. The term ‘equivalent’ here can be
understood as the fact that the descriptions of physical laws can be freely translated
between different such frames, without altering their symbolic form. If a reference
frame is modeled as an orthogonal coordinate system on the affine Minkowski space,
such translations are given by elements of the Poincaré group acting transitively on
the underlying space. To provide an operational, i.e. satisfying principle (I), analog of
this situation, while also respecting the principle (IV) of quantum universality, which
amounts to describing frames as quantum systems, we equip them with observables
of orientation on which the symmetry group G underlying the formalism, e.g. the
Poincaré group if the framework is to respect Special Relativity, acts. Since in this
context changing the reference frame is the same as acting upon the one we have
with a group element, the action should now translate propositions about the frame
orientation, so it should be transitive, and given on the sample spaces ΣR of the frame-
orientation observables. The group is then understood as composed of ‘operations’
that can be performed on the frames, the covariance from principle (III) meaning that
such operations can be modeled on the level of the frame’s algebra. More precisely,
given a group G and its transitive action on ΣR, that extended to subsets of Σ will
be written as X 7→ g.X for h ∈ G, we have an action on the frames’ algebra such
that4

ER(g.X) = UR(g)ER(X)UR(g)∗ for all X ∈ F(ΣR), g ∈ G.

A quantum reference frame R is then defined as a quantum system equipped with a
covariant POVM, referred to as the frame-orientation observable.5 This is the most
general definition of a quantum reference frame given to date, encompassing all pre-
viously studied in the literature. For instance, the coherent state systems used in the
general setup of the perspective-neutral approach [8], can be understood as equipped
with covariant POVMs of the form

Eη(X) = 1
λ

∫
X

|ηg⟩⟨ηg| dµ(g),

where {ηg}g∈G is the coherent state system and µ denotes the Haar measure onG.
Fixing the reference R is understood as a choice made by an observer about which
quantum system will be used as a reference for observations, and also how is it going
to be used, i.e. which observable on R will be used to describe frames’ orientation,
with respect to which other quantities become meaningful as relational quantities, as
described below. After such a choice has been made, we only consider the observables
respecting this choice whenever the frame is considered as a part of a composite sys-
tem – these are called framed and are understood as those that can be accessed via

4The action of G on B(HR) will always be assumed to be given via strongly continuous unitary
representation of G on HR.

5Transitivity of the G-action on the sample spaces is usually a part of the definition of a covariant
POVM.
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the specified reference system. In the light of the gauge-invariance principle (III), we
then propose to model the relative observables as invariant POVMs on the composite
system R ⊗ S that respect the choice of the frame-orientation observable. This is
achieved by the ¥ construction [15, 20] that, given a reference frame R, provides an
observable satisfying both requirements given any observable on S. It is understood
as a map, contingent upon the choice of the frame-orientation observable, that rela-
tivizes the standard, non-relative description of the system S, making the choice of
reference explicit. For a fixed frame R the ¥R map is then given by the following
integral6 [19]

¥R : B(HS) ∋ AS 7→
∫

G
dER(g) ⊗ US(g)ASUS(g)∗ ∈ B(HR ⊗ HS)G

Indeed, a simple change of variables gives h.¥R(AS) = ¥R(AS) for all h ∈ G. Since
this map, besides being linear and bounded, is also normal and (completely) positive,
it can also be (equivalently) stated as a map between the effect spaces or, perhaps
most naturally under the current interpretation, as a prescription of invariant POVMs
to arbitrary ones, given by7

ES 7→ ES ∗ ER := ¥ER ◦ ES : F(Σ) → E(HR ⊗ HS)G.

The relative observables are thus defined as the relativized ones. In this work, the ¥
construction is for the first time justified on operational grounds, in the context of a
finite group, as generating all and only the invariant operators that respect the choice
of the frame observable. Extending this result to a more general setting is a work in
progress, which we reflect on in chapter 6.
The operationality principle (I) entails that, after the frame has been chosen, the states
of the composite systems R⊗S should be distinguished only as far as they give rise to
different probability distributions upon an evaluation of the relativized effects. This is
achieved by the operational equivalence procedure that quotients out the state spaces
with respect to the equivalence relation defined by the allowed/accessible observables.
This can be done since for any subset O ⊆ E(H) the relation

Ω ∼O Ω′ ⇔ tr[ΩF ] = tr[Ω′F ] ∀F ∈ O.

is an equivalence relation on T (H), and on S(H), thus allowing to define the opera-
tional state spaces as the quotient spaces S(H)/∼O. They are total convex subsets of
the real Banach spaces T (H)sa/∼O. Thus using the operational equivalence method-
ology, we provide an operational definition of relative states: given a reference frame
R, the relative states are defined as the operational equivalence classes of states on
the composite system R ⊗ S that can be distinguished by the relative effects, which
are given by the image ¥R(E(HS)). We then show that the relative states can be
equivalently characterized as states in S(HS) that lie in the image of the predual map
¥R

∗ , and we write ΩR for ¥R
∗ (Ω) ∈ S(HS)R and Ω ∈ S(HR ⊗ HS). Their definition

6Originally, the ¥R map, referred to as the R-relativization map, was only defined for frame
observables being POVMs on the group G itself. Recently it has been extended to homogeneous
spaces on finite groups [21]. This is the main deficiency of the presented framework and will be
addressed shortly, see chapter 6 for some perspectives on this research problem.

7The notation has been chosen to reflect the observation that when both Hilbert spaces are taken
to be complex numbers, i.e. HS ∼= HR ∼= C, the notion of convolution of measures is recovered.
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is thus dual to that of the relative operators, providing a generalization of the stan-
dard trace-class/bounded operators duality. Indeed, writing B(HS)R = ¥R (B(HS))cl

(ultraweak closure), T (HS)R = ¥R
∗ (T (HR ⊗ HS)) and [_]⋆ for the Banach space

duality, we have
[T (HS)R]⋆ ∼= B(HS)R.

In fact, this is a special case of a Banach duality present in any operational setup defined
by the set of available effects O ⊆ E(H). Indeed, for arbitrary O we have

[T (H)/∼O]⋆ ∼= span(O)cl.

Thus the algebraic structure of the dual of the Banach space in which the operational
states live is in general lost, perhaps pointing to the more general, convex-theoretic
setup to be appropriate for operational quantum physics. We reflect on potentially ex-
tending the presented framework into the realm of the Generalized Probability Theories
program in chapter 6.
It is very convenient to distinguish a class of quantum reference frames that exhibit
some classical-like features. A frame R is called localizable if for any ϵ > 0 and
X ∈ F(Σ) such that ER(X) ̸= 0 there exists a pure state |ξϵ⟩ ∈ HR for which
⟨ξϵ|ER(X)ξϵ⟩ > 1 − ϵ. A sufficient8 condition a POVM may satisfy to admit such
states is the norm-1 property [22] which states that the norm of any effect ||E(X)|| is
either one or zero. Thus projection-valued measures are always localizable, but POVMs
coming from coherent state systems will generally not be localizable. The operational
interpretation of the states |ηg⟩ as corresponding to the frame ‘being oriented’ at g ∈ G
can, strictly speaking, retain its meaning only when they are ‘perfectly distinguishable’,
i.e. we have ⟨ηg, η

′
g⟩ = δ(g, g′). As this can only be achieved in the case of G being at

most countable, we avoid this kind of conditioning on frame orientations (and indeed
the use of coherent state systems in general) but instead use the ω-restriction maps,
which are given by extending by linearity and continuity the following simple mapping,
called the (ω-)restriction map

Γω : B(HR ⊗ HS) ∋ AR ⊗ AS 7→ tr[ωAR]AS ∈ B(HS),

where ω ∈ S(HR) is any state of the reference. Whenever the sample space is
metrizable (which will always be the case for the frame-orientation observables), the
localizability condition can equivalently be stated as the existence, for any point x ∈ Σ,
of a sequence of pure states ωn(x) such that the corresponding sequence of probability
measures µES

ωn(x) converges (weakly) to the Dirac measure δx. Taking ω = ωn(g) allows
for sharp conditioning of the frame on a specified group element as a limiting procedure,
while in general, the restriction map provides what can be thought of as probabilistic
gauge fixing, since generically ω ∈ S(HR) provides only a probability distribution of
the frame orientation, namely the one X 7→ pER

ω (X), that approximates δx only in the
case of a localizable frame R and ω = ωn(g). When the ω-restriction map is applied to
the relative operators, it gives rise to descriptions contingent not only upon the choice
of the frame and its frame-orientation observable but also upon the frames’ state. The
corresponding operational states lie in the image of the ω-conditioned R-relativization
map defined as

¥R
ω := Γω ◦ ¥R : B(HS) → B(HS)

8In the context of POVMs on metrizable spaces, so, in particular, the covariant ones, this is also
a necessary condition – see (2.3.2).
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The corresponding operational states, i.e. elements of S(HS)/∼O with

O = E(HS)R
ω := ¥R

ω (E(HS)),

are of the form

ρ(ω) := ¥R
∗ (ω ⊗ ρ) =

∫
G
dµER

ω (g)US(g)∗ρUS(g),

where ρ ∈ S(HS), and thus can be seen as states of S that have been ‘smeared’ with
respect to the probabilistic gauge fixing of R given by ω ∈ S(HS). Since they arise
by applying ¥R

∗ to product states of the form ω⊗ρ, they are called ω-product relative
states. In some sense, the procedure of attaching an external frame by ¥R and then
conditioning the description upon a chosen state with Γω provides a generalization of
the G-twirling procedure which is recovered in the compact G case when ω is taken
to be invariant. This way an operational justification is added to the claims made in
the context of the information-theoretic approach that G-twirl should be understood
as a lack of knowledge on the frame orientation, as explained in [15, 20].
Via localizable frames, we can make direct contact with the standard formulation of
quantum mechanics, in which the measuring apparatuses are thought of as classical
systems. Indeed, in the case of localizable frames, B(HS)R is a von Neumann algebra
with ¥ providing an isometric ∗-isomorphism B(HS) ∼= B(HS)R (4.4.3). In such a
case the relative states are dense in the states of S. More precisely, given a sequence
of states ωn localized at e ∈ G, we can approximate any state ρ ∈ S(HS) to arbitrary
precision by the conditioned relative states due to the following [15]

lim
n→∞

¥R
∗ (ωn ⊗ ρ) = ρ,

where ωn = ωn(e) is a localizing sequence centered at e ∈ G and the limit is under-
stood in terms of point-wise convergence of the expectation values.9

After presenting the operational setup for quantum reference frames as briefly described
above, we also provide a frame-change map aligned with our principles, where the
localizable frames also play a prominent role. To this end, following other approaches,
we adopt the internal perspective on the problem. We then need a description of the
system modeled on a total Hilbert space HT from which the frames will be extracted.
We then notice that whatever the choice of an internal frame, i.e. regardless of
the details of the decomposition HT ∼= HR ⊗ HS and the choice of the frame-
orientation observable ER, the R-relative description will be invariant in the sense
that B(HS)R ⊆ B(HR ⊗ HS)G. Thus the algebra B(HT )G and the corresponding
invariant state space S(HT )G provide the arena for the global considerations that we
need. A pair of subsystems, that will serve as frames, is then specified by decomposing
the total Hilbert space into HT ∼= H1 ⊗ H2 ⊗ HS . We assume this is done in a way
compatible with the global G-action so that we have UT = U1 ⊗ U2 ⊗ US . To
complete the setup, we fix a pair of covariant POVMs Ei : B(G) → B(HRi

), so that
R1 and R2 become quantum reference frames.10 We then define the ω-lifting map
LR

ω : S(HS)R → S(HR ⊗ HS)G, with ω ∈ S(HR) an arbitrary state of the reference.
9The only topology that we use on T (H) and S(H) is the dual one to the ultraweak one on

B(HS), referred to as operational.
10We consider generalizing this notion of an internal frame in chapter 6.
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It allows to lift states relative to R, i.e. those states in S(HS) that lie in the image of
¥R

∗ , to the global states in S(HR ⊗ HS)G. It is given as a predual of the map

ΓR
ω := ¥R ◦ Γω : B(HR ⊗ HS)G → B(HS)R,

called the relativized ω-restriction map, which takes invariant operators in the global
description, restricts them upon the chosen references’ state, and then relativizes. The
lifting map acts simply as

LR
ω = (ΓR

ω )∗ : S(HS)R ∋ ΩR 7→ [ω ⊗ ΩR]G ∈ S(HR ⊗ HS)G,

where [_]G denotes the operational equivalence with respect to the invariant effects
E(HR ⊗HS)G, and can thus be seen as an operational analogous to the disentangling
map introduced in [8].
Upon the assumption of localizability of the frame R1, the lifting map formalizes the
idea of ‘attaching’ |e⟩1 state to a relative state present in the approaches based on QRF
transformations (see e.g. [10]), where it is only rigorously defined in the countable
group setting. The frame-change map that we propose is then given as a localized
limit of the composition maps

¥R2
∗ ◦ LR1

ωn
: S(H2 ⊗ HS)R1 → S(H1 ⊗ HS)R2 ,

where ωn is the localizing sequence of states of the first frame centered at e ∈ G as
before. We thus pass through our global description of the total system as can be
seen on the following commuting diagram

S(H1 ⊗ H2 ⊗ HS)G

S(H2 ⊗ HS)R1 S(H1 ⊗ HS)R2 .

¥
R2
∗LR1

ωn

When the relevant operational equivalences are taken into account, i.e. the choices
of Ei are respected throughout, such frame-change map translates11 consistently be-
tween the states relative to different frames. This means that given a global state
Ω ∈ S(HT )G, the frame-change map takes the relative states with respect to R1 to
those relative to R2, which can be stated as commutativity of the diagram

S(H1 ⊗ H2 ⊗ HS)G

S(H2 ⊗ HS)R1
E2 S(H1 ⊗ HS)R2

E1 ,

πE2 ◦¥R1
∗ πE1 ◦¥R2

∗

Φloc
1→2

where πEi
denote projections onto equivalence classes of relative states that take into

account the choice of the other frames’ orientation observable, for instance

πE1 : S(H2 ⊗ HS)R1 → S(H2 ⊗ HS)R1
E2 = S(H2 ⊗ HS)R1/∼E2 ,

11The word ‘translation’ here, and in what follows, is to be understood as a metaphor for providing
an analogous description, much like restating a fact in a different language. The word ‘description’
should be treated similarly so that our ‘translating descriptions’ means providing a corresponding
account of the same physical situation from a different perspective. This is very different than the
usage of ‘translation’ e.g. in [23], where it refers to shift operators of the translation group acting
on the Euclidean space.
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where ∼E2 denotes the operational equivalence with respect to the effects of the form
E2(X) ⊗FS with X ∈ B(G) and FS arbitrary. This way we make sure that the choice
of both frame-orientation observables is respected throughout. In fact, without taking
this into account, the frame-change maps would not provide translations coherent
in the sense specified above. If we further assume localizability of R2 the reverse
frame-change map provides an inverse, i.e. we have

Φloc
2→1 ◦ Φloc

1→2 = IdS(H2⊗HS)R1
E2

This setup is easily extended to three (or more) frames, in which case we show that
assuming localizability of e.g. R1 and R2, the frame-change maps are also composable,
i.e. we have

πE2 ◦ Φloc
1→3 = Φloc

2→3 ◦ Φloc
1→2,

where the πE2 projection takes into account the choice of the second frame’s orientation-
observables, which is absent from the Φloc

1→3 construction.
We compare our frame-change maps with those defined in [10] in the setup of ideal
frames and finite group G. We find that they agree precisely on separable states
composed from basis states |g⟩, thus recovering the classical intuition on which [10]
is based. For general states, the agreement holds up to operational equivalence. The
result extends to the case when the second frame is a non-ideal quantum reference
frame based on a coherent state system when the operational map is compared with
the “relational Schrödinger picture” frame-change map of the perspective-neutral ap-
proach [8].
Lastly, we propose a procedure of translating the relative descriptions given with respect
to different frames treated externally. Given a relative state ρR1 ∈ S(HS)R1 and on in
Ω ∈ S(H1 ⊗H2)G, the latter allows to compute the probability distribution of relative
orientation which allows constructing the corresponding relative state with respect to
the second frame via

ρR2 :=
∫

G
dµE2∗E1

Ω (g)g.ρR1 .

We live further analysis of these ideas for the future.
As a final general comment let us emphasize the fully relational approach to spa-
tiotemporal notions being forced on the framework by the operationality and relativity
of measurement principles (I and II). Indeed, as space or time are never measured di-
rectly, there is no place for the notion of space-time as primitive or fundamental in an
operational framework. In the context of the presented formalism, the spatiotemporal
relations between quantum systems are described by the relevant quantum observ-
ables, e.g. relative-orientation observables. We thus view space-time as a convenient
fiction, useful in the context of localized systems. The continuity of the relative ori-
entations of frames upon localizability, and thus of the fictitious space-time they may
be thought of as inhabiting, stems from the continuity of the underlying group. From
this perspective, the group symmetry structure is considered more fundamental than
the space on which it may be realized as the group of local isometries. We reflect
further on these issues in discussion 6.
The operational approach to quantum reference frames, as presented in this work and
briefly summarized above, builds on the invariance of observables approach to imposing
symmetry in quantum theory, the definition of the ¥ construction, the restriction
maps Γω, and their interplay in the context of localizable reference systems, that were



developed in the previous works [13, 14, 15, 16, 17, 18, 19]. The new input presented
here includes the following advances.

1) Principle-based formulation of the framework.
2) Definition and properties of operational equivalence (2.1.1) and operational state

spaces (2.1.3,2.1.4,2.1.5), operational Banach dualities (2.1.2).
3) Characterization of localizable (norm-1) POVMs on metrizable spaces in terms

of (weak) approximations of the Dirac measures (2.3.2).
4) Definitions of different types of quantum reference frames (3.2.1).
5) The idea of framing (3.3) and the definition of relational descriptions (3.1).
6) An operational justification of the ¥ construction in the localizable frame and

finite group case (3.5).
7) Definition of relative-orientation observables for pairs of frames (3.5.3).
8) Distinction between the relative and invariant descriptions, deeper understanding

of the latter leading to incorporating the internal perspective on frames (3.8).
9) Strengthening the results concerning localized relative descriptions (4.4.3), (4.4.1).

10) Introduction of the Relational Reproducibility Property (4.9) and showing that
it is satisfied by the relative-orientation observables (4.5).

11) The concept of restricted relativized description (4.6) and the lifting maps (4.6.1).
12) The operational approach to changing internal frames of reference (5), cul-

minating in the definition of the frame-change map (5.2.1) and the proof of
invertibility, composability, and consistency of the provided construction (5.2.2).

13) A procedure of changing operational reference frames treated externally (5.4).
Many of the new results presented here can now also be found in a preprint [24]. Due
to the complexity of the resulting formalism, we present a comprehensive list of all the
spaces, maps, and most important, from our perspective, results concerning them in
Appendix .1.



Chapter 2

Preliminaries

We begin with some mathematical preliminaries. After some general remarks concern-
ing state spaces, group actions, and topologies that we will use, we define the notion
of operational equivalence which constitutes our main tool for imposing the opera-
tionality principle (I) in the operator-algebraic setup. We then recall the definition
of covariance of POVMs realizing our covariance principle (III) and provide a series
of physically motivated examples illustrating its validity, including those POVMs that
arise as coherent state systems and are extensively used in the perspective-neutral
approach [8]. Finally, we discuss the localizability properties of POVMs, which will
later be used to distinguish the localizable frames. They will be crucial for recovering
the standard, i.e. non-relational setup in the sense of localizing the reference systems,
and also for the definition of our frame-change maps. Equipped with these notions we
proceed to discuss the basics of our operational setup for quantum reference frames
in the next chapter.
Honoring the universality of quantum mechanics principle (III) the framework is based
on the standard operator algebraic setting. A reader not used to this language is wel-
come to consult our Appendix .2 for a friendly exposition of the necessary background.
When it comes to mathematics, our starting point can be summarized as follows.

1. Quantum systems are modeled on separable Hilbert spaces, denoted by H.
2. State spaces S(H) ⊆ T (H)sa are total convex (see below) subsets of the real

Banach space of trace-class operators T (H) given by the density operators.
3. Observables are modeled as positive operator-valued measures.

However, while imposing operational equivalence we will encounter more general state
spaces. The definition of a state space suitable for our purpose comes from the setting
of Generalized Probability Theories (GPT) [25].
Definition 2.0.1 (affine functional, effect). An affine functional on a convex subset
S ⊂ V of a real vector space V is a map f : S → R such that for any set of positive
numbers {λi} with ∑i λi = 1 and any set of elements ωi ∈ S we have

f

(∑
i

λiωi

)
=
∑

i

λif(ωi).

Such f is called bounded if f(ω) < ∞, and an effect if 0 ≤ f(ω) ≤ 1, for all ω ∈ S.
The set of bounded affine functionals on S will be denoted B(S), the set of effects
by E(S).

11
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Definition 2.0.2 (state space). A convex subset S ⊂ V of a real vector space V is
total convex if the effects separate the elements of S, i.e. when from f(ω1) = f(ω2)
for all f ∈ E(S) we can conclude that ω1 = ω2. Such subsets will be referred to as
state spaces.
A natural notion of a map between state spaces is the following.1

Definition 2.0.3 (state space map). A state space map is an affine map ϕ : S → S ′,
i.e. such that for any set of positive numbers {λi} with ∑

i λi = 1 and any set of
elements ωi ∈ S we have

ϕ

(∑
i

λiωi

)
=
∑

i

λiϕ(ωi).

Two state spaces are isomorphic if there is an invertible state space map between them.
It can be shown [26], that whenever S ⊆ V is total convex, B(S) is an order-unit
Banach space, dual to the base-norm space span(S) in which S is a base for the
positive cone span(S)+. Much of the structure of S(H) ⊂ T (H)sa is then recovered.
The state space maps S → S ′ then have dual maps B(S ′) → B(S) that are unital
and order-preserving. In the Hilbert space setting the state space maps are precisely
the preduals of normal, unital, positive maps B(H′) → B(H). Complete positivity,
however, is not granted, which is why we refrain from calling the state space maps
channels. We will not be using this language, except for making sure all our operational
state spaces (see below) are total convex, and the maps between them affine. In
particular, the frame-change map we propose is an affine functional, so a state space
map. Generalizing the presented framework to the GPT setting, and possibly finding
its reconstruction as embedded in such a general landscape, is one of our long-term
goals. We briefly reflect on this research direction in chapter 6.
When it comes to group representations, we will only consider strongly continuous
unitary representations of locally compact second countable topological groups G,
written U : G → B(H). We will often write g.A to stand for U(g)AU(g)∗ with
A ∈ B(H) and g.ρ for U(g)∗ρU(g) with ρ ∈ S(H). The sample spaces of POVMs,
if equipped with a G-action, will be topological spaces, and the action will be assumed
continuous. Extended to the σ-algebra B(Σ) of Borel subsets it will be written as
X 7→ h.X for h ∈ G.
Due to the emphasis on operationality, the preferred topology on B(H) will be the
topology of pointwise convergence of expectation values, i.e., An → A ∈ B(H)
exactly when tr[ΩAn] → tr[ΩA] for all Ω ∈ T (H). On the predual T (H), and by
the restriction on the state space S(H), we use the corresponding, or dual, topology,
i.e. Ωn → Ω exactly when tr[ΩnA] → tr[ΩA] for all A ∈ B(H). We will refer to this
topology as the operational topology. The superscript [_]cl will always refer to the
ultraweak closure of the subsets in operator algebras, and the operational closure of
the subsets in trace-class operators or state spaces.
In the remainder of this chapter, we first introduce the notion of operational equiva-
lence that allows us to capture the operationality principle (I), then recall the definition
of covariance of POVMs that realize the covariance principle (III), and finally, we dis-
cuss localizability of POVMs that allows for recovering standard quantum mechanics
and for the usage of classical intuitions to define frame-change maps.

1Surprisingly, it does not seem to be present in the literature. We expect the resulting category
to be well-behaved and plan to investigate its properties in future work.
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2.1 Operational equivalence
Crucial for our implementation of the operationality principle (I) is the notion of op-
erational equivalence which we now introduce. It is meant to be applied in situations
when the set of available observables is restricted, for reasons either practical – when
the available measuring devices allow for accessing only a subset of effects, e.g. when
the usage of a particular observable on a given system has been fixed – or conceptual
– realizing some principles that disregard certain effects that would be available as
mathematical objects, e.g. when the setup is assumed to respect certain symmetry
conditions. We will encounter both of these instances below. In such situations, even
though the system in question is modeled on a Hilbert space H, the state space S(H) is
not operationally justified since no longer can all density operators be distinguished by
the considered effects. Indeed, according to the operationality principle (I), the states
that cannot be distinguished by means of experiment should be identified. Thus the
following.
Definition 2.1.1 (operational equivalence). For any subset O ⊆ E(H) we define the
operational O-equivalence relation on T (H) as follows

Ω ∼O Ω′ ⇔ tr[ΩF ] = tr[Ω′F ] ∀F ∈ O.

One easily verifies that this is always an equivalence relation and hence we can quotient
the space of trace-class operators by the operational O-equivalence. It turns out that
the Banach space structure of T (H) is preserved under the quotient, with the ultraweak
closure of span(O) realized as the dual space.
Proposition 2.1.2. The space T (H)/∼O is a Banach space and there is an isometric
isomorphism between its dual and the ultraweak closure of the span of O, i.e. we have

[T (H)/∼O]⋆ ∼= span(O)cl.

Proof. For F ∈ O, we write ϕF for the continuous linear functional ρ 7→ tr[ρF ] and
identify span(O) with the corresponding subspace in the dual space. It amounts to
remark that

ρ ∼O ρ′ ⇔ ∀ϕF ∈ O ϕF (ρ) = ϕF (ρ′) ⇔ ∀ϕF ∈ O ϕF (ρ− ρ′) = 0 ⇔ ρ− ρ′ ∈ ⊥O,

where ⊥O is the pre-annihilator of O defined as ⊥O := ⋂
ϕF ∈O ker(ϕF ), which is always

closed in T (H) as an intersection of closed sets. Moreover, the pre-annihilator is always
a subspace since ⊥O = ⊥span(O). The quotient space T (H)/∼O= T (H)/⊥O is
then a Banach space with the quotient norm defined as

||ρ+ ⊥O|| = inf
µ∈⊥O

||ρ+ µ||.

Finally, Theorems 4.9 and 4.7 in [27] give

(T (H)/∼O)∗ =
(
T (H)/⊥O

)∗
≃ ⊥O⊥ =

(
⊥span(O)

)⊥
= span(O)cl.

The proposition above can be seen as restricting the O = E(H) setting, in which we
have span(E(H))cl = B(H) and the usual T (H)∗ ∼= B(H), to the situation where
the set of available effects is smaller. Thus the operators in span(O)cl can distinguish
O-equivalence classes. In fact, we have the following.
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Proposition 2.1.3. The set S(H)/∼O is a total convex subset of T (H)sa/∼O, and
is thus a state space and, moreover, is closed in the quotient operational topology.

Proof. Since the real linear structure of T (H)sa/∼O comes from T (H)sa, convexity is
preserved under the quotient. In particular, writing [_]O for the O-equivalence classes,
for any ρ, ρ′ ∈ S(H) and 0 ≤ λ ≤ 1 we have

λ[ρ]O + (1 − λ)[ρ′]O = [λρ+ (1 − λ)ρ′]O ∈ S(H)/∼O .

The bounded affine functionals on S(H) are given by ρ 7→ tr[ρA] with A ∈ B(H),
with the effects given by the subset E(H) = {F ∈ B(H)|0 ≤ F ≤ 1}. The effects on
S(H)/∼O are then those that are well-defined on classes S(H)/∼O, and hence are
given by the operators in E(H) ∩ span(O)cl. Indeed, F ∈ E(H) is well-defined on the
O-equivalence classes of states if whenever ρ ∼O ρ′ we have tr[ρF ] = tr[ρ′F ], which
means that F ∈ span(O)cl. The effects then separate the elements of S(H)/∼O by
construction, providing total convexity.
The state space S(H) is operationally closed in T (H) since for any sequence of states
(ρn) ⊂ S(H) such that limn→∞ tr[ρnA] = tr[TA] for all A ∈ B(H) and some
T ∈ T (H), we can conclude that T ∈ S(H). Indeed, the continuity of the trace
gives positivity and normalization of T . The operational topology on S(H)/∼O is the
quotient topology of the one on T (H) so we have

lim
n→∞

[ρn]O = [T ]O ∈ S(H)/∼O .

Definition 2.1.4 (Operational state space). The total convex subset S(H)/∼O of
T (H)sa/∼O will be referred to as an O-operational state space.
The set O will often be the image of a normal, positive, unital map. In such a case,
the corresponding operational state space admits an alternative useful characteriza-
tion.
Proposition 2.1.5. Given an normal, positive, unital map F : B(K) → B(H) there
is a state space isomorphism2

S(H)/∼Im F
∼= F∗(S(K))

Proof. Since F is normal, we can write ⊥ ImF = kerF∗, and thus T (H)/∼Im F =
T (H)/ kerF∗. Then F∗ restricts to an invertible bounded linear map T (H)/ kerF∗ →
ImF∗. As F is linear, unital and positive, the F∗ map restricts further to an affine
bijection S(H)/ kerF∗ → F∗(S(K)), providing the expected state space isomorphism.

As a simple instance of the proposition above, we note that for a von Neumann algebra
F : N ↪→ B(H) the predual is the quotient map F∗ : T (H) → T (H)/∼N , and the
normal state space is given by F∗(S(H)) ∼= S(H)/∼N .

2Notice that in general this correspondence doesn’t hold at the level of the ambient Banach spaces.
In fact, Im F∗ might not be closed and hence not a Banach space. Considering its norm-closure gives
a bijective bounded linear map T (H)/∼Im F → F∗(T (K)) but generally not an isometry.
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2.2 Covariance
Due to the covariance principle (III), frame-orientation observables are covariant POVMs.
Here is a precise definition.
Definition 2.2.1 (Covariant POVMs). Consider a strongly continuous projective uni-
tary representation U : G → B(H) of a locally compact second countable Hausdorff
topological group G, and a topological space Σ, considered as a measurable space
with the σ-algebra B(Σ) of Borel subsets, and equipped with a continuous transitive
G-action. Then a POVM E : B(Σ) → E(H) is called covariant if for any g ∈ G and
X ∈ B(Σ) we have

E(g.X) = U(g)E(X)U(g)∗, (2.1)

where g._ denotes the extension of the action of G on Σ to the Borel subsets.
Covariant POVMs provide a general notion of quantum observables in the presence
of symmetry. They generalize coherent state systems that are considered frame-
orientation observables in the perspective-neutral approach [8], as the following ex-
ample shows.
Example 2.2.2 (Systems of coherent states). Consider a vector |ϕ⟩ ∈ H that is cyclic
for a given representation U , i.e. the such that span({U(g) |ϕ⟩ , g ∈ G}) is dense in
H. The orbit {|ϕ(g)⟩ := U(g) |ϕ⟩} is then called a system of (Perelomov-Gilmore)
coherent states [28, 29]. Under an extra square integrability condition, they resolve
identity, meaning that ∫

G
|ϕ(g)⟩⟨ϕ(g)| dµ(g) = λ1, (2.2)

where λ is positive and µ is the Haar measure as before. Then

Eϕ(X) := 1
λ

∫
X

|ϕ(g)⟩⟨ϕ(g)| dµ(g)

is a covariant POVM on G. We will refer to such POVM a coherent state POVM.3

Notice here, that since the action of G on Σ is assumed to be transitive, Σ has to
be homeomorphic to the quotient topological space G/H for some closed subgroup
H ⊆ G. The identification is given by fixing a point x ∈ Σ, taking H = Hx to be the
stabilizer subgroup of x, which gives a bijection Σ ∼= G/Hx, and noticing that since
all such subgroups are conjugate to one another, the resulting quotient spaces G/Hx

are all homeomorphic. The subtle difference between Σ and G/H is that the latter
admits a distinguished coset containing the identity eH, while the former does not.
The following is a useful definition of equivalent covariant POVMs.
Definition 2.2.3 (Equivalence of covariant POVMs). Given a pair of covariant POVMs
Ei : B(Σi) → E(Hi) with i = 1, 2, we call them unitarily equivalent if there is a unitary
map U : H1 → H2 and a homeomorphism f : Σ1 → Σ2 such that

E2(X) = UE1(f−1(X))U∗.

3One should be careful with applying the results of the theory of coherent states as presented
e.g. in [28] as it was developed under the assumption the representations are irreducible, which we
certainly do not want to assume here. We will avoid the use of coherent state systems as frame-
orientating observables, except when it will be useful to make contact with the perspective-neutral
approach.
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Up to the unitary equivalence, all the covariant POVMs are then given on the quotient
spaces Σ = G/H. Covariant PVMs, so projection-valued measures, also referred to as
sharp POVMs (.2.18), often called systems of imprimitivity in mathematics literature,
have been fully characterized by Mackey’s Imprimitivity Theorem which provides a
bijective correspondence between systems of imprimitivity based on G/H and unitary
representations of the subgroup H ⊆ G (see e.g. [30]). It can be used to provide
generic examples of covariant PVMs. For instance, taking H = {e} (with the trivial
representation), the theorem provides unitary equivalence between all the covariant
PVMs on Σ = G.
Example 2.2.4. Consider (left) regular representation of a countable group G, given
on H = L2(G) by U(g) |g′⟩ = |gg′⟩, where |g⟩ denotes elements of the orthonormal
basis given of indicator functions. The corresponding unique (up to unitary equiva-
lence) covariant PVM is given by

P : g 7→ |g⟩⟨g| ∈ B(L2(G)).

Upon fixing the representation of H to be trivial in the Imprimitivity Theorem corre-
spondence, the simple example above naturally extends to the following.
Example 2.2.5. Consider a σ-finite measure space (G/H, µ) equipped with a transi-
tive (left) G-action such that µ is invariant. Then

(U(g)f)(x) = f(g−1.x)

is a representation of G, with the unique (up to equivalence) covariant PVM given by

P (Y ) : f 7→ χY f,

where Y ⊆ G/H. Taking H = {e} yields the regular representation as before,
equipped with the canonical PVM based on G (with the Haar measure). For instance,
take G = R, understood as a position sample space of a particle. The action of R on
the wave functions in L2(R) is given by the shift operator

(U(y)ψ)(x) = ψ(x− y),

with the sharp position observable recovered as the unique shift-covariant PVM (see 3)

P (Y )ψ(x) = χY ψ(x).

with Y ⊆ R. Many more, also unsharp, examples of covariant POVMs used to model
quantum observables under the presence of symmetries can be given, see e.g. [31,
20].
Notice here that since G is assumed second countable and Hausdorff and H need
to be closed, the quotient spaces G/H are also Hausdorff, and since H is a sub-
group the quotient map is open and thus preserves second-countability. Urysohn’s
metrization theorem then assures metrizability of all the homogeneous spaces that we
consider.
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2.3 Localizability
The notion of localizability of a POVM that we are now going to introduce is needed
for recovering the standard kinematics of quantum physics from the relational one sum-
marized here (Theorem 4.4.1), and defining the frame change maps in chapter 5.
Consider a quantum observable modeled by a POVM E : F(Σ) → E(H). It maps the
states of the systems ω ∈ S(H) to the probability distributions over Σ via the Born
formula4

µE
ω(X) = tr[ωE(X)]. (2.3)

POVMs may have different characteristics in terms of the probability distributions they
give rise to upon evaluation on quantum states. For instance, we will be interested in
whether a given observable can provide highly localized probability distributions or not.
If arbitrary localization of E is possible, there are states on S that give definite truth
values of almost any experimentally verifiable statement regarding the quantity corre-
sponding to E. This can be stated in terms of the ϵ-decidability property [22].
Definition 2.3.1 (Localizability). A POVM E : B(Σ) → E(H) POVMs is called
localizable iff it satisfies the the ϵ-decidability property: for every E(X) ̸= 0 and for
any ϵ > 0 there exists a pure state |ξϵ⟩ ∈ S(H) for which ⟨ξϵ|E(X)ξϵ⟩ > 1 − ϵ.
Thus if E is localizable, for any measurable subset X ∈ F(Σ) we can find a pure
state that gives the probability of the X-proposition being true arbitrarily close to
the identity. The states corresponding to the subsets X ⊆ Σ much smaller than
the available experimental resolution will then assign almost definite truth values to
almost all experimentally verifiable statement concerning the observable modeled by
E. In other words, the localizable POVMs, when evaluated on specific pure states, lose
their inherently probabilistic nature encoded in the operational setup as endorsed in
this work, and instead exhibit classical-like behavior. As shown in [22], E is localizable
iff it satisfies the norm-1 property, i.e.

||E(X)|| = 1 ∨ 0 for all X ∈ F(Σ). (2.4)

Sharp POVMs (i.e. those for which E(X) are all projections) are then always localiz-
able. Indeed, given X ∈ F(Σ) any vector in the image of the corresponding projection
ξ ∈ Im E(X) gives ⟨ξ|E(X)ξ⟩ = 1, so in this case no limiting procedure is needed. If
the sample space Σ is metrizable, which is true for covariant POVMs, we have a very
useful characterization of the localizable ones in terms of the probability measures: E
is localizable iff the Dirac delta measure centered at any x ∈ Σ can be approximated
to arbitrary precision with measures of the form µE

ωn(x)(X) = tr[E(X)ωn(x)], where
ωn(x) are pure states. We will call ωn(x) a localizing sequence centered at x.
Proposition 2.3.2. Consider a POVM E : B(Σ) → B(H) and assume Σ metrizable.
Then the following are equivalent:

1. E is localizable.
2. For any x ∈ Σ there exists a sequence of pure states ωn(x) ∈ S(H) such that

lim
n→∞

µE
ωn(x) = δx

in the sense of weak convergence of measures.
4When the probability distribution pE

ω will be considered as a (positive normalized) measure for
integration, it will often be denoted by µE

ω.



Proof. For 1. ⇒ 2. denote Bn the open ball centred at x of radius 1/n. Since
E satisfies the ϵ-decidability property we can choose unit vectors |ξn⟩ such that
⟨ξn|E(Bn)ξn⟩ > 1 − 1/n. Denoting by ωn(x) the associated pure state as before
we get µE

ωn(x)(Bn) > 1 − 1/n.
To show weak convergence we will use the porte-manteau theorem [32]. To this end,
we need to show that for each measurable set X with negligible border, that is such
that δx(∂X) = 0 for all x, we have: lim

n→∞
µE

ωn(x)(X) = δx(X). We then calculate

µE
ωn(x)(X) = µE

ωn(x)(X \Bn) + µE
ωn(x)(X ∩Bn)

For the first term, we have

µE
ωn(x)(X \Bn) ≤ µE

ωn(x)(Σ \Bn) = 1 − µE
ωn(x)(Bn) ≤ 1

n
,

so it vanishes as n goes to infinity. For the second term, assume x /∈ ∂X and
distinguish two cases.

• If x ∈ X, then x ∈ X̊ (the interior of X). As X̊ is open, for large enough n we
have Bn ⊆ X̊ ⊆ X, so X∩Bn = Bn, and then µE

ωn(x)(X∩Bn) = µE
ωn(x)(Bn) >

1 − 1/n. Thus, the second term goes to 1 as n goes to infinity.
• If x /∈ X, then x ∈ Σ \X (the complementary of the adherence of X), which is

an open set. So for n large enough we always have Bn ⊆ Σ \X ⊆ Σ \X, hence
X ∩Bn = ∅, leading to µE

ωn(x)(X ∩Bn) = 0. Thus, the second term goes to 0
as n goes to infinity.

We then have lim
n→∞

µE
ωn(x)(X) = δx(X), from which by porte-manteau theorem we can

conclude that the sequence {µE
ωn(x)}n converges weakly to δx in the space of measures

on Σ.
For 2. ⇒ 1. fix x ∈ X ∈ F(Σ) arbitrary and pick a sequence of vectors ξn such that
|ξn⟩⟨ξn| = ωn(x). The weak convergence then gives that for any ϵ > 0 we can find n
large enough so that |1 − ⟨ξn|E(X)ξn⟩ | < ϵ. Since E ∈ E(H) we can lift the absolute
value, which gives the claim.



Chapter 3

Relational Quantum Kinematics

In this chapter, we provide the core ingredients of the framework, discussing its relation
to other implementations of similar ideas and concepts present in the literature as we
go. Before introducing quantum reference frames and related notions, we begin by
applying the operational equivalence methodology to impose invariance on composite
systems R⊗S, which embodies our invariance principle (III). We use this simple setting
to contrast our approach to imposing gauge-invariance with others present in the lit-
erature, revealing similarities, but also important differences. We refer to this setup as
invariant descriptions. These considerations, besides making direct contact with other
approaches present in the literature, will be used in the contexts of the perspective-
independent and global descriptions introduced towards the end of this chapter, the
latter one supporting the internal perspective on quantum reference frames which we
utilize for describing frame-change maps in chapter 5.
Next, we proceed to our general definition of quantum reference frames as covariant
positive operator-valued measures, thus embracing the principle (III). We also distin-
guish important classes of frames and discuss the conceptual and technical differences
between the perspective presented here and in other approaches. We introduce an
important from the operational perspective class of localizable frames.
Having specified the frame, the operationality principle (I) demands appropriate con-
straints on the set of available effects in any effect space of the form E(HR ⊗ HS).
Fulfilling this requirement, again by the means of applying the operational equivalence,
results in what we call framed descriptions. They will be used as a stepping stone for
the definitions in the next section, and in the context of our frame-change maps.
We then combine the principles of operationality (I), relativity of measurement (II)
and covariance & invariance (III) to define the relational description as given up to
the operational equivalence with respect to the invariant and framed effects.
Finally, we use the relativization map ¥R [15], which provides direct access to the
invariant and framed effects on the composite system R ⊗ S upon the choice of the
covariant frame-orientation observable ER given on G itself (principal frame), to de-
fine the relative descriptions by again invoking operational equivalence, this time with
respect to such relativized effects. We conjecture that in the cases when the ¥ map
is defined, the relational and relative descriptions are equivalent. We provide proof in
the finite group setting.
Lastly, we reflect on the twofold meaning of invariance when stipulated on a single
system and define the perspective-independent and global descriptions, vital for our
understanding of the internal view on quantum reference frames.

18
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3.1 Invariant descriptions
The main purpose of this section is to point to the similarities and differences between
the presented framework and others when it comes to stipulating gauge-invariance.
Our approach is based on operational equivalence. Given a composite system R ⊗ S,
we then restrict the set of available effects to consist of the ones invariant with respect
to the diagonal (strongly continuous) unitary representation URS = UR ⊗ US of a
(locally compact) group G on B(HR ⊗ HS) and define the corresponding operational
state space.
Definition 3.1.1. Given a pair of systems R and S, we will refer to the operationally
E(HR ⊗ HS)G-equivalent trace-class operators in T (HR ⊗ HS), where

E(HR ⊗ HS)G = {FRS ∈ E(HR ⊗ HS) | g.FRS = FRS}

as G-equivalent. The classes of G-equivalent states, denoted [Ω]G with Ω ∈ S(HR ⊗
HS), will be referred to as global states.
The classes of G-equivalent states then consist precisely of those states that cannot
be distinguished by the invariant effects on the composite system R ⊗ S. Since the
effects span the full algebra, we have span{E(HR ⊗ HS)G}cl = B(HR ⊗ HS)G and
the Propositions 2.1.2 and 2.1.3 immediately give the following.
Proposition 3.1.2. We have the following Banach space isomorphism

[T (HR ⊗ HS)/∼G]⋆ ∼= B(HS)G.

Moreover, the set of G-equivalent states

S(HR ⊗ HS)G := S(HR ⊗ HS)/∼G

is a state space in T (HR ⊗ HS)sa/∼G.
In standard quantum mechanics, we have a Banach space isomorphism T (H)⋆ ∼=
B(H), which says roughly that quantum observables arise as dual to states. The von
Neumann subalgebra of invariant operators can be thought of as an analog of the full
system algebra in the standard approach to quantum mechanics upon specifying the
reference system and after invoking the invariance principle (III). We refer to this setup
as the invariant description of the system S with respect to the frame R.
Notice that in general S(HR ⊗ HS)G cannot be identified with the set S(HR ⊗ HS)G

of invariant states, i.e. those satisfying g.Ω = Ω, this last set being empty if G
is not compact. However, in the compact case, the G-equivalent states coincide
with the invariant states used in the information-theoretic approach [11, 12]. To see
this, assume G compact and recall the G-twirl (or incoherent group average) map
G : B(H) → B(H) given by

G(A) =
∫

G
dµ(g)U(g)AU(g)∗, (3.1)

where µ is the Haar measure. The G-twirl is an normal, positive, unital map, with the
pre-dual G∗ : T (H) → T (H) taking a similar form

G∗(ρ) =
∫

G
dµ(g)U(g)∗ρU(g).
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Both G and G∗ are surjective, respectively on the set B(H)G of invariant operators and
on the set T (H)G of invariant trace class operators. If G is not compact the integral
in general does not converge, either for states or operators and we, therefore, avoid
the use of the G-twirl in this framework. However, in the case of compact G, both
G-twirling maps are well-defined and the Proposition 2.1.5 gives the isomorphism of
state spaces

S(H)G = G∗(S(H)) ∼= S(H)G,

ensuring that, in this case, the states respecting our operationality (I) and invari-
ance (III) principles coincide with the invariant ones used in other approaches. In fact,
in this specific case, the correspondence lifts to the ambient Banach spaces.
Proposition 3.1.3. For compact G we have a Banach space isomorphism

T (H)G ∼= T (H)G.

Proof. We have T (H)G = T (H)/ ker(G∗) and T (H)G = Im G∗. The predual map G∗
factorizes through a bijective map G̃∗ : T (H)/ ker(G∗) → Im G∗. We will show that
G̃∗ is an isometry. First, G∗ is a contraction

||G∗(ρ)|| = ||
∫

G
g · ρdµ(g)|| ≤

∫
G

||g · ρ||dµ(g) ≤
∫

G
||ρ||dµ(g) = ||ρ||

it follows that for all µ ∈ ker(G∗) :

||G̃∗(ρ+ ker(G∗))|| = ||G∗(ρ)|| = ||G∗(ρ+ µ)|| ≤ ||ρ+ µ||

So ||G̃∗(ρ + ker(G∗))|| ≤ ||ρ + ker(G∗)|| = infµ∈ker(G∗) ||ρ + µ||. Then, since G∗ is
idempotent we also have

||ρ+ker(G∗)|| = inf
µ∈ker(G∗)

||ρ+µ|| ≤ ||ρ+(G∗(ρ)−ρ)|| = ||G∗(ρ)|| = ||G̃∗(ρ+ker(G∗))||,

and thus it provides an isometry between T (H)G and T (H)G.

In the case of the general (locally compact Hausdorff) group G and its (strongly
continuous) representation on H, on the contrary to S(H)G, the set S(H)G of G-
equivalent states always provides a non-trivial state space as some invariant operators
are always there, regardless of the compactness of G or the specifics of the represen-
tation. This further justifies our starting point of putting the invariance requirement
on the observables, rather than the states. [15, 33, 17, 34, 20].
The G-equivalent state space S(HR ⊗ HS)G can be seen as the operational analog
of the (unit vectors in the) physical Hilbert space of the perspective-neutral (PN)
approach [8], which in the compact G case is defined as the space of invariant Hilbert
space vectors. We also note that our strategy, clearly motivated by principles very
different from the setup of constrained quantization, has the benefit of avoiding the use
of distributions/rigged Hilbert spaces which are needed for constructing the physical
Hilbert space for non-compact groups. Another advantage of the presented approach
to invariance, as compared to PN, is its greater generality as we do not need to
assume the unimodularity of G. In fact, general theorems assuring the validity of
the construction of the physical Hilbert space are still missing even in the context of
unimodular groups, which puts the approach presented here on a different level of
mathematical rigor.
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3.2 Quantum reference frames
We now give an operational definition of a quantum reference frame.
Definition 3.2.1. A quantum reference frame R is a covariant POVM, understood
as a map

ER : B(ΣR) → B(HR).

It is then specified together with its domain and codomain as G-spaces and as such is
assumed to satisfy the definition of a covariant POVM (2.2.1). For brevity, a quantum
reference frame will often be called a frame, or reference. We call frames equivalent
if they are unitarily equivalent as covariant POVMs and refer to ER as the frame-
orientation observable. We distinguish the following types of frames.

• A frame R is called principal if ΣR is principal, non-principal otherwise.
• A frame R is called sharp if ER is sharp, unsharp otherwise.
• A frame R is called ideal if it is principal and sharp.
• A frame R is called localizable if ER localizable.
• A frame R is called complete if there is no (non-trivial) subgroup H0 ⊆ G acting

trivially on the effects of ER, incomplete otherwise. Such H0 will be called an
isotropy subgroup.

• A frame R is called a coherent system frame if ER is given via a coherent state
system (2.2.2).

Thus a quantum reference frame is a quantum system equipped with a covariant
observable of orientation. The following remarks are in order.
The sample space of a frame ΣR is homeomorphic to G/H for some closed subgroup
H ⊆ G. Sharp frames are characterized by the Imprimitivity Theorem, as described in
(2.2.5): upon trivializing the H representation in the given correspondence, they are
equivalent to

PR(gH) : L2(G/H) ∋ f 7→ χgHf ∈ L2(G/H).

Taking H = {e} we arrive at the sharp and principal, i.e. ideal, frames, which are
then equivalent to the regular representation and the canonical covariant PVM

PR(Y ) : L2(G) ∋ f 7→ χY f ∈ L2(G).

A very important from our operational perspective is the class of localizable frames.
While there is no operational difference between them and the sharp ones in terms of
arbitrarily well-localized distributions they may give rise to, localizability is a strictly
weaker condition. Since G/H is always metrizable, we can apply the Proposition
2.3.2 to any localizable frame and find a sequence of pure states whose associated
probability distribution weakly converges to the Dirac delta centered at any given class
gH. In the case of the principal localizable frames, we will denote such a localizing
sequence for e ∈ G by ωn, which by covariance gives a localizing sequence centered
at any other group element by ωn(g) = g−1ωn.
In the case of localizable frames, the notions of completeness and principality are
intimately related, which allows connecting the two different versions of imposing
‘insensitivity’ of the frame with respect to reorientations by elements of a specified
subgroup. To see this, consider a localizable frame and take any h ∈ H0 in the
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isotropy subgroup, fix the sample space as B(G/H) and write ωn for the sequence
localizing at the identity coset eH ∈ G/H. We then have

δhH(X) = lim
n→∞

µER
ωn(hH)(X) = lim

n→∞
tr
[
h−1.ωnER

]
= lim

n→∞
tr[ωnER] = δeH(X),

so that hH = eH for any h ∈ H0 and we can conclude that H0 ⊆ H. In particular,
localizable principal frames are complete, and in general, a localizable frame-orientation
observable on ΣR ∼= G/H factorizes through B(HR)H , i.e. we can write

ER : B(G/H) → B(HR)H ↪→ B(HR).

In other approaches, the quantum reference frames may be understood in terms of
coherent state systems. Indeed, they constitute a definition of a frame in [8]. In our
classification, they are then always coherent system frames, with the corresponding
frame-orientation observables given by

Eϕ
R(X) = 1

λ

∫
X

|ϕ(g)⟩⟨ϕ(g)| dµ(g),

where {|ϕ(g)⟩ = UR(g) |ϕ(e)⟩ : g ∈ G} is an orbit of a cyclic vector |ϕ(e)⟩ and µ the
Haar measure (2.2.2). The definition of completeness presented here resembles that
given for coherent system frames in [8], however, the relationship between the two is
convoluted – it does not seem either one implies the other, except in trivial cases. The
definition of an ideal frame above generalizes the one given in [8], which is recovered
as an ideal coherent system frame, while the two notions coincide in the case of a
countable group. Indeed, if a coherent system POVM is principal, so given on G, and
sharp, we get λ = 1 and ⟨ϕ(g)|ϕ(g′)⟩ = δ(g, g′), so that the coherent states can be
‘perfectly distinguished’, which is the defining property of an ideal frame as in [8].
However, as noted there, when this is the case the map G ∋ g 7→ |ϕ(g)⟩ ∈ P (HR) is
invertible. But notice that, since HR is assumed separable, this can only be the case
if G is (at most) countable, as otherwise the orbit {|ϕ(g)⟩ = UR(g) |ϕ(e)⟩ |g ∈ G}
would provide an uncountable orthonormal basis. We, therefore, stick to our definition
of ideal frames which has a much greater domain of applicability.
To the best of our knowledge, the localizability properties of coherent system POVMs
have not yet been systematically studied. However, we already see that such POVMs
can be sharp only in the very simple setup of a countable group. We avoid the use of
the coherent state systems in our formalism since, strictly speaking, it is only when the
coherent system POVM is sharp that there is operational justification for understanding
|ϕ(g)⟩ as representing the frame being ‘oriented at g’, and as we have seen this is very
restrictive. Moreover, various physically motivated examples of coherent state systems
are known not to be localizable [35]. Our general feeling is that, when it comes to the
operational interpretation of the associated POVMs, the setup of continuous groups
and their representations on separable Hilbert spaces does not combine well with the
concept of a coherent state system that maps one into the other.
Various other more or less obvious definitions of frames can be constructed by requiring
specific properties from the G action on Σ (e.g. effectiveness) or from the POVM (e.g.
informational-completeness).
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3.3 Framed descriptions
After the frame observable ER has been chosen, the set of the effects that can be
applied to the composite systems R ⊗ S is operationally constrained. Hence the
following definition.
Definition 3.3.1. Given a frame R and a system S, we will refer to the operationally
E(HR ⊗ HS)ER-equivalent trace-class operators in T (HR ⊗ HS), where

B(HR ⊗ HS)ER := span {ER(X) ⊗ FS | X ∈ F(ΣR),FS ∈ E(HS)}cl ,

E(HR ⊗ HS)ER := {F ∈ B(HR ⊗ HS)ER | 0 ≤ F ≤ 1},

as ER-equivalent, while the ER-equivalence classes of states will be called R-framed.
Elements of the Banach space B(HR ⊗ HS)ER will be referred to as R-framed oper-
ators, while the effects in there as the R-framed effects.
The R-framed states are then precisely those that can be distinguished by the observ-
ables on the composite system R⊗S that respect the choice of the frame observable.
The Propositions 2.1.2 and 2.1.3 immediately give the following.
Proposition 3.3.2. We have the following Banach space isomorphism

[T (HR ⊗ HS)/∼ER ]⋆ ∼= B(HR ⊗ HS)ER .

Moreover, the set of R-framed states

S(HS)ER := S(HR ⊗ HS)/∼ER

is a state space in T (HR ⊗ HS)sa/∼ER .
Thus the R-framed operators separate the R-framed states. The Banach space of
framed operators can thus be thought of as an analog of the full system algebra in
the standard approach upon the specification of the reference frame, understood as
a reference system and the frame observable, with respect to which the system S is
being described. However, the invariance principle (III) has not yet been incorporated.
We refer to this setup as the framed description of the system S with respect to the
frame R.
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3.4 Relational descriptions
We now combine the framed and invariant descriptions to give an operationally moti-
vated definition of relational states and operators. The operationality (I) and invariance
(III) principles impose that the relative description of the system S with respect to the
frame R should be given up to operational equivalence with respect to the invariant
and framed effects. We then define.
Definition 3.4.1. Given a frame R and a system S, we will refer to operationally
E(HS)G

ER
-equivalent trace-class operators on T (HR ⊗ HS), where

E(HR ⊗ HS)G
ER

:= E(HR ⊗ HS)ER ∩ E(HR ⊗ HS)G,

as (ER, G)-equivalent, while the (ER, G)-equivalence classes of states will be called
R-relational. Elements of the Banach space

B(HR ⊗ HS)G
ER

:= span
{
E(HR ⊗ HS)G

ER

}cl

will be called R-relational operators.
As usual, Propositions 2.1.2 and 2.1.3 give the following.
Proposition 3.4.2. We have the following Banach space isomorphism[

T (HR ⊗ HS)/∼(ER,G)
]⋆ ∼= B(HS)G

ER
.

Moreover, the set of R-relational states

S(HS)ER
G := S(HR ⊗ HS)/∼(ER,G)

is a state space in T (HR ⊗ HS)sa/∼(ER,G).
Thus the R-relational operators separate the R-relational states. The Banach space
of R-relational operators can thus be thought of as an analog of B(HS) upon the
specification of the reference frame, with respect to which the system S is being
described and imposing the gauge-invariance of principle (III). We refer to this setup
as the R-relational description of the system S with respect to the frame R.
Since ER is covariant and the action of G on HS arbitrary, it may seem hopeless to look
for invariant effects among the R-framed ones, i.e. those generated by ER(X) ⊗ FS .
The fact that E(HS)G

ER
is full of non-trivial effects for arbitrary frames is given by the

R-relativization maps that we now introduce.
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3.5 Relativization map
To motivate the ¥ construction (below), consider first a localizable principal frame on
a finite group G. The frame observable ER is then given as a map G → E(HR) and
thus an arbitrary framed effect can be written as a sum

Aα :=
∑
g∈G

ER(g) ⊗ α(g),

where α : G → E(HS) is any function, with the framed effects of the form ER(Y )⊗FS
given by fixing α(g) = χY (g)FS . Acting with h ∈ G on a framed effect gives

h.Aα = h.
∑
g∈G

ER(g) ⊗ α(g) =
∑
g∈G

ER(hg) ⊗ h.α(g) =
∑

g′∈G

ER(g′) ⊗ h.α(h−1g′),

where we put g′ = hg. Now notice that, since ER is localizable and G finite, for any
g ∈ G we have ω(g) such that tr[ω(g)ER(g)] = 1 and thus equality h.Aα = Aα needs
to hold term by term. It then amounts to equivariance of α : G → E(HS), so that in
the case of a finite group the only invariant framed effects are of the form

A =
∑
g∈G

ER(g) ⊗ g.FS

for some FS ≡ α(e) ∈ E(HS). We then see that by summing over the whole group
and using the covariance of ER, we can generate all the invariant framed effects. This
construction can be understood as a map

¥R : FS 7→
∑
g∈G

ER(g) ⊗ g.FS ,

We get the following result.
Proposition 3.5.1. Let G be a finite group, R a localizable principal frame for G
and write E(HS)R to stand for ¥R(E(HS)). Then for any S we have

E(HS)R = E(HR ⊗ HS)G ∩ E(HR ⊗ HS)ER .

Thus, in this simple case, the image of the ¥R map exhausts the set of invariant
framed effects. It turns out that this construction can be generalized to arbitrary
principal frames.1

Definition 3.5.2. Given a principal frame R and a quantum system S, the map

¥R : E(HS) ∋ FS 7→
∫

G
dER(g) ⊗ US(g)FSUS(g)∗ ∈ E(HR ⊗ HS)G, (3.2)

where the integral understood as in [15], will be referred to as R-relativization map.
One readily verifies that ¥R(E(HS)) ⊆ E(HR ⊗ HS)G. Indeed, a simple change of
variables gives

h.¥R(FS) = h.
∫

G
dER(g) ⊗ g.FS =

∫
G
dER(hg) ⊗ hg.FS = ¥R(FS).

1Generalizing the ¥ construction to arbitrary frames is the subject of ongoing work. Results
concerning finite groups have recently been achieved in [21]. See chapter 6 for a discussion of this
research direction.
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By composing arbitrary POVMs on the system S with the ¥R map we get2

ES 7→ ES ∗ ER := ¥R ◦ ES : F(ΣS) → E(HR ⊗ HS)G ∩ E(HR ⊗ HS)ER ,

which assigns invariant observables on R ⊗ S to arbitrary observables on S. The ¥R

construction can be extended to a map ¥R : B(HS) → B(HR ⊗ HS)G, and as such,
regardless of the choice of the frame-orientation observable ER, except being linear
and bounded, it is also unital, completely positive, and normal, so a quantum channel
[15].3 The fact that the relativized effects are framed, although seemingly apparent,
is proved in (3.7.1).
Now consider a pair of frames. The relativization procedure gives an invariant observ-
able that can be easily understood as an observable of their relative orientation.
Definition 3.5.3. Given a pair of frames R1 and R2 the observable

E2 ∗ E1 = ¥R1 ◦ E2 =
∫

G
dE1(g) ⊗ g.E2(·)

will be called an observable of relative orientation of R2 with respect to R1.
Proposition 3.5.4. For a pair of localizable frames R1 and R2 and corresponding
localizing sequences ωn and ρm, writing Ωn,m(h) := ωn ⊗ h−1.ρm we have

lim
n,m→∞

µE2∗E1
Ωn,m(h) = δh.

Proof. We calculate

lim
n,m→∞

tr
[
(ωn ⊗ h−1.ρm)

∫
G
dE1(g) ⊗ g.E2(X)

]
= lim

m→∞
tr
[
h−1.ρmE2(X)

]
= lim

m→∞
tr
[
ρmE2(h−1.X)

]
= δe(h−1.X) = δh(X),

where we have used 2.3.2 twice.

Thus when one frame is localized at e ∈ G, and the other at h ∈ G, the relative
orientation observable will give probability distribution localized at h. Note that since
E2 ∗ E1 is invariant, we could just as well evaluate it on (h.ωn ⊗ ρm), with the same
result. Notice also, that if we instead relativized E1 with respect to E2 (by taking
E1 ∗E2), the probability distribution of the relative orientation observable evaluated on
ωn ⊗h−1.ρm would be localized at h−1, as we would then be measuring the orientation
of R1 with respect to R2. Indeed, a simple calculation gives

E2 ∗ E1(X) = SWAP1,2 ◦ E1 ∗ E2(X−1),
where SWAP1,2 takes care of switching the tensor product factors as in [10], i.e. for
A1 ⊗ A2 ∈ B(H1 ⊗ H2) we have

SWAP1,2(A1 ⊗ A2) = A2 ⊗ A1.

2We note the following curious fact. The notion of a POVM on a system modeled by HS = C
coincides with that of a non-negative countably additive measure. If we now consider HS ∼= HR ∼= C
the standard definition of the convolution of measures on a group is recovered as a special case of
the ¥ construction.

3Interestingly, the definition of a relational Dirac observable as in [8] is recovered for g ∈ G by
taking ¥R(g.AS) with ER taken to be the coherent system POVM of the frame. Thus in this case
the set of relational Dirac observables and relativized operators are the same, while the latter are
defined more generally. The twirl map also arises as a special case of this construction, when HR
is taken to be the complex numbers C, with (necessarily) trivial G action. Indeed, the notion of
a covariant POVM then coincides with that of a normalized invariant measure, and thus there is
exactly one when G is compact, and none otherwise.
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3.6 Relative descriptions
We now provide a definition of relative states and operators given with respect to the
relativized effects.
Definition 3.6.1. Given a frame R and a system S, we will refer to the operationally
E(HS)R-equivalent trace-class operators on T (HR ⊗ HS), where

E(HS)R := ¥R(E(HS)) ⊂ E(HR ⊗ HS)G,

as R-equivalent, while the R-equivalence classes of states will be called R-relative.
The R-relative states are then precisely classes of states that can be distinguished by
the R-relativized effects.
Definition 3.6.2. Given a frame R and a system S, elements of the Banach space

B(HS)R := span{E(HS)R}cl = ¥R(B(HS))cl ⊆ B(HR ⊗ HS)G

will be called R-relative operators.
The relative operators are then invariant, as expected. The Propositions 2.1.2, 2.1.3
and 2.1.5 (for F = ¥R) then give the following.
Proposition 3.6.3. We have the following Banach space isomorphism

[T (HR ⊗ HS)/∼R]⋆ ∼= B(HS)R.

Moreover, the set of R-relative states

S(HS)R := S(HR ⊗ HS)/∼R

is a state space in T (HR ⊗ HS)sa/∼R and we have a state space isomorphism

S(HS)R ∼= ¥R
∗ (S(HR ⊗ HS)G).

In the last claim, we have used the fact that since the image of ¥R is in B(HR⊗HS)G,
the domain of the predual map ¥R

∗ map is T (HR⊗HS)G. This characterization will be
used in the sequel, so it is worth introducing appropriate notation. We will write ΩR ∈
S(HS)R, and [Ω]R for the corresponding equivalence class of states on the composite
system. We then identify [Ω]R ≃ ¥R

∗ [Ω]G ≡ ΩR, for any Ω ∈ T (HR ⊗ HS).
Recalling again the Banach space isomorphism T (H)⋆ ∼= B(H) of the standard
quantum mechanical setup, the Banach space of relative operators can be thought
of as the invariant analog of the full system algebra in the standard approach arising
upon the specification of the reference frame, understood as a reference system and the
frame observable, with respect to which the system S is described via the relativization
procedure. We refer to this setup as the relative description of the system S with
respect to the frame R, and carefully examine its relation to the standard setup in the
next chapter 4.
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3.7 Relational and relative
Crucially for our operational interpretation, the R-relative operators are not only in-
variant but also R-framed, so relational.
Proposition 3.7.1. Given a frame R and a system S, we have the following inclusion

B(HS)R ⊆ B(HR ⊗ HS)ER .

Proof. We will show that E(HS)R ⊆ E(HR ⊗ HS)ER , i.e. that the ER-equivalence is
finer than R-equivalence, i.e. that for Ω,Ω′ ∈ T (HR ⊗ HS) we have

Ω ∼ER Ω′ ⇒ Ω ∼R Ω′,

from which the inclusion of the dual Banach spaces B(HS)R ⊆ B(HR ⊗ HS)ER

follows. Writing P ES : B(Σ) → B(HS) for the PVM associated to an arbitrary
ES ∈ E(HS) via the spectral theorem we calculate

tr
[
Ω
∫

G
dER(g) ⊗ g.ES

]
=
∫

G×Σ
dµER⊗g.P ES

Ω (g, x)

=
∫

G×Σ
dµER⊗g.P ES

Ω′ (g, x) = tr
[
Ω′
∫

G
dER(g) ⊗ g.ES

]
,

where the ER-equivalence of Ω and Ω′ was invoked in the second equality.

Given the invariance of the image of ¥R can conclude the following.
Proposition 3.7.2. For any principal frame R and an arbitrary system S we have

B(HS)R ⊆ B(HS)G
ER
.

Knowing that those sets are equal in the case of a finite group G and a localizable
frame, we leave the following as a conjecture.
Proposition 3.7.3 (conjecture). Given a localizable principal frame R and a system
S, we have a Banach space isomorphism

B(HS)R ∼= B(HS)G
ER

We reflect upon this and possible lines of attack in chapter 6.



3.8 Twofold meaning of invariance
Having defined the R-relative description as given by requiring operational equivalence
with respect to the relativized effects ¥R(E(HS)), we may ask if there are effects on
S that are somehow insensitive to the choice of the external reference. To this end,
notice that by relativizing an invariant effect FS ∈ E(HS)G we get

¥R(FS) =
∫

G
dER(g) ⊗ g.FS =

∫
G
dER(g) ⊗ FS = 1R ⊗ FS ,

and thus we have
¥R(E(HS)G) ∼= E(HS)G,

for any frame R. The space of invariant effects on HS is then independent of the
choice of the external reference frame. Under this interpretation, the setup of B(HS)G

can be called the perspective-independent description of S. In this sense, it can be
thought of as ‘objective’ or ‘consensual’.
An alternative interpretation of the invariant description of a single system is possible.
Indeed, instead of assuming the non-relational, or absolute description of S to exist
on its own and serve as a basis for generating the operational and invariant, relative
to an external frame, descriptions via the ¥ construction, we may think of the frame
being chosen internally, as subsystem of a given bigger system, call it T (total).
Such a choice can only be possible if the representation UT : G → B(HT ) can be
decomposed as UR ⊗ US with the corresponding decomposition of T in terms of its
Hilbert space, i.e. HT ∼= HR ⊗ HS . Requiring such tensor product decomposition
of the action can be understood as assuring that the subsystems may be considered
independent elements of our framework. Depending on the representation UT , such a
decomposition may be highly non-unique or impossible. Crucially, upon any choice of
an internal reference, the relative description will be phrased in terms of the invariant
quantities on T since we have B(HS)R ⊆ B(HT )G regardless of the choice of the
frame-system decomposition. Recall also that the domain of ¥R

∗ is the space of G-
equivalent trace-class operators so that a global state [Ω]G ∈ S(HT )G is just enough
to construct all the internal relative states ¥R

∗ [Ω]G, whatever the choice of the internal
frame R. The invariant algebra B(HT )G thus contains, in this sense, all possible such
internally-relative descriptions. Under this interpretation, the invariant description of
a system will be referred to as global. We may also consider the relations between
the relative descriptions corresponding to different choices of such internal reference
frames. We address this in chapter 5 by providing frame-change maps.
Notice here that these two interpretations are not in conflict – in fact, it seems reason-
able for the global description to be ‘objective’ in the sense described above. These
matters deserve a separate, more philosophically oriented treatment, which will be
pursued elsewhere.



Chapter 4

Conditioning descriptions

In this chapter, we consider situations in which the state preparation of the frame is
known, which is realized via a restriction map (see below) that maps effects on the
composite system R ⊗ S to that on S alone. In the case of conditioning relative
description, it amounts to what can be seen as probabilistic gauge fixing – the re-
sulting description is the same for any frame’s states that give the same probability
distributions upon evaluation of the frame-orientation observables, and amount to a
weighted averaging of the quantities on S. The twirling procedure is recovered in the
case of an invariant frame’s state. in the case of a localizable frame, we can consider
descriptions conditioned upon highly localized frame states. We then find operational
agreement between the non-relational description of the system S in terms of HS
alone. Indeed, the relative states can be approximated arbitrarily well by the relative
states conditioned upon highly localized frame states. This perspective is applied to
a description of a quantum measurement setup a’la quantum measurement theory
aligned with the presented framework, with the role of the pointer observable played
by the frame-orientation observable. We find that when the measured observable on S
is covariant, the relative orientation observable satisfied a condition stronger than the
probability reproducibility property, respecting the symmetry structure of the setup.
Lastly, we consider conditioning the invariant description with respect to an internal
frame, which will be crucial for the rigorous understanding of the ‘attaching a frame
state’ procedure as part of the definition of frame-change maps that follows.
Since the ¥ construction is crucial for our considerations in the sequel, in what follows
we restrict to principal frames. From now on the terms frame, or reference, will
thus refer to a principal quantum reference frame as given in 3.2.1. The sample space
of the frames considered below will then always be taken as G itself. We see this
restriction as one of the main deficiencies of the presented framework. It has recently
been addressed in the context of a finite group [21], and we hope to extend the results
achieved there to more general situations soon. We briefly reflect upon this research
direction in chapter 6.

29
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4.1 Restriction map
We begin by recalling the restriction map (e.g. [20]) that allows conditioning observ-
ables on the system plus reference with a specified state of the reference.
Definition 4.1.1. Let ω ∈ S(HR) be any state of the reference. Then the ω-
restriction map is given by the continuous linear extension of the following

Γω : AR ⊗ AS 7→ tr[ωAR]AS . (4.1)

For all AR ∈ B(HR), AS ∈ B(HS) and ρ ∈ S(HS) we then have

tr[ρΓω(A)] = tr[(ω ⊗ ρ)A].

Besides being linear and bounded, it is normal, (completely) positive, and trace-
preserving. The predual map Vω := (Γω)∗ is the embedding

Vω : ρ 7→ ω ⊗ ρ,

so that we have tr[ρΓω(A)] = tr[ω ⊗ ρA] for all ρ ∈ S(HS).
The ω-restriction map is understood as conditioning the description of a composite
system R ⊗ S upon a particular choice of the state of the reference. The description
of S arising as ω-conditioning effects on R ⊗ S can be understood as probabilistically
gauged-fixed. We distinguish two different scenarios in which this can be done, and
explore them separately.
Firstly, we may be interested in conditioning the relative description of S with respect to
a state of the reference ω ∈ S(HR), in which case we would be restricting the relative
operators. The corresponding description of S will be referred to as ω-conditioned
R-relative. As we will see, the corresponding states take a particularly simple form –
they can be written as ∫

G
US(g)∗ρUS(g)dµER

ω (g) ∈ S(HS),

with ρ ∈ S(HS). We interpret them as states of S “smeared” with respect to the
probabilistic gauge fixing corresponding to pER

ω (g). This setup will be useful for analyz-
ing the relation between the framework described here and the standard non-relational
quantum mechanics. We find that when the relative description is conditioned upon
the highly localized state of a localizable reference frame, the usual description in
terms of the whole B(HS) is recovered to arbitrary precision.
Secondly, we may wish to consider a global description in terms of B(HT )G being
conditioned upon a state of the subsystem R chosen as an internal reference, i.e. we
have HT ∼= HR ⊗ HS , with a suitably decomposed G-action UT = UR ⊗ US . Such
restricted effects can then be relativized accordingly to the chosen decomposition and
frame-orientation observable ER. The corresponding description of S will be referred
to as R-relativized ω-restricted. The corresponding states are referred to as ω-lifted
R-relative states since they take the following simple form

[ω ⊗ ΩR]G ∈ S(HR ⊗ HS)G,

with ΩR ∈ S(HS)R. They can be compared to the ‘disentangled’ states of [8]. This
setup, and the lifting construction, will be useful for the frame-change maps which we
discuss in the next chapter 5.
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4.2 Conditioned relative descriptions
We begin by the following definition.
Definition 4.2.1. The map

¥R
ω := Γω ◦ ¥R : B(HS) → B(HS),

will be called the ω-conditioned R-relativization map.
As a composition of such maps, the ω-conditioned R-relativization map is unital,
normal, and (completely) positive. The image of this map, when applied to the effects
E(HS), consists of the relativized effects that have then been conditioned upon the
chosen state of the reference ω ∈ S(HR). This is a conceptually clear restriction on the
set of available effects. It can be understood as a next step in ‘specifying the reference’
– now we do not only clarify which quantum system (HR) and how (ER) is going to
be used for the description of another system S, but also constrain its particular
preparation ω ∈ S(HR). As we will see in the sequel, upon restriction with a highly
localized state of the reference, the standard description of non-relational quantum
physics, as given in terms of B(HS) alone, is recovered up to arbitrary precision [15].
We introduce the ω-conditioned R-relative description of S with respect to R in the
(fixed) state ω ∈ S(HR) as given with respect to the image of the ¥R

ω map.
Definition 4.2.2. Given a frame R and a system S, we will refer to operationally
E(HS)R

ω -equivalent trace-class operators on T (HS), where
E(HS)R

ω := ¥R
ω (E(HS)) ⊂ E(HS),

as (R, ω)-equivalent, while the (R, ω)-equivalence classes of states in S(HS) will be
called ω-product R-relative states.
The ω-product R-relative states are then precisely classes of states that can be dis-
tinguished by the R-relativized and ω-conditioned operators.
Definition 4.2.3. Given a frame R and a system S, elements of the Banach space

B(HS)R
ω := span{E(HS)R

ω }cl = ¥R
ω (B(HS))cl ⊆ B(HS)

will be called ω-conditioned R-relative operators.
The operator ¥R

ω (AS) can be seen as weighted average of the operators on the orbit
of AS with respect to the probability distribution of the frame-orientation observable
as we have

¥R
ω (AS) =

∫
G
dµER

ω (g)US(g)ASU
∗
S(g).

Thus they are defined up to the operational equivalence of ω with respect to the effects
of ER. Indeed, if tr[ωE(X)] = tr[ω′E(X)] for all X ∈ B(G), we have ¥R

ω (AS) =
¥R

ω′(AS) for all AS ∈ B(HS). Similar formula holds for ω-product R-relative states,
generalizing the G-twirling procedures. Indeed, taking G-compact for any invariant
ω ∈ S(HR) we get ¥R

ω = G (see e.g. [15]), providing operational justification for the
use of the G-twirl in the information-theoretic considerations of QRFs [11, 12]. The
Propositions 2.1.2, 2.1.3 and 2.1.5 (for F = ¥R

ω ) give the following.
Proposition 4.2.4. We have the following Banach space isomorphism[

T (HS)/∼E(HS)R
ω

]⋆ ∼= B(HS)R
ω ,

Moreover, the set of ω-product R-relative states as given below is a state space
S(HS)R

ω := S(HS)/∼E(HS)R
ω

∼= (¥R
ω )∗(S(HS)) ⊂ T (HS)sa/∼E(HS)R

ω
.
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4.3 Product-relative states
We will now examine some special cases of product-relative states. Notice first that
they take the following form

ρ(ω) := ¥R
∗ (ω ⊗ ρ) =

∫
G
dµER

ω (g)g.ρ, (4.2)

for some ω ∈ S(HR), where the measure µER
ω (X) is given as usual by µER

ω (X) =
tr[ER(X)ω], and we have introduced the notation ρ(ω) to indicate the particular
frame’s state that is used for conditioning. The product-relative states arise from
product states on the global system and in some sense generalize the alignable states
of [36]. Notice here, that the state ρ(ω) depends only on the ER equivalence class of
the state ω ∈ S(HR). We note the following.
Proposition 4.3.1. Product-relative states satisfy the following symmetry condition

ρ(h.ω) = (h−1.ρ)(ω) (4.3)

Proof. We calculate:

ρ(h.ω) =
∫

G
dµER

h.ω(g)g.ρ =
∫

G
dµER

ω (hg)g.ρ

=
∫

G
dµER

ω (g′)(h−1g′).ρ =
∫

G
dµER

ω (g′)g′.(h−1.ρ) = (h−1.ρ)(ω).

We have changed the integration variable g′ = hg and used the fact that µER
h.ω(g) =

µER
ω (hg) which follows directly from the covariance of ER:

µER
h.ω(X) = tr[ER(X)h.ω] = tr[h.ER(X)ω] = tr[ER(h.X)ω] = µER

ω (h.X).

Thus ‘rotating’ the frame by a group element h ∈ G is equivalent in the sense of the
product-relative state description to keeping it fixed but ‘rotating’ the system instead
with h−1 ∈ G. This is again just a consequence of the fact that the image of ¥R

is invariant with respect to the diagonal action on B(HR ⊗ HS) and thus for any
AS ∈ B(HS) we have

[UR(h)(_)UR(h)∗ ⊗ 1S ]¥R(AS) = [1R ⊗ US(h−1)(_)US(h−1)∗]¥R(AS).

The next proposition demonstrates the intuitively plausible claim that invariant system
states are defined without reference to an external frame or, more precisely, indepen-
dent from the chosen reference.
Proposition 4.3.2. Let ρ ∈ S(HS)G. Then ρ(ω) = ρ for and any choice of frame R,
and any state ω ∈ S(HS).

Proof. We calculate:

ρ(ω) =
∫

G
dµER

ω (g)US(g)∗ρUS(g) =
∫

G
dµER

ω (g)ρ = ρ,

where we only needed to use invariance of ρ and normalization of ER.
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Thus an invariant system state is a (product) relative state with respect to any frame in
any state, irrespective of the choice of the covariant POVM ER. This follows directly
from our framework, and does not need to be stated as an assumption. Another
plausible intuition – that a reference in an invariant state can only give rise to invariant
relative states – is confirmed by the following proposition.
Proposition 4.3.3. Let G be compact and US and UR be any unitary representations
of G in HS and HR. Suppose ω is invariant. Then ρ(ω) = G(ρ) for any ρ.

Proof. Notice first that if ω is an invariant state, then µω
ER

is an invariant measure,
and thus Haar measure, denoted dµ as before. We then have

ρ(ω) =
∫

G
dµ(g)US(g)∗ρUS(g) = G(ρ).

Thus if the reference is in an invariant state, the only relative states defined with
respect to it are also invariant.
As a final example consider HR = C. Since any unitary representation on C will be
trivial, the only state is trivially invariant, and a covariant POVM E : B(G) → B(C) ≃
C is a (positive localizable) measure µE on G satisfying µE(g.X) = g.µE(X) = µE(X),
and thus it needs to be the normalized Haar measure. So there is a unique such
covariant POVM iff G is compact, and in that case, ¥R

∗ is just the twirl as above.
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4.4 Localizing Reference
In this section, we no longer consider ω ∈ S(HR) to be fixed, but instead, we are
interested in what can be achieved by taking ω = ωn to be elements of the localizing
sequence (centered at e ∈ G). The ω-conditioned R-relative operators have been
investigated in e.g. [15, 17], where the goal was to analyze the extent to which the
relative description, as given in terms of B(HS)R, can be in agreement with the
non-relative one given on B(HS) upon conditioning the relative description. We now
generalize Theorem 1. from [15], which lies at the core of such considerations.
Theorem 4.4.1. Let R be a localizable (principal) frame and ωn a localizing sequence
centered at e ∈ G. Then for any AS ∈ B(HS) we have

lim
n→∞

¥R
ωn

(AS) = AS , (4.4)

where the limit is understood in the ultraweak sense. Equivalently, for any Ω ∈ T (HS),
in the operational topology we have

lim
n→∞

(¥R
ωn

)∗(Ω) = Ω. (4.5)

Proof. It is enough to check the agreement of expectation values of both sides. We
then take an arbitrary state ρ ∈ S(HS) and calculate

tr[ρ(Γωn ◦ ¥)(AS)] = tr
[
ρ
∫

G
g.ASdµ

ER
ωn

(g)
]

=
∫

G
tr[ρ(g.AS)]dµER

ωn
(g)

The function g 7→ tr[ρ(g.AS)] is continuous and bounded, and by Proposition 2.3.2
we know that the sequence of measures µER

ωn
converges weakly to δe, so by the porte-

manteau theorem we have:

lim
n→∞

∫
G

tr[ρ(g.AS)]dµER
ωn

(g) =
∫

G
tr[ρ(g.AS)]δe(g) = tr[ρAS ],

and so the sequence of operators (Γωn ◦ ¥R)(AS) converges ultraweakly to AS .

Thus the usual non-relational kinematics of quantum mechanics is recovered in the
operational sense as a limiting procedure of localizing the reference system - any
observable on the system S can be approximated to arbitrary precision by an observable
relative to a localizable frame prepared in a highly localized state. Moreover, any state
of S can be similarly approximated by the relative states of the form ¥R

∗ [ωn ⊗ ρ]G.
We state it as a separate Proposition.
Proposition 4.4.2. Given a localizable (principal) frame R and a system S, the set
of relative states S(HS)R is operationally dense in S(HS).
Notice here that if G is countable and the frame is ideal, no such limiting procedure is
needed and the agreement is exact, i.e., there exists a state ωR = |e⟩⟨e| and we have
(ΓωR

◦ ¥P ) = 1S . Indeed, for ER(g) = P (g) = |g⟩⟨g| ∈ B(L2(G)), any state is an
|e⟩-conditioned R-relative state since we have

¥R
∗ (|e⟩⟨e| ⊗ ρ) =

∑
g∈G

tr[P (g) |e⟩⟨e|]g.ρ =
∑
g∈G

δ(g, e)U∗
S(g)ρUS(g) = ρ. (4.6)

This is the setting considered in [10], and states of the form |e⟩⟨e| ⊗ ρ are called
‘aligned’ [36]. Since ¥R

∗ is constant on G-orbits, it is not sensitive to whether the
state is aligned or only alignable [36].
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Keeping the localizability assumption, we can go even further with identifying the
relative notions with the standard non-relative ones upon high localization of the
reference. This shows how the standard quantum-mechanical framework, developed in
the context of macroscopic, classical measuring apparatuses, is realized as a limiting
case of the relational framework presented here when the classical-like features of the
reference are exploited.
Proposition 4.4.3. Given a localizable (principal) frame R and a system S the oper-
ator space B(HS)R inherits the von Neumann algebra structure from B(HS) making
the relativization map

¥R : B(HS)
∼=−→ B(HS)R

an isometric *-isomorphism. If further R is sharp then ¥R is multiplicative and we get

B(HS)R ⊆ B(HR ⊗ HS)G ⊆ B(HR ⊗ HS)

as von Neumann algebras.

Proof. We will first show that if R is localizable then ¥R is isometric. Given AS ∈
B(HS) it is shown in [15] that ||¥R(AS)|| ≤ ||AS ||. So it just remains to show that
||AS || ≤ ||¥R(AS)||. By Theorem 4.4.1 there is a localizing sequence of states ωn

such that for all ρ ∈ S(HS):

| tr[ρAS ]| = lim
n→∞

| tr
[
ρ(Γωn ◦ ¥R)(AS)

]
|

= lim
n→∞

| tr
[
(ωn ⊗ ρ)¥R(AS)

]
|

≤ sup
Ω

| tr
[
Ω¥R(AS)

]
| = ||¥R(AS)||,

where Ω ∈ S(HR ⊗ HS). Since ρ above is arbitrary and we can conclude

||AS || = sup
ρ

| tr[ρAS ]| ≤ ||¥R(AS)||,

Thus if R is localizable then ¥R is injective which allows to define an algebra structure
on B(HS)R by ¥R(AS) ·¥R(B) := ¥R(ASBS). Since ¥R is isometric and preserves
adjoints, the C∗-identity is lifted from B(HS) as we have

||¥R(AS)∗ · ¥R(AS)|| = ||¥R(A∗
S) · ¥R(AS)|| = ||¥R(A∗

SAS)||
= ||A∗

SAS || = ||A∗
S ||||AS || = ||¥R(AS)∗||||¥R(AS)||,

and we have the predual [T (HS)R]⋆ ∼= B(HS)R, it is a von Neumann algebra. The
relativization map ¥R is then an isometric *-isomorphism by definition. If furthermore,
R is sharp, then ¥R is multiplicative making B(HS)R a von Neumann subalgebra of
B(HR ⊗ HS).

Notice here, that if the frame R is localizable but not sharp, and the system is given
as a composite HS ⊗ HS′ , this tensor product structure will not be preserved under
the above isometric isomorphism, which suggests a novel approach to ‘relativity of
subsystems’ issue [37].
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4.5 Relationality of measurement
In this section, we show concretely how our principle of measuring only relativized
observables interacts with the standard measurement-theoretic setup. We show that
the measurement of covariant observables on the system S can be modeled as a
measurement of relative orientation observables upon localization of the reference
system under the assumption that the evolution of the composite system commutes
with the group action. This direction will be explored further in future work and is here
presented as an illustration of the claims made above regarding the compatibility of
the presented formalism with the more standard approaches to quantum measurement
under symmetries. This section is independent of the main flow of the narrative.
We begin by recalling a description of a measurement setup as in Quantum Measure-
ment Theory (see e.g. [13]). The measurement of a POVM ES : B(ΣS) → B(HS) on
a system S can be described by specifying a measuring apparatus (frame) R, together
with a pointer (frame-orientation) observable ER : B(ΣR) → B(HR) on a sample
space ΣR, a Borel map f : ΣR → ΣS , and a pointer state ωp ∈ S(HR). Such a setup
can be depicted as

B(HR) B(HS)

B(ΣR) B(ΣS).

ER

f−1

ES (4.7)

Further, an interaction between R and S, i.e. a short time unitary evolution U∆t =
eiH∆t ∈ B(HR⊗HS), is introduced that entangles an initially separable state ωp⊗ρS ∈
S(HR ⊗ HS) in a way that allows recovering the measurement statistics of ES on ρS
by measuring the pointer observable ER. More precisely, for any X ∈ B(ΣS) we should
have the probability reproducibility condition (PRC) [13]

tr
[
U∗

∆t(ωp ⊗ ρS)U∆tER(f−1(X)) ⊗ 1S
]

= tr[ρSES(X)]. (4.8)

Thus the interaction between the system and the measuring apparatus allows an ex-
perimenter to access the measurement statistics of the observable ES while the Borel
function f allows relating the sample space ΣS , which is an abstract space, e.g. the
spectrum of a self-adjoint operator, with the space ΣR to which the experimenter
has direct access to, e.g. a detection screen. One can also see the equation above
as defining the observable ES by the measurement setup (U∆t, f , ER, ωp). If we
now assume, which is a common practice, both sample spaces to be identical and set
f = IdΣ, the PRC can be then rewritten in the following form

tr[(ωp ⊗ ρS)ER(∆t)(X)] = tr[ρSES(X)],

where we have introduced the notation for the evolved frame observable

ER(∆t) := U∆t[ER(·) ⊗ 1S ]U∗
∆t.

In the presence of symmetries, i.e. when we have an action of G on ΣR, we should have
a corresponding action of G on HR making ER covariant. A short calculation shows
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that if the interaction U∆t commute with frame ’rotations’, i.e. [U∆t, UR(g) ⊗ 1S ] for
all g ∈ G, a stronger condition holds. Indeed, for any h ∈ G we then have

tr[(h.ωp ⊗ ρS)ER(∆t)(h.X)] = tr[ρSES(X)]. (4.9)

Thus when we ’rotate’ the sample space of the apparatus by h ∈ G, which corresponds
to acting with h on the ϵ-pointer state, to reproduce the statistics of ES by measuring
ER(∆t) on the product state we need to first ’rotate’ the input accordingly. We
will refer to the above as the relational reproducibility condition (RRC). If we further
assume that both systems are principal quantum reference frames on the same group
G, so that ES is now assumed covariant as well, and that ER is localizable, for given
ES and ER we can generate the relative orientation observable that will satisfy the
RRC in the localized limit. Indeed, take ωn to be a localizing sequence for ER. Then
for any X ∈ B(G) we have

lim
n→∞

tr[(h.ωn ⊗ ρS)ES ∗ ER(h.X)]

= lim
n→∞

∫
G
dµER

h.ωn
(g) tr[ρSg.ES(hX)]

= tr
[
ρSh

−1.ES(hX)
]

= tr[ρSES(X)].

If we thus localize the frame at h ∈ G, i.e. take the input state to be (h−1.ωn ⊗ ρS),
to reproduce the statistics of ES by measuring ES ∗ ER on the product state we need
to first ’rotate’ the input set the opposite way. This is an instance of an active
transformation of the frame – we localize it at a given point in G – in contrast
to the passive transformation that we had before when the whole sample space was
being ’rotated’. Given a localizable frame, measuring covariant observables can thus be
modeled by a measurement of the corresponding relative orientation observables.



4.6 Relativized restricted descriptions
Consider now a global description in terms of B(HT )G. Within this setup, two systems
S and R are distinguished, with HT ∼= HR ⊗ HS , and the invariant effects may be
conditioned upon a particular state of the reference system by applying the restriction
map. If further, the factorization into HR ⊗ HS respects the G-action, i.e. we have
UT = UR ⊗US , and R is indeed a frame, so comes equipped with a covariant POVM
ER : B(G) → B(HR), we can relativize the restricted observables, arriving at the
subset of the relative observables. Thus the following definition.
Definition 4.6.1. The map

ΓR
ω := ¥R ◦ Γω : B(HR ⊗ HS)G → B(HS)R.

will be called the R-relativized ω-restriction map. We will write LR
ω := (ΓR

ω )∗ for the
predual map and refer to it as the R-relative ω-lifting map.
As before, since the R-relativized ω-restriction map is a composition of ¥R and Γω

which are both unital, normal, and (completely) positive, so is ΓR
ω . The R-relative

ω-lifting map can be seen as our operational analog of the ‘disentangler map’ of [8].
Indeed, we have

LR
ω : T (HS)R ∋ ΩR 7→ [ω ⊗ ΩR]G ∈ T (HR ⊗ HS)G,

so that the image of LR
ω consists of G-equivalence classes of product states. This map

allows to lift the R-relative states of an internal frame R up to the global description
of B(HT )G.
Definition 4.6.2. Given a frame R and a system S, we will refer to operationally
E(HS)ω

R-equivalent trace-class operators on T (HS), where
E(HS)ω

R := ΓR
ω (E(HR ⊗ HS)G) ⊂ E(HS)R,

as (ω,R)-equivalent, while the (ω,R)-equivalence classes of states in S(HR ⊗ HS)
will be called ω-lifted (R-)relative states.
Definition 4.6.3. Given a frame R and a system S, elements of the Banach space

B(HS)ω
R := span{E(HS)ω

R}cl = ΓR
ω (B(HR ⊗ HS)G)cl ⊆ B(HS)R

will be called R-relativized ω-conditioned operators.
The Propositions 2.1.2, 2.1.3 and 2.1.5 (for F = ΓR

ω ) then give the following.
Proposition 4.6.4. We have the following Banach space isomorphism[

T (HS)/∼E(HS)ω
R

]⋆ ∼= B(HS)ω
R,

Moreover, the set of ω-lifted (R)-relative states as given below is a state space
S(HS)ω

R := S(HS)/∼E(HS)ω
R

∼= (ΓR
ω )∗(S(HR ⊗ HS)G) ⊂ T (HR ⊗ HS)sa/∼E(HS)ω

R
.

Notice here, that in the case of a localizable frame R, using the lifting map LR
ωn

we can
lift an arbitrary R-relative state to a global one which gives back initial relative state
upon applying ¥R

∗ up to arbitrary precision, thus providing an approximate left-inverse
to ¥R

∗ . Indeed, the Theorem 4.4.1 gives
lim

n→∞
¥R

∗ ◦ LR
ωn

(ΩR) = lim
n→∞

¥R
∗ [ωn ⊗ ΩR]G = ΩR.

Thus in the case of a localizable principal frame R, any R-relative state can be
approximated to arbitrary precision by ωn-product relative states.



Chapter 5

Frame-change maps

In a relational framework, like the one presented in this work, we may be concerned
with different relative descriptions. Being able to consistently translate between them
is a very natural requirement for such a setup, which we address in this chapter. In
fact, solving the problems concerning such a translation motivated much if not all
the new content of the presented framework – the proposed notion of relative states,
the framing procedure, and the lifting map were all developed in order to provide
a rigorous, fairly general, and operational frame-change map. We will use all the
concepts provided in the previous chapters in what follows.
In the special theory of relativity, on which this framework in some sense is based as
explained in the Introduction, the procedure of changing the frame is performed by
applying a Poincaré transformation to the description given in a particular coordinate
system chosen for the Minkowski space. This choice of coordinates is now lifted to
the choice of a quantum system with a frame-orientation observable, so a frame,
possibly also conditioned upon a frame’s state. The usual, non-relational approach to
the relativistic description of quantum systems, where we simply assume the action
of the Poincaré group on the system’s Hilbert space to exist and be unitary, which is
motivated by the interpretation of (pure) states as initial and final with respect to the
performed transformation, is recovered as frame rotations upon localizing a principal
frame. Indeed, as easily confirmed, rotating a localized frame is nothing other than
acting on the system itself since for h ∈ G and ωn a localizing sequence centered at
e ∈ G, for any AS and in the usual ultraweak topology we have

lim
n→∞

¥R
h−1.ωn

(AS) = US(h)ASUS(h)∗.

As noted before, in Special Relativity all frames are ‘the same’, so ‘changing’ the frame
and ‘rotating’ the frame is precisely the same thing. In quantum reference frames
framework like this ones, however, these notions are very different, and alternative
conceptions of what ‘changing frame’ can mean are valid. Here we consider internal,
state-based frame-change maps for principal frames, discussing some other possible
lines of inquiry in the Discussion chapter 6. We are then interested in exploiting the
relations between different internal descriptions in terms of states relative to different
frames and providing state space maps that translate one such description to another.
Assuming the initial frame R1 to be localizable, allows us to use the ¥ construction and
combine the intuitions explicated in [8] – that to pass from one relative description
to another we should go through a ‘perspective-neutral’ one, which in our setup is

38



CHAPTER 5. FRAME-CHANGE MAPS 39

given by the global description in terms of B(HT )G – and those of [10] suggesting
that this passage from the relative state to the somehow ‘corresponding’ global one
is achieved by ‘attaching the identity state’. While the states |0⟩ used in [10] are not
available as normal states in the case of continuous groups, we can make this intuition
precise in the context of arbitrary locally compact topological groups in terms of the
localizing sequences of states. It is not clear under what conditions the maps used
in the context of similar construction in the perspective-neutral approach [8] – the
disentangler maps, the Heisenberg reduction maps, and their weak inverses – exist,
leaving a mathematically cautious reader doubtful of the generality of the results that
are being provided there. The construction proposed here, although for now slightly less
general than that of [8] in the sense of allowing only principal frames, is more general
in the types of such frames and groups that can be considered, fully operational, and
rigorously defined. In the simple setting of finite groups and ideal frames, where [10]
and [8] agree, our construction, differing from those previously proposed on the level
of the relative states, gives the same results up to the operational equivalences that
we work with. We believe that the claims concerning the behavior of entanglement,
superposition, entropy, and so on under the frame-change maps should be treated with
much care regarding operationality.
The first section below begins with describing the relative descriptions containing a pair
of frames. To this end, we then consider a global description in terms of B(HT )G, from
which the internal quantum reference frames are chosen in terms of the decomposition
of HT ∼= H1 ⊗ H2 ⊗ HS respecting the UT action and fixing the frame-orientation
observables for the frames. The appropriate operational state spaces will then serve
as domains and codomains for the frame change maps.
In the next section, the frame-change maps are defined and proof of their invertibility
and composability is provided. The frame-change maps are not channels in the usual
sense since they are not given at the level of operator algebras, but are perfectly
good state space maps appropriate in the convex-theoretic setup that we end up
working in.
In the closing section, we compare our setup with the QRF change maps as presented
in [10] in the finite group and ideal frames case. We find that when evaluated on
the basis states |g⟩ (see 2.2.4) our construction yields exactly the same output (pure)
states as the one in [10]. Thus we recover the classical intuition that underlines and
indeed motivates the setup as presented there. In the mentioned work the “principle
of coherent change of reference system” is stated and invoked in order to extend the
map by linearity to the Hilbert space level. This approach is based on a conviction
about a special role played in the foundations of quantum mechanics by the pure states
and linearity at the level of Hilbert spaces, for which we do not see the operational
justification. As we discover, when evaluated on more general (pure) states, the two
constructions differ but remain operationally equivalent.
As a closing remark, we present a simple procedure of constructing a relative state with
respect to a different frame when both frames are treated externally to the system in
question. This promising direction will be explored elsewhere.
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5.1 Framed relative descriptions
To consider a pair of ‘independent’, i.e. described by distinct quantum systems1,
internal reference frames, we look for the decomposition of the total Hilbert space
as HT ∼= H1 ⊗ H2 ⊗ HS compatible with the representation UT of G on HT , i.e.
such that UT = U1 ⊗ U2 ⊗ US , and provide a pair of frame-orientation observables
denoted Ei : B(G) → E(Hi), with i = 1, 2. The set of effects corresponding to this
setup is

E(HT )G
E1,E2 := E(HT )G ∩ E(HT )E1 ∩ E(HT )E2 .

We will only be concerned with translating relative descriptions.2 Picking R1 as a first
frame, the relative effects respecting the setup, i.e. the choice of the second frame-
orientation observable, are given by the R1-relativized effects generated by those of
the form E2(X) ⊗ FS . Hence the following.
Definition 5.1.1. Let the (R1,E2)-equivalence relation on T (H1⊗H2⊗HS), denoted
Ω ∼R1,E2 Ω′, be the operational equivalence with respect to the following set

B(H2 ⊗ HS)R1
E2 := span

{
¥R1(E2(X) ⊗ FS) | X ∈ F(G),FS ∈ E(HS)

}cl
,

E(H2 ⊗ HS)R1
E2 := {F ∈ B(H2 ⊗ HS)R1

E2 | 0 ≤ F ≤ 1}.

Operators in B(H2 ⊗ HS)R1
E2 will be referred to as R2-framed R1-relative, elements

of the corresponding operational state space

S(H2 ⊗ HS)R1
E2 := S(H1 ⊗ H2 ⊗ HS)/∼E(H2⊗HS)R1

E2

will be called R2-framed R1-relative states and denoted as [ΩR1 ]E2 or ΩR1
E2 . The state

space maps projecting onto the framed trace-class operators will be denoted as πEi
,

e.g.
πE2 : T (H2 ⊗ HS)R1 → T (H2 ⊗ HS)R1

E2 .

Notice here that in the absence of the system S, for Ω,Ω′ ∈ S(H1⊗H2) we have

S(H2)R1
E2 = S(H1 ⊗ H2)/∼E1∗E2 ,

where ∼E2∗E1 denotes operational equivalence with respect to the relative orientation
observable E2 ∗ E1 = ¥R1 ◦ E2 (3.5.3). Thus in this situation, the R2-framed R1-
relative states are only fixed up to the probability distributions they give rise to upon
evaluation of the relative orientation observable. This resembles the classical way of
thinking about the relative orientation of frames, lifted to the probabilistic regime, with
the full-fledged classicality of a single group element describing the relative orientation
being recovered upon localization of both (principal) frames 3.5.4.

1A more general version of the two-frame setup could also be considered, see chapter 6.
2This can be done without loss of generality if the conjecture (3.7.3) holds since we will assume

the localizability of frames.
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5.2 Changing Reference
We now turn to present the main results of this section. As argued above, the quan-
tum reference frame-change map should translate the internal R2-framed R1-relative
description to the R1-framed R2-relative one and thus it should be a state space map
between the following state spaces

S(H2 ⊗ HS)R1
E2 → S(H1 ⊗ HS)R2

E1 .

Under the assumption of localizability of R1, we choose the following strategy. First
use the lifting map LR1

ωn
to take the R1-relative input states to the G-equivalent states

on the global invariant algebra B(H1 ⊗ H2 ⊗ HS)G. Then apply the ¥R2
∗ map to get

the corresponding R2-relative states. This procedure looks as follows.
S(H1 ⊗ H2 ⊗ HS)G

S(H2 ⊗ HS)R1 S(H1 ⊗ HS)R2 .

¥
R2
∗LR1

ωn

¥
R2
∗ ◦LR1

ωn

When the framed operational equivalences are taken care of, in the limit of n → ∞,
we arrive at the following notion of a frame-change map.
Definition 5.2.1. Assume R1 to be a localizable (principal) frame. The map

Φloc
1→2 := limn→∞πE1 ◦ ¥R2

∗ ◦ LR1
ωn

: S(H2 ⊗ HS)R1
E2 → S(H1 ⊗ HS)R2

E2 ,

where ωn is any localizing sequence for E1, will be called a (localized) frame-change
map. On the R2-framed R1-relative states the frame-change map then acts as

Φloc
1→2 : [ΩR1 ]E2 7→ lim

n→∞
[¥R2

∗ ◦ LR1
ωn

(ΩR1
E2 )]E1 .

We will now prove that the frame-change maps are well-defined, invertible exactly when
both frames are localizable, composable in the setup of three frames, and translate
consistently between the different framed relative descriptions, thus deserving the given
name.
Theorem 5.2.2. The frame change map Φloc

1→2 is a well-defined state space map
making the following diagram commute

S(H1 ⊗ H2 ⊗ HS)G

S(H2 ⊗ HS)R1
E2 S(H1 ⊗ HS)R2

E1 ,

πE2 ◦¥R1
∗ πE1 ◦¥R2

∗

Φloc
1→2

If further R2 is also localizable the analogously defined map in the opposite direction
provides an inverse, i.e. we have

Φloc
2→1 ◦ Φloc

1→2 = IdS(H2⊗HS)R1
E2
.

Moreover, given HT ′ ∼= H1 ⊗H2 ⊗H3 ⊗HS and assuming R1 and R2 to be localizable
(principal) frames, and R3 and arbitrary (principal) frame, we have

πE2 ◦ Φloc
1→3 = Φloc

2→3 ◦ Φloc
1→2.
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The projection πE2 in the last claim is necessary to acknowledge the choice of the
second frame-orientation observable that is needed for the right-hand side and could
be omitted on the left-hand side if only the first and third frames were taken into
account as such.

Proof. Take Ω1,Ω2 ∈ S(H1 ⊗ H2 ⊗ HS)/∼G and write ΩRi = ¥Ri
∗ (Ω) as usual.

We need to show that for localizable E1 and any localizing sequence ωn whenever
[ΩR1

1 ]E2 = [ΩR1
2 ]E2 , i.e. whenever we have

tr
[
ΩR1

1 (E2(X) ⊗ FS)
]

= tr
[
ΩR1

2 (E2(X) ⊗ FS)
]

for all X ∈ B(G), FS ∈ E(HS)

we will also have Φloc
1→2(ΩR1

1 ) = Φloc
1→2(ΩR1

2 ), i.e.

lim
n→∞

tr
[
(ωn ⊗ ΩR1

1 )¥R2(E1(X) ⊗ FS)
]

= lim
n→∞

tr
[
(ωn ⊗ ΩR1

2 )¥R2(E1(X) ⊗ FS)
]

for all X ∈ B(G) and FS ∈ E(HS), so that Φloc
1→2 is well-defined on the equiva-

lence classes. We then calculateFootnoteSee [31] for integration theory of measurable
functions with respect to POVMs.

tr
[
Φloc

1→2(ΩR1
1 )E1(X) ⊗ FS

]
= lim

n→∞
tr
[
(ωn ⊗ ΩR1

1 )¥R2(E1(X) ⊗ FS)
]

= lim
n→∞

tr
[
(ωn ⊗ ΩR1

1 )
∫

G
dE2(g) ⊗ E1(g.X) ⊗ g.FS

]
= tr

[
ΩR1

1

∫
G
dE2(g)( lim

n→∞
µE1

ωn
(g.X)) ⊗ g.FS

]
= tr

[
ΩR1

1

∫
G
dE2(g)δe(g.X) ⊗ g.FS

]
= tr

[
ΩR1

1

∫
G
dE2(g)χg.X(e) ⊗ g.FS

]
= tr

[
ΩR1

1

∫
G
dE2(g)χX(g−1) ⊗ g.FS

]
,

where we have used that limn→∞ µE1
ωn

= δe and δe(g.X) = χg.X(e) = χX(g−1). Now
we see that by hypothesis we can replace ΩR1

1 by ΩR1
2 and get the same number for

any X ∈ B(G) and FS ∈ E(HS). Running this calculation backward gives the first
claim as the calculation does not depend on the choice of the localizing sequence.
To prove the second claim (diagram commutativity), we need to show that for arbitrary
Ω ∈ S(H1 ⊗ H2 ⊗ HS)/∼G, X ∈ B(G) and FS ∈ E(HS) we have

tr
[
Φloc

1→2(ΩR1)E1(X) ⊗ FS
]

= tr
[
ΩR2E1(X) ⊗ FS

]
.

Using what we already know we calculate

tr
[
Φloc

1→2(ΩR1)E1(X) ⊗ FS
]

= tr
[
Ω
∫

G
dE1(h) ⊗ h.

∫
G
dE2(g)χX(g−1) ⊗ g.FS

]
= tr

[
Ω
∫

G
dE1(h) ⊗

∫
G
dE2(hg)χX(g−1) ⊗ hg.FS

]
Now we perform the change of variables l := hg in the second integral and change
the order of integration to write

tr
[
Φloc

1→2(ΩR1)E1(X) ⊗ FS
]

= tr
[
Ω
∫

G
dE1(h) ⊗

∫
G
dE2(l)χX(l−1h) ⊗ l.FS

]
= tr

[
Ω
∫

G
dE2(l) ⊗

∫
G
dE1(h)χX(l−1h) ⊗ l.FS

]
.
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Since the h variable appears only in the second tensor factor the second integral can
be evaluated giving

∫
G
dE1(h)χX(l−1h) =

∫
G
dE1(h)χl.X(h) = E1(l.X) = l.E1(X),

and finally, we get

tr
[
Φloc

1→2(ΩR1)E1(X) ⊗ FS
]

= tr
[
Ω
∫

G
dE2(l) ⊗ l.(E1(X) ⊗ FS)

]
= tr

[
Ω¥E2(E1(X) ⊗ FS)

]
= tr

[
ΩR2(E1(X) ⊗ FS)

]
.

To show the next claim (invertibility), writing ηm for a localizing sequence of R2, we
calculate

tr
[
Φloc

2→1 ◦ Φloc
1→2(ΩR1)E2(X) ⊗ FS

]
=

= lim
m→∞

tr
[
¥R1

∗ ◦ LR2
ηm

◦ Φloc
1→2(ΩR1)E2(X) ⊗ FS

]
= lim

m→∞
tr
[
LR2

ηm
◦ Φloc

1→2(ΩR1)
∫

G
dE1(g) ⊗ g.(E2(X) ⊗ FS)

]
= lim

m→∞
tr
[
Φloc

1→2(ΩR1)
∫

G
dE1(g)µE2

ηm
(g.X) ⊗ g.FS

]
= lim

m→∞
lim

n→∞
tr
[
¥R2

∗ ◦ LR1
ωn

(ΩR1)
∫

G
dE1(g)µE2

ηm
(g.X) ⊗ g.FS

]
= lim

m→∞
lim

n→∞
tr
[
LR1

ωn
(ΩR1)

∫
G
dE2(h) ⊗ h.(

∫
G
dE1(g)µE2

ηm
(g.X) ⊗ g.FS)

]
= lim

m→∞
lim

n→∞
tr
[
LR1

ωn
(ΩR1)

∫
G
dE2(h) ⊗

∫
G
dE1(hg)µE2

ηm
(g.X) ⊗ hg.FS

]
= lim

m→∞
lim

n→∞
tr
[
ΩR1

∫
G
dE2(h) ⊗

∫
G
dµE1

ωn
(hg)µE2

ηm
(g.X)hg.FS

]
= lim

m→∞
tr
[
ΩR1

∫
G
dE2(h)µE2

ηm
(h−1.X) ⊗ FS

]
= tr

[
ΩR1

∫
G
dE2(h)χX(h) ⊗ FS

]
= tr

[
ΩR1E2(X) ⊗ FS

]
,

where we have used limn→∞ µE1
ωn

(gh) = δe(gh) = δg−1(h) and limm→∞ µE2
ηm

(h−1.X) =
χX(h). From commutativity it follows that the map Φloc

1→2 : S(H2 ⊗ HS)R1
E2 →

S(H1 ⊗ HS)R2
E1 is well-defined in the sense that taking the limit n → ∞ does not take

the outcome out of the codomain. Since ¥R2
∗ and LR1

ωn
are all linear, it is a state space

map.
We now turn to the proof of composability of the frame-change maps. Keeping the
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notation unchanged, we calculate

tr
[
Φloc

2→3 ◦ Φloc
1→2(ΩR1)E1(X) ⊗ E2(Y ) ⊗ FS

]
=

= lim
m→∞

tr
[
¥R3

∗ ◦ LR2
ηm

◦ Φloc
1→2(ΩR1)E1(X) ⊗ E2(Y ) ⊗ FS

]
= lim

m→∞
tr
[
LR2

ηm
◦ Φloc

1→2(ΩR1)
∫

G
dE3(g) ⊗ g.(E1(X) ⊗ E2(Y ) ⊗ FS)

]
= lim

m→∞
tr
[
Φloc

1→2(ΩR1)
∫

G
dE3(g)µE2

ηm
(g.Y ) ⊗ g.(E1(X) ⊗ FS)

]
= lim

m→∞
lim

n→∞
tr
[
¥R2

∗ ◦ LR1
ωn

(ΩR1)
∫

G
dE3(g)µE2

ηm
(g.Y ) ⊗ g.(E1(X) ⊗ FS)

]
= lim

m→∞
lim

n→∞
tr
[
LR1

ωn
(ΩR1)

∫
G
dE2(h) ⊗ h.(

∫
G
dE3(g)µE2

ηm
(g.Y ) ⊗ g.(E1(X) ⊗ FS))

]
= lim

m→∞
lim

n→∞
tr
[
LR1

ωn
(ΩR1)

∫
G
dE2(h) ⊗

∫
G
dE3(hg)µE2

ηm
(g.Y ) ⊗ hg.(E1(X) ⊗ FS)

]
.

If we now change the integration variable in the second integral for g′ := hg and
change the order of integration we can write the operator above as∫

G
dE2(h) ⊗

∫
G
dE3(hg)µE2

ηm
(g.Y ) ⊗ hg.(E1(X) ⊗ FS)

=
∫

G
dE3(g′) ⊗

∫
G
dE2(h)µE2

ηm
(h−1g′.Y ) ⊗ g′.(E1(X) ⊗ FS).

Exchanging the order of limits and taking m → ∞ the integral in the second tensor
factor can then be evaluated giving

lim
m→∞

∫
G
dE2(h)µE2

ηm
(h−1g′.Y ) =

∫
G
dE2(h)χg′.Y (h) = E2(g′.Y ) = g′.E2(Y ).

We then get

tr
[
Φloc

2→3 ◦ Φloc
1→2(ΩR1)E1(X) ⊗ E2(Y ) ⊗ FS

]
=

= lim
m→∞

tr
[
LR1

ωn
(ΩR1)

∫
G
dE3(g′) ⊗ g′.(E1(X) ⊗ E2(Y ) ⊗ FS)

]
= lim

m→∞
tr
[
¥R3

∗ ◦ LR1
ωn

(ΩR1)E1(X) ⊗ E2(Y ) ⊗ FS
]

= tr
[
Φloc

1→3(ΩR1)E1(X) ⊗ E2(Y ) ⊗ FS
]
.

Since X, Y ∈ B(G) and FS ∈ E(HS) were all arbitrary this finishes the proof.

We have thus shown that the construction Φloc
1→2 = limn→∞ πE1 ◦ ¥R2

∗ ◦ LR1
ωn

provides
an invertible and composable frame-change map for localizable principal frames. Due
to the general notion of operational state spaces and state space maps that we use,
this is achieved without requiring the maps to be unitary quantum channels.
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5.3 Comparison with other work
The approach to frame-change maps as presented in [10] is briefly summarized in the
Appendix .3. Since the procedure is rigorously defined only in the finite G case, we
now fix such a group. We perform our comparison in the context of ideal frames on G
and adopt the convention of the ‘left-right’ G-action on L2(G) given by U(g) |h⟩ =
|hg−1⟩. Then G acts on B(L2(G)) as g.A = U(g)AU(g)∗, and dually on the states
by g.Ω = U(g)∗ΩU(g). The unique (up to the unitary equivalence) covariant PVM
for such an action is given by

P (h) =
∣∣∣h−1

〉〈
h−1

∣∣∣
Indeed, we have

g.P (h) = U(g)
∣∣∣h−1

〉〈
h−1

∣∣∣U(g)∗ =
∣∣∣h−1g−1

〉〈
h−1g−1

∣∣∣ =
∣∣∣(gh)−1

〉〈
(gh)−1

∣∣∣ = P (g.h).

Consider now a collection of N such frames and the total Hilbert space HT =⊗N
i=1 L

2(G)i with the factors ordered such that n = 1 system is the first reference and
n = 2 the second. We will write Si for the system modeled on Hn := ⊗

i ̸=n L
2(G)i.

In this case, the lifting map LR1
|e⟩ provides an inverse to ¥R1

∗ since we have

¥R1
∗ (|e⟩⟨e| ⊗ ΩR1) =

∑
g∈G

tr[P (g) |e⟩⟨e|] ⊗ g.ΩR1 =
∑
g∈G

δ(e, g)g.ΩR1 = ΩR1

Thus an arbitrary state ΩR1 ∈ S(H1) can be understood as an R1-relative state
without any limiting procedure, just like in [10]. The map ¥R2

∗ ◦ LR1
|e⟩ acts on product

states as follows

(ω2⊗· · ·⊗ωN)R1 7→ |e⟩⟨e|1⊗ω2⊗· · ·⊗ωN 7→
∑
g∈G

tr[P (g)ω2]g.(|e⟩⟨e|1⊗ω3⊗· · ·⊗ωN)

Now taking ωi = |hi⟩⟨hi| with hi ∈ G we get (on a representative the operational
E2-equivalence class)

Φloc
1→2 |h2⟩⟨h2| ⊗ · · · ⊗ |hN⟩⟨hN |

=
∑
g∈G

⟨h2|P (g)h2⟩ g. (|e⟩⟨e| ⊗ |h3⟩⟨h3| ⊗ · · · ⊗ |hN⟩⟨hN |)

=
∑
g∈G

δ(g−1, h2)U∗
S2(g) (|e⟩⟨e| ⊗ |h3⟩⟨h3| ⊗ · · · ⊗ |hN⟩⟨hN |)US2(g)

=
∣∣∣h−1

2

〉〈
h−1

2

∣∣∣⊗ ∣∣∣h3h
−1
2

〉〈
h3h

−1
2

∣∣∣⊗ · · · ⊗
∣∣∣hNh

−1
2

〉〈
hNh

−1
2

∣∣∣ ,
where we have used that U∗(h−1) |h′⟩ = U(h) |h′⟩ = |h′h−1⟩. Written in the ket
notation we then have

Φloc
1→2 : |h2⟩ ⊗ |h3⟩ · · · ⊗ |hN⟩ 7→

∣∣∣h−1
2

〉
⊗
∣∣∣h3h

−1
2

〉
⊗ · · · ⊗

∣∣∣hNh
−1
2

〉
,

just like in [10] (see eq. (24) on pg.7 and also (4) in Appendix .3). There the map
above is extended by linearity, i.e. assuming coherence, to U1→2 : H2 → H1 which
reads (eq. (25) on pg.7, and (5) in Appendix .3)

U1→2 =
∑
g∈G

∣∣∣g−1
〉〈
g
∣∣∣
2→1

⊗ US(g), (5.1)
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where HS := ⊗
i ̸=1,2 L

2(G)i and |g−1⟩⟨g|2→1 : L2(G)2 → L2(G)1. Let us now check
what [10] gives when extended to mixed states. Consider first ω2 ∈ L2(G)2 and
ρ ∈ S(HS). We then get

U1→2(ω ⊗ ρ)U∗
1→2 =

∑
g,h

⟨g|ω |h⟩
(∣∣∣g−1

〉〈
h−1

∣∣∣⊗ US(g)ρU∗
S(h)

)
.

Our map on the other hand reads

Φloc
1→2(ω ⊗ ρ) =

∑
g

⟨g|ω |g⟩
(∣∣∣g−1

〉〈
g−1

∣∣∣⊗ US(g)ρU∗
S(g)

)
.

It is now clear that the difference stems from a different approach to implementing
symmetry – for us the group G acts on the operator algebras B(H) and state spaces
S(H) by duality, while in [10], and also in [8] the primary object is the Hilbert space.
Perhaps surprisingly it turns out that the two states resulting from these procedures
are E1-equivalent. Indeed, a simple calculation gives the following.
Proposition 5.3.1. Consider a finite group G, a pair of ideal frames (for G) R1 and
R2 with the left-right G-action and a system S. We then have

Φloc
1→2 = πE1 ◦ U1→2(_)U∗

1→2 : S(H1 ⊗ HS)R1
E2 → S(H2 ⊗ HS)R2

E1 .

Proof. Since we are in the countable G case with ideal frames it suffices to evaluate
the states on the effect of the form |l−1⟩⟨l−1| ⊗ FS , with l ∈ G and FS ∈ E(HS)
arbitrary. We calculate

tr
[
U1→2ΩR1U∗

1→2

∣∣∣l−1
〉〈
l−1
∣∣∣⊗ FS

]
= tr

∑
g,h

∣∣∣g−1
〉〈
g
∣∣∣⊗ US(g)ΩR1

∣∣∣h〉〈h−1
∣∣∣⊗ U∗

S(h)
∣∣∣l−1

〉〈
l−1
∣∣∣⊗ FS


= tr

[∑
g

∣∣∣g−1
〉〈
g
∣∣∣⊗ US(g)ΩR1

∣∣∣l〉〈l−1
∣∣∣⊗ U∗

S(g)FS

]

= tr
[∑

g

ΩR1
∣∣∣l〉〈l−1

∣∣∣⊗ U∗
S(g)FS

∣∣∣g−1
〉〈
g
∣∣∣⊗ US(g)

]

= tr
[
ΩR1 |l⟩⟨l| ⊗ U∗

S(l)FSUS(l)
]

= tr
[
ΩR1 |l⟩⟨l| ⊗ l−1.FS

]
,

while the operational frame-change maps gives

tr
[
Φloc

1→2(ΩR1)
∣∣∣l−1

〉〈
l−1
∣∣∣⊗ FS

]
= tr

[
|e⟩⟨e| ⊗ ΩR1

∑
g

∣∣∣g−1
〉〈
g−1

∣∣∣⊗ g.
(∣∣∣l−1

〉〈
l−1
∣∣∣⊗ FS

)]

= tr
[
|e⟩⟨e| ⊗ ΩR1

∑
g

∣∣∣g−1
〉〈
g−1

∣∣∣⊗ ∣∣∣l−1g−1
〉〈
l−1g−1

∣∣∣⊗ g.FS

]

= tr
[
ΩR1

∑
g

∣∣∣g−1
〉〈
g−1

∣∣∣ δ(l, g−1) ⊗ g.FS

]
= tr

[
ΩR1 |l⟩⟨l| ⊗ l−1.FS

]
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We have thus shown that in this simple setup when all the procedures of changing
frames are defined, they agree up to operational equivalence.
The “relational Schrödinger picture” frame change map of the perspective-neutral
framework can be written (setting gi = gj = e) in a very similar form (Thm. 4 on pg.
40 of [8])

V1→2 =
∫

G
|ϕ(g)⟩⟨ψ(g)| ⊗ US(g)dµ(g).

where {|ϕ(g)⟩}g∈G ⊂ H1 and {|ψ(g)⟩}g∈G ⊂ H2 are systems of coherent states
of the first and second frame, respectively, understood in the sense of (2.2.2), and
|ϕ(g)⟩⟨ψ(g)| as a map from H2 to H1. Within the Hilbert space framework of quantum
mechanics, the seed state |ϕ(e)⟩ admits the interpretation as ‘localized at identity’ only
in the ideal case, and thus with the countable group. Then, with the second coherent
state system arbitrary, mimicking the calculation above gives a slightly more general
agreement up to operational equivalence.
Proposition 5.3.2. Consider a finite group G, an ideal frame (for G) R1, and a
coherent system frame R2. When we adopt the convention of left G-action on the
states rather than operators, i.e. g.ω = U(g)ωU∗(g), we get

Φloc
1→2 = πE1 ◦ V1→2(_)V ∗

1→2 : S(H1 ⊗ HS)R1
E2 → S(H2 ⊗ HS)R2

E1 .

The operational quantum reference frame transformations as developed in this work
are thus in operational agreement with other constructions presented in the litera-
ture whenever the latter can be stated inside the standard Hilbert space setting and
respecting the operational interpretation of the frame-orientation observables.
In this light, the strong claims about the ‘relativity of superposition and entanglement’
that can be found eg. in [10] should perhaps be revisited. Indeed, consider an ideal
setup with the second frame R2 prepared in a superposed state, e.g. the input state
of the frame change is

|ψ⟩ =
(
(α |h1⟩R2

+ β |h2⟩R2
) ⊗ |g⟩S

)|e⟩R1 .

At an operational level, there is no difference between the state transformed according
to the coherent frame-change map of [10](

α
∣∣∣h−1

1

〉
R1

⊗
∣∣∣gh−1

1

〉
S

+ β
∣∣∣h−1

2

〉
R1

⊗
∣∣∣gh−1

2

〉
S

)|e⟩R2
,

and the output of the operational frame-change map (5.2.1) evaluated on a represen-
tative of the E2-equivalence class of |ψ⟩⟨ψ|, which reads(

|α|2
∣∣∣h−1

1

〉〈
h−1

1

∣∣∣
R1

⊗
∣∣∣gh−1

1

〉〈
gh−1

1

∣∣∣
S

+ |β|2
∣∣∣h−1

2

〉〈
h−1

2

∣∣∣
R1

⊗
∣∣∣gh−1

2

〉〈
gh−1

2

∣∣∣
S

+
)|e⟩⟨e|R2

,

as they occupy the same E1-equivalence class in S(H1 ⊗ HS)R2 . The operationally
transformed state is the Lüders mixture corresponding to the one transformed coher-
ently, and is not entangled.
Moreover, the input state being superposed is also an operationally questionable claim,
not only because it is basis-dependent, but also because we have(
α |h1⟩R2

+ β |h2⟩R2

) (
α ⟨h1|R2

+ β ⟨h2|R2

)
∼E2 |α|2 |h1⟩⟨h1|R2

+ |β|2 |h2⟩⟨h2|R2
,

and thus both states are equally good at representing the probabilistic uncertainty of
the second frame’s orientation, one being superposed in the sense of [10], and the
other one being mixed.



5.4 Triangular reconstruction of relative states
We finish with some preliminary ideas on how a system S is described relative to two
different quantum reference frames, R1 and R2 that are treated externaly. We find a
simple procedure that mirrors the sort of frame changes often encountered in classical
relativistic physics, and allows for the examination of a different range of questions
than those available in the internal QRF setting. The full analysis of such a setup will
be carried out elsewhere.
The procedure presented here is concerned with relative states and is in a way closest
to the classical intuitions: to describe a system from a different perspective, we need
to know how the two frames are related. For example in special relativity, a change
of a reference frame is specified by the Lorentz transformation that relates the initial
and final frames.
Consider then a pair of frames Ei : B(G) → E(H). Given also a relative state
Ω ∈ S(H1 ⊗ H2)G, the quantum analog of the relation of the frames is given by the
probability measure corresponding to the relative orientation observable (3.5.3)

E2 ∗ E1 = ¥R1 ◦ E2.

We then seek a procedure to determine a relative state ρR2 ∈ S(HS)R2 given ρR1 ∈
S(HS)R1 and ΩG ∈ S(H1 ⊗ H2)G. Let us stress here, that the states Ω and ρR1

are here treated independently – we do not assume any relation between them. By
analogy with the classical world, if the frames would be ‘the same’ and the second
frame is ’rotated’ by h ∈ G with respect to the first one, the description it would give
to the system should be the one from the first perspective but ’rotated’ accordingly.
In general, i.e. when the relative orientation observable is not localized, we should
provide a probabilistic version of this ’rotation’, and thus we may want to try

ρR2 :=
∫

G
dµE2∗E1

Ω (h)h.ρR1 .

Another plausible thing to do, given ρR1 ∈ S(HS)R1 and ΩR1 = ¥R1
∗ (Ω) ∈ S(HR2)R1 ,

would be to simply assign to R2 the corresponding product relative state

ρ̃R2 := ¥R2
∗ (ρR1 ⊗ ΩR1) =

∫
G
dµE2

ΩR1 (g)g.ρR1

We readily verify that the two lines of thought bring us to the same formula since

tr[ΩE2 ∗ E1(X)] = tr
[
Ω¥E1 ◦ E2(X)

]
= tr

[
ΩR1E2(X)

]
= µE2

ΩR1 (X).

We are now also sure that ρR2
S can indeed be understood as a state relative to R2,

which was not immediately clear from the definition.



Chapter 6

Discussion

In this thesis, we formulated an operational approach to quantum reference frames, a
fully operational approach to relational quantum kinematics. Building on the results
presented elsewhere, we provide a first complete account of this framework by spelling
out the physical principles that it is based. Presented as such, it is clear how this
formalism combines intuitions from Special Relativity, Quantum Measurement Theory,
and Gauge Theory, and can be made explicitly relativistic by the right choice of the
underlying symmetry group. The concept of the relational description, crucial for
our understanding of the whole setup, has not been introduced before. Also the
first steps in the direction of justifying the ¥ construction as providing access to all
relational effects are nowhere to be found except here. Supplemented by some plausible
conjectures (see below), we see the framework as an almost complete conceptually and
mathematically clear theory of operational relational kinematics of localizable quantum
reference frames. The proofs of theorems needed to fill the remaining gaps seem to
be within reach, as we outline below (6.2).
Crucially for the consistency of the framework with the usual, non-relational approach
to quantum physics, the latter is recovered to arbitrary precision under the localization
of the reference system. In the relativistic case, the framework then boils down to the
usual description of quantum systems as the representations of the Poincaré group with
the action corresponding to Poincaré transformations of the external (classical) frame
of reference. In this light, we understand the presented approach as pointing towards
an alternative to Quantum Field Theory operational account of relativistic quantum
physics, with no background structure. Indeed, the notion of space-time, even in
its weakest possible form as a set of events, is absent altogether from formalism.
Nevertheless, its operational features - namely the observables of relative position,
time differences, relative velocities, angles, and so on – can all be modeled; formalism
is designed to make sense of these quantities in the quantum realm. One can imagine
the space-time entering only as a useful abstraction in the case when the relational
spatiotemporal observables of relative orientations give rise to localized probability
distributions, and thus definite spatiotemporal relations between (quantum) systems.
We outline how such an approach to relational space-time emergence could be realized
within the framework below; we hope to deepen our understanding of these issues in
the future by providing specific realizations of the ideas we are alluding to. Needless to
say, a background-less approach to relativistic quantum physics could shed some light
on the problems of incorporating the description of gravity into the picture.

48
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6.1 Summary
In the course of the presentation, we went through the following stages. After some
general technical remarks about the operator-algebraic setup for quantum mechanics
under symmetries, topologies that we use, and the notion of a state space relevant to
the purpose, we introduced the main tool that we use for imposing operationality –
the operational equivalence – that allows quotienting state spaces in such a way that
the equivalence classes represent operationally distinguishable states. We also briefly
discussed the notion of covariance and provided some motivation and the definition of
localizability of POVMs.
After such preliminaries, we moved to present the operational approach to relational
quantum kinematics. Beginning by introducing the invariant descriptions that take
care of the gauge-invariance in our setup, we discussed how this approach relates to
others. We then provided the definition of a quantum reference frame as a group rep-
resentation equipped with a covariant POVM, thus encompassing all the definitions
previously proposed. We also distinguished important classes of frames, generalizing
the existing classification. Further, the operational equivalence was invoked again in
order to acknowledge the choice of the frame-orientation observable by the notion of
framing. Combined with the gauge-invariance it gave rise to the relational descriptions
that make operational justice to all our symmetry requirements. Finally, the ¥ con-
struction was invoked as a way to access the observables satisfying such requirements,
generating the relative descriptions. An argument was provided in the context of a
localizable frame on a finite group that the ¥ construction in fact provides all such
observables. At the end of this section, the double meaning of the invariant algebras
was discussed – they were interpreted as perspective-independent descriptions of the
system in question or as the arena for a global description where the frames can be
understood as internal.
We then moved on to discuss two different ways in which the gauge-invariant descrip-
tions can be conditioned upon the choice of the state of the reference system. To this
end, we introduced the restriction maps Γ and first applied them to the relative oper-
ators, defining conditioned relative descriptions. We then presented a series of results
confirming that upon localization of the reference system, the usual non-relational
quantum kinematics is recovered, also making direct contact with the Quantum Mea-
surement Theory. Further, we applied the restriction maps to the global description,
which upon relativization gave rise to the relativized restricted descriptions. In this
context, the lifting maps were also introduced as a way to lift relative states to global
ones by ‘attaching’ a chosen state of the reference.
With all the kinematics in hand, we turned to present an approach to frame-change
maps aligned with the presented operational setup. We began by defining yet another
class of framed relative descriptions, corresponding to choosing a pair of internal
frames, one being treated as a reference, and the other acknowledged by introducing
the relevant framing. Finally, a definition of frame-change maps as a mapping between
such framed relative descriptions was given, and proof of consistency, invertibility, and
composability was provided, establishing the proposed construction as a viable notion
of a frame-change map. Closing the analysis, we compared the proposed construction
with others present in the literature in the context of a finite group and ideal frames
discovering agreement up to operational equivalence. As a final comment, we proposed
an alternative – external – way of performing frame changes.
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6.2 Further perspectives
We end this thesis by briefly presenting some research directions aiming at a better
understanding of the operational QRF framework, suggesting its novel applications
and further generalizations.1

6.2.1 Missing pieces
Perhaps the biggest deficiency of the framework as developed so far is the lack of
operational justification of the ¥ construction in the case of continuous groups and
its restriction in the continuous G case to the principal frames. To this end consider
a non-principal localizable frame ER : B(G/H) → B(HR) with H ⊆ G a non-trivial
(closed) subgroup. We conjecture that in such a case the relational, i.e. framed
and invariant, effects come from relativizing the H-invariant ones, i.e. that the ¥
construction extends to

¥R : B(HS)H ∋ AS 7→
∫

G/H
dER(gH) ⊗ gH.AS ∈ B(HR ⊗ HS)G,

and that the image of this map on the H-invariant effects exhausts the relational ones,
i.e. we have

E(HS)R := ¥R(E(HS)H) ∼= E(HR ⊗ HS)G
R.

This strengthens the conjecture (3.7.3) stating the relational effects are precisely rel-
ative ones in the case of localizable principal frames. We believe that convergence
and the relevant properties of the homogenous ¥ formula above should be possible
to prove by adapting the original proof as presented in [15]. Regarding the (3.7.3)
conjecture and its generalization above, we propose to investigate the following ap-
proach to the integration theory of operator-valued functions with respect to (positive)
operator-valued measures. Consider a POVM ER : F(Σ) → E(HR) and a function
f : Σ → B(HS) such that Σ ∋ x 7→ tr[ρfS(x)] ∈ C is measurable for any state
ρ ∈ S(HS). The operator

∫
Σ dER(x) ⊗ f(x) ∈ B(HR ⊗ HS) is then defined as a

continuous functional on T (HR ⊗ HS) by

tr
[
Ω
∫

Σ
dER ⊗ fS

]
:=
∫

Σ
dµER⊗1S

Ω (x) tr[Ω1R ⊗ fS(x)].

For Ω = ω ⊗ ρ we get

tr
[
ω ⊗ ρ

∫
Σ
dER(x) ⊗ fS(x)

]
=
∫

Σ
dµER

ω (x) tr[ρfS(x)],

for HR = C, the map ER is a probability measure p on (Σ,F) and we have

tr
[
ρ
∫

Σ
dER ⊗ fS

]
=
∫

Σ
p(x) tr[ρfS(x)].

For HR = HS = C integration theory of complex-valued functions is recovered.
Moreover, the tensor product decomposition seems too strong, and could perhaps be
replaced with commutativity of [f(x),E(X)], with f : Σ → B(H),E : F(Σ) → E(H),
or even further by compatibility of these effects. Further, we see no reason for this
definition, if correct, not to extend to the convex theoretic setup, i.e. replacing B(HS)
by the space of bounded affine functionals Ab(S) (2.0.1) on a total convex subset
S ⊂ V of a real vector space (2.0.2).

1The reader interested in contributing to this research is most welcome to reach out to the author
at glowacki@cft.edu.pl or janmarcinglowacki@gmail.com.
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6.2.2 Generalizations and applications

Given that we always have an action of G on the considered operator spaces span(O)cl,
it is interesting to ask about the possibility of characterizing those order-unit Banach
spaces that can support the actions of the continuous groups. Such considerations
can possibly lead to some insights in the direction of reconstruction of an operational
relational quantum formalism like the one presented in this work, or its generalization
into the realm of General Probabilistic Theories. It is a known fact that the theory of
von Neumann algebras is intimately interlinked with the theory of representations of
continuous groups, which was one of the reasons for its development. Moreover, the
results of Alfsen and Shulz [38] characterizing state spaces of von Neumann algebras
among those of Jordan algebras in terms of the dynamical correspondence point to deep
links between the von Neumann algebras setup and the ability to support dynamics in
general, that we wish to investigate in the convex-theoretic context.
The operational notion of a frame-change map calls for both applications and gener-
alizations. We believe it should be extended besides localizable frames. This may be
possible to achieve either by replacing the localizing sequence for the lifting maps by an
arbitrary state of the reference or by exchanging the lifting by some other map taking
relative states to global ones, e.g. the preimage map (¥R1

∗ )−1{_}. Extending the ¥
construction to the non-principal frames should also open the possibility of considering
more interesting localizable frame changes than the ones available now.
Another potential generalization of the setup of the frame-change maps would be to
drop the tensor product decomposition in favor of a weaker commutativity require-
ment. Indeed, when we want to consider different internal frames on HT , instead of
looking for a decomposition HT ∼= H1 ⊗ H2 ⊗ HS , we could instead consider a pair of
frame-orientation observables on HT and assume commutativity of their effects, i.e.
[E1(X1),E2(X2)] = 0 for all Xi ∈ B(ΣRi

), i = 1, 2, or, more generally joint measura-
bility of E1 and E2. We can also imagine a pair of internal frames not satisfying any
such ‘independence’ requirement, somehow ‘overlapping’. Providing a frame-change
map for such setups would be an interesting generalization of the construction devel-
oped so far.
When it comes to applications, we believe that the (sufficiently developed) operational
frame-change maps will provide a final resolution of the conceptual difficulties con-
nected to the Wigner’s Friend type scenarios as they allow for relating perspectives
taking into account the available observables and the underlying symmetry structure.
Moreover, a whole series of questions opens up here regarding how different properties
of quantum states which can be considered resources behave under the operational
frame-change maps in general, providing an operational perspective on the issue of
‘quantum resource covariance’ [39].
We believe that most, if not all, of the experimental setups in relativistic quantum
physics could, and maybe should, be modeled along the following lines. A starting
point is a global description in terms of a strongly continuous unitary representation of
the Poincaré group on HT . Then the observer specifies the reference system for per-
forming the observations, so a quantum reference frame R with the frame-orientation
observable, the quantum system S that will be observed relative to R, and the rest of
the world, the environment E , providing a decomposition HT ∼= HR⊗HS ⊗HE . It can
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be done operationally all at once by specifying the set of available effects to be

O = {ER(X) ⊗ FS ⊗ 1E |X ∈ B(G/H), FS ∈ E(HS)},

where H ⊂ G is the isotropy subgroup of the frame R. Then an observable of interest
on ES : F(Σ) → B(HS)H should be specified and relativized to

¥R ◦ ES ⊗ 1E : F(Σ) → B(HT )G.

Notice here, that in such an approach the problem of the arbitrariness of Heisenberg’s
cut is no longer present – all the systems are treated as quantum from the outset.
The experimental predictions should then arise by adequate modeling of the prepara-
tion procedure, upon localization of the reference frame and understanding the time
translations as generating relative time evolution of S with respect to R and E [18].
To support this claim, we recall (4.5) that a general quantum measurement setup
in the presence of symmetries, assuming that the evolution of a composite system
R ⊗ S entangling the initially separable state commutes with the group action, mea-
surement of any covariant POVM on S can be modeled as a measurement of the
relative-orientation observable. We consider providing a relational model for the scat-
tering experiments that are traditionally described by relativistic quantum field theory
and delivering consistent predictions as one of the ultimate goals of the presented
framework.

6.2.3 What about space-time?
Another pressing research direction is to look for ways to make contact with the
algebraic formulation of quantum field theory. In particular, recently Edward Witten et
al. [40],[41] considered algebras generated by (smeared) paths of ‘observers’ traveling
along time-like geodesics, which we could perhaps try to interpret as the frame algebras.
Another direction could be to try putting a group of diffeomorphisms as the underlying
symmetry structure. This seems challenging but maybe not hopeless, as there are
ways to put smooth structure on such groups (see e.g. [42]). This direction, however,
seems to compromise operationality in the sense of introducing the space-time manifold
through the back door.
We propose the following more intrinsic, and operational, perspective on relational
spatiotemporality that also suggests some links to theories of gravity. Consider a
collection of principal internal quantum reference frames, so a setup given by HT ∼=⊗N

i=0 Hi and Ei : B(G) → E(Hi).2 Fixing the 0th frame as our reference, we can
generate an ‘N -point relative orientation observable’ as

B(G×N) ∋ (X1, X2, . . . , XN) 7→
∫

G
dE0(g)⊗g. (E1(X1) ⊗ E2(X2) ⊗ · · · ⊗ EN(XN)) .

Provided a global state Ω ∈ S(HT )G this gives rise to N probability distributions over
G, corresponding to the relative orientation of the 0th frame with respect to all others.
If the global state happens to be in a highly localized form according to all frames3,

2One could also imagine specifying just one, ‘global’ frame orientation observable, from which the
family of covariant POVMs may arise as a result of decomposing the ‘global’ frame’s Hilbert space
and treating each factor independently.

3Or perhaps the frames have been chosen such that this is the case.
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i.e. it is a product state of the form

Ω ∼G ωn0(e) ⊗ ωn1(h1) ⊗ · · · ⊗ ωnN
(hN),

theN -point relative orientation observable will with good approximation return the col-
lection of group elements (h1, h2, . . . , hN), describing the configuration of the frames
in an invariant manner. The fact that the group elements hi can be chosen arbitrarily
suggests picturing the whole collection of frames as placed in an ambient background
space. In the case of the restricted Poincaré group, we make direct contact with the
space-time picture along the following lines. Since P+ ∼= T 1,3 ⋊ O+(1, 3), where
T 1,3 is the (abelian) group of translations of the Minkowski space and O+(1, 3) the
restricted Lorentz group (component containing identity). In the case of such a local-
izable global state, the relative orientations are approximated by hi = (vi,Λi). Now
we can imagine the 0th frame placed at the origin of the Minkowski space, and all
other frames placed at other points accordingly to the vi vectors. The elements Λi

then describe the relative orientation of other frames with respect to the 0th one that
we have chosen to be localized at e ∈ P+. Such a choice of a Lorentz frame at
each point of the Minkowski space occupied with a frame can be seen as providing a
system of local inertial coordinates around that point. Under this identification, and
the picture we have in such a localized limit resembles one of the ways of describing
the gravitational field – indeed, it can be given as a section of a principal fiber bundle
of tetrads over the Minkowski space (see e.g. [43]). Investigating these connections
further is an exciting research direction that we wish to pursue in the future.

6.2.4 What about the observers?
We finish with some general conceptual considerations concerning the notion of an
observable, the role of an observer, and possible mathematical implementation of the
presented views. The basic entities of the formalism are quantum reference frames
understood as covariant POVMs, so quantum observables on homogeneous spaces
respecting the G-action. We believe this notion should be revisited on both concep-
tual and mathematical grounds. To this end, we share the following intuitions. An
observable in an operational framework should primarily be seen as a map from the
state space of a system, that can be given by the positive trace-one operators on
the Hilbert space, normalized elements of the predual of a W ∗-algebra, a base norm
space, a convex subset of a real vectors space, and so on, depending on the level of
generality that is needed, to the space of probability distributions. We find plausible
the interpretation of these probability distributions as representing the observer’s sta-
tistical state of knowledge about the statements concerning the chosen quantity. In
this light, following Jayne’s view on Probability Theory as an extension of logic [44],
probability distributions are best understood as normalized positive continuous valua-
tions on complete Boolean algebras. Valuations are simply functionals preserving the
underlying lattice structure. More precisely, we have the following definition [45].
Definition 6.2.1. A positive valuation on a distributive lattice L (e.g., a locale or a
Boolean algebra) is a map ν : L → [0,∞) such that ν(0) = 0, ν(p ∨ q) + ν(p ∧ q) =
ν(p) + ν(q) and p ≤ q implies ν(p) ≤ ν(q). A positive valuation is continuous if it
preserves the existing suprema of directed subsets.
Complete Boolean algebras that admit ‘enough’ such valuations, meaning that for any
proposition p ̸= 0 there is a continuous valuation such that ν(p) ̸= 0, are called local-



izable. We understand this requirement as a natural one – localizable Boolean algebras
are those for which we can reason probabilistically about any non-trivial proposition.
Perhaps surprisingly, the notion of a localizable Boolean algebra is equivalent (in fact,
in the categorical sense, see [45]) to that of a commutative von Neumann algebra. The
latter is always isometrically isomorphic to the algebra of measurable functions on a
measurable space L∞(Σ, µ), and under this identification, the probability distributions,
i.e. normalized positive continuous valuations, correspond to the normalized functions
in L1(Σ, µ), so precisely the normalized elements of the predual of the von Neumann
algebra L∞(Σ, µ), and the propositions in the Boolean algebra to the measurable sub-
sets of Σ. We then suggest grounding the notion of a quantum observable in logic via
this Gelfand-type duality between localizable Boolean algebras and commutative von
Neumann algebras by endorsing the following definition.
Definition 6.2.2. A von Neumann observable is a normal positive unital map

Ê : L∞(Σ, µ) → B(H).
It is called sharp if it is multiplicative, and localizable if it is norm-preserving. When
Σ is a homogeneous space for a locally compact second countable Haussdorf group G
and we have a strongly continuous projective unitary representation of G on B(H), Ê
is called covariant if it is an equivariant map.
This can be generalized even further by replacing B(H) with a general W ∗-algebra,
or an order-unit Banach space, and treating L∞(Σ, µ) accordingly [46]. The point is
that the predual map Ê∗ will map states in S(H) ⊂ T (H) to probability distributions,
which is all and precisely what we want it to be, respecting the mentioned interpretation
of the probability distributions. This research direction requires further investigation,
which is the subject of ongoing work. For now, we conjecture that the definition above
is aligned with the usual usage of the terms sharp, localizable and covariant. As easily
confirmed, a POVM is indeed associated with Ê via

E(Y ) := Ê(χY ),
where χY is the characteristic function of the measurable subset Y ⊆ Σ. The class of
µ-continuous POVM on a compact space with a bounded variation has been charac-
terized precisely as such maps [47]. We propose to turn the logic around and require
observables to be such maps, realizing the role we want them to play as assigning nor-
malized positive continuous valuations on localizable Boolean algebras of propositions
considered by the observer to the states.
The algebraic perspective on POVMs as presented above provides in our view not
only conceptually advantageous, which is perhaps a controversial claim but also brings
more structural coherence to the framework by allowing us to speak about all the basic
notions of the framework in a unified language, namely inside the category of normal
positive unital maps between von Neumann algebras (or more generally the state space
morphisms). Indeed, the R-framed effects can now be seen as elements in the image
of the Ê⊗1S map, the ¥R map is also such a normal positive and unital, and thus the
relativizing procedure will always take von Neumann observables to the alike.
The interpretational shift in the direction of logic and the observer’s state of knowl-
edge puts the continuity of possible outcomes of (localized) spatiotemporal relative-
orientation observables on the side of the observer. The space-time, in which we
imagine physical objects to live, is then continuous precisely because we think it is.
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Appendices

.1 Notation
For the reader’s convenience, we collect below the definitions of spaces and maps
which are used in the framework, together with the relevant notation, mentioning also
the crucial results.

• Invariant operators/effects: von Neumann subalgebra of B(H)/subset of E(H)
consisting of operators/effects invariant under the given unitary representation
of a group G

B(H)G := {A ∈ B(H) | g.A ≡ U(g)AU∗(g) = A} ⊆ B(H),
E(H)G := {F ∈ E(H) | g.F ≡ U(g)FU∗(g) = F} ⊆ E(H) ⊂ B(H).

• Invariant states/trace-class operators: total convex subset/subspace of states/trace-
class operators which are invariant under the given unitary representation of G

T (H)G := {T ∈ T (H) | g.T ≡ U∗(g)TU(g) = T} ⊆ T (H),
S(H)G := {Ω ∈ S(H) | g.Ω ≡ U∗(g)ΩU(g) = Ω} ⊂ T (H)G ⊆ T (H).

• Global states/trace-class operators: the quotient space of classes of states/
trace-class operators that can not be distinguished by the invariant effects (or,
equivalently, by the invariant operators)

T (H)G := T (H)/∼G,

S(H)G := S(H)/∼G,

where Ω ∼G Ω′ ⇔ tr[ΩF ] = tr[Ω′F ] for all F ∈ E(H)G. In the case of
compact G we have

T (H)G
∼= T (H)G (as Banach spaces),

S(H)G
∼= S(H)G (as state spaces).

• Framed operators/effects: subspace of B(HR ⊗ HS)/subset of E(HR ⊗ HS)
consisting of operators/effects respecting the choice of the frame-orientation
observable ER : F(Σ) → E(HR)

B(HS)ER := span {ER(X) ⊗ FS | X ∈ F(ΣR),FS ∈ E(HS)}cl ,

E(HS)ER := {F ∈ B(HS)ER | 0 ≤ F ≤ 1}.
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• Relational operators/effects: subspace of B(HR ⊗ HS)/subset of E(HR ⊗ HS)
consisting of invariant and framed operators/effects

E(HS)G
ER

:= E(HS)ER ∩ E(HR ⊗ HS)G,

B(HS)G
ER

:= span{E(HS)G
ER

}cl ⊂ B(HR ⊗ HS).

• Relative operators/effects: subspace of B(HR ⊗ HS)/subset of E(HR ⊗ HS)
consisting of operators/effects relativized with the relativization map

¥R(AS) :=
∫

G
dER(g) ⊗ g.AS ,

so that we have

E(HS)R := ¥R(E(HS)) ⊆ E(HS)G
ER
,

B(HS)R := span{E(HS)R}cl = ¥R(B(HS)) ⊆ B(HS)G
ER
.

When R is localizable (i.e. ||ER(X)|| = 1 for all X ∈ B(G)), we have

B(HS)R ∼= B(HS)

as von Neumann algebras, and when ER is sharp B(HR)R is a subalgebra of
B(HR ⊗ HS). If G is finite we have

E(HS)R = E(HS)G
ER
.

• Relative states/trace-class operators: the quotient space of classes of states/trace-
class operators that can not be distinguished by the relative effects (or, equiva-
lently, by the invariant operators)

T (HS)R := T (HR ⊗ HS)/∼R,

S(H)R := S(HR ⊗ HS)/∼R,

where Ω ∼R Ω′ ⇔ tr[ΩF ] = tr[Ω′F ] for all F ∈ E(HS)R. We have

T (HS)R ∼= ¥R
∗ (T (HR ⊗ HS)) = ¥R

∗ (T (HR ⊗ HS)/∼G) ⊆ T (HS),
S(H)R ∼= ¥R

∗ (S(HR ⊗ HS)) = ¥R
∗ (S(HR ⊗ HS)/∼G) ⊆ S(HS).

When R is localizable the inclusions above are dense (in operational topology).
We use the following notation for relative states

ΩR ≡ ¥R
∗ (Ω) ∼= [Ω]R,

where Ω is a state on the composite system Ω ∈ S(HR ⊗ HS).
• The ω-conditioned relative observables/effects: subspace of B(HS)/subset of

E(HS) consisting of ω-conditioned relativized observables/effects

E(HS)R
ω := ¥R

ω (E(HS)) ⊆ E(HS),
B(HS)R

ω := span{E(HS)R
ω }cl = ¥R

ω (B(HS)) ⊆ B(HS),

where ¥R
ω := Γω ◦ ¥R and

Γω : B(HR ⊗ HS) ∋ AR ⊗ AS 7→ tr[ωAR]AS ∈ B(HS)

is extended by linearity and continuity. The ω-conditioned relative effects take
the form

¥R
ω (FS) =

∫
G
dµER

ω (g)U(g)FSU
∗(g).
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• The ω-product relative states/trace-class operators: the quotient space of classes
of states/trace-class operators that can not be distinguished by the ω-conditioned
relative effects (or, equivalently, by the invariant operators)

T (HS)R
ω := T (HS)/∼(R,ω)⊆ T (HS),

S(H)R
ω := S(HS)/∼(R,ω)⊆ S(HS),

where ρ ∼(R,ω) ρ
′ ⇔ tr[ρF ] = tr[ρ′FS ] for all FS ∈ E(HS)R

ω . We have

T (HS)R
ω

∼= (¥R
ω )∗(T (HS)) ⊆ T (HS),

S(H)R
ω

∼= (¥R
ω )∗(S(HS)) ⊆ S(HS).

The ω-conditioned relative states take the form

ρ(ω) := (¥R
ω )∗(ρ) =

∫
G
dµER

ω (g)U(g)∗ρU(g).

• The ω-lifted relative states: global states in S(HR⊗HS)G that arise by attaching
a frame state ω to a relative state via the lifting map LR

ω defined as

ΓR
ω := ¥R ◦ Γω : B(HR ⊗ HS)G → B(HS)R,

LR
ω := (ΓR

ω )∗ : T (HS)R → T (HR ⊗ HS)G.

The ω-lifting map acts on states as

S(HS)R ∋ ΩR 7→ LR
ω (ΩR) = [ω ⊗ ΩR]G ∈ S(HR ⊗ HS)G.

• Framed relative operators/effects: subspace of B(H1 ⊗ H2 ⊗ HS)G/subset of
E(H1 ⊗ H2 ⊗ HS)G consisting of relativized framed effects, e.g.

E(H2 ⊗ HS)R1
E2 := ¥R1 (E(HS)E2)

= {¥R1(E2(X) ⊗ FS) | X ∈ F(Σ2), FS ∈ E(HS)},

B(H2 ⊗ HS)R1
E2 := span

{
E(H2 ⊗ HS)R1

E2

}cl
⊆ B(H1 ⊗ H2 ⊗ HS)G.

• Framed relative states/trace-class operators: the quotient space of classes of
states/trace-class operators that can not be distinguished by the relativized
framed effects, e.g.

T (H2 ⊗ HS)R1
E2 := T (H1 ⊗ H2 ⊗ HS)/∼E(H2⊗HS)R1

E2
,

= T (H2 ⊗ HS)R1/∼E2 ,

S(H2 ⊗ HS)R1
E2 := S(H1 ⊗ H2 ⊗ HS)/∼E(H2⊗HS)R1

E2
,

= S(H2 ⊗ HS)R1/∼E2 ,

where E2 denotes the equivalence with respect to E(HS)E2 . For the correspond-
ing quotient projections we write e.g.

πE2 : S(H2 ⊗ HS) ⊇ S(H2 ⊗ HS)R1 → S(H2 ⊗ HS)R1/∼E2 .
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.2 Quantum mechanics of operators
Here we provide a semi-didactic introduction to the operator-algebraic perspective on
the quantum mechanics of von Neumann. In this setup, a quantum system S is mod-
eled on a separable Hilbert space HS , as in most standard textbook presentations, but
the focus is shifted from the Hilbert space vectors to the space B(HS) of bounded
operators acting on them. As it turns out, nothing really hinges on those vectors. On
the contrary, the whole setup can be phrased in terms of the elements of B(HS), and
indeed this perspective seems more appropriate e.g. when we want to view Quan-
tum Theory as an extension of Probability Theory, or when attempting to reconstruct
the framework from principles. Since the material presented in this Appendix is stan-
dard, we do not cite any particular sources, referring an interested reader to [48] and
references there.

Banach and Hilbert spaces
The concept of an n-dimensional Euclidean space Rn has been generalized in various
ways. One of the least restrictive notions is that of a vector space.
Definition .2.1. A vector space is a set V , elements of which will be called vectors,
that can be added together and multiplied by numbers. Formally the set V comes
equipped with the following operations

• (addition) + : V × V ∋ (v1, v2) 7→ v1 + v2 ∈ V ,
• (scalar multiplication) · : k × V ∋ (λ, v) 7→ λ · v ≡ λv ∈ V ,

where k is a field. We will only use the field of real k = R or complex k = C numbers.
This formalizes and generalizes the operations (x1, y1, z1)+(x2, y2, z2) = (x1+x2, y1+
y2, z1 + z2) and λ · (x, y, z) = (λx, λy.λz) in Cn. As a next step, the notion of a
length of a vector can be introduced on a vector space.
Definition .2.2. A normed space is a vector space V equipped with a norm, which is
a map V ∋ v 7→ ||v|| ∈ [0,∞) satisfying the following conditions

1. The norm of a vector is zero only if it is the zero vector, i.e. ||v|| = 0 ⇒ v = 0,
2. The norm scales with the module under multiplication by numbers, i.e. for any

number λ and any vector v we have ||λv|| = |λ|||v||, and
3. The norm satisfies the triangle inequality, i.e. for any pair of vectors v1, v2 we

have ||v1 + v2|| ≤ ||v1|| + ||v2||.
The notion of a norm generalizes the map v = (x, y, z) 7→

√
x2 + y2 + z2 on R3, when

the triangle inequality is the one thought in school. A norm naturally induces the notion
of a distance d(v1, v2) := ||v2 − v1|| between vectors in V , which is symmetric and
positive and makes (V, ||_||) a metric space.
Definition .2.3. A metric space is a set M equipped with a metric, or a distance
function d : M ×M → [0,∞) satisfying the following properties for any p, q, r ∈ M

• The distance of a point from itself is always zero, i.e. d(p, p) = 0,
• The distance is symmetric, i.e. d(p, q) = d(q, p), and
• the triangle inequality holds, i.e. d(p, q) ≤ d(p, r) + d(r, q).

As is easily seen, the two triangle inequalities are in agreement for normed vector
spaces. In a Euclidean space, the distance function is the one that we use for calculating
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distances using the Pythagorean theorem, e.g. in three dimensions we have d(v1, v2) =
||v2 − v1|| =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. In a metric space, we have an

important notion of a limit of a sequence of elements, i.e. of a collection of points
labeled by the natural numbers, written {pn}n∈N = {p0, p1, p2, . . . }.
Definition .2.4. A limit of a sequence of elements of a metric space is an element
with the property that for large enough indices all the elements of the sequence are
arbitrarily close to it. Formally we say that p∞ is a limit of {p0, p1, p2, . . . } if for
any ϵ > 0 there is Nϵ ∈ N such that for any element pm with m > Nϵ the distance
d(p∞, pm) is smaller than ϵ. The element p∞ is denoted by limn→∞ pn.
Clearly, not every sequence will have a limit, as the elements of a sequence can be
distributed arbitrarily. Sequences that do have a limit – if there is one, it needs to be
unique – are called converging. There is a class of sequences, called Cauchy sequences,
that we would expect to converge.
Definition .2.5. A sequence of elements in a metric space is a Cauchy sequence if,
for big enough indices, the distance between any pair of elements is arbitrarily small.
Formally, we say that {p0, p1, p2, . . . } is Cauchy if for any ϵ > 0 there is Nϵ ∈ N such
that for any n,m > Nϵ we have d(pn, pm) < ϵ.
Intuitively if we have a Cauchy sequence that does not converge, the metric space can
be seen to be lacking this limiting point – the elements of the sequence get arbitrarily
close to one another as the indices rise, yet there is no point in the metric space that
would be arbitrarily close to all of the sufficiently highly labeled elements. Hence the
following definition.
Definition .2.6. A metric space M is complete if all the Cauchy sequences converge.
As a simple example to have in mind consider the following. The real numbers,
equipped with the absolute-value norm and the associated distance function, are com-
plete metric spaces, while the rational numbers are not. Indeed, the real numbers can
be seen as a completion of the rational numbers in the sense of adding all the missing
limits of the Cauchy sequences. In such a situation, we say that the set of rational
numbers is (norm) dense in the set of real numbers. As we often would like to consider
limiting procedures we will require all the metric spaces to be complete.
Now going back to the vector spaces, we present the two most important, at least in
terms of applications, infinite-dimensional generalizations of Euclidean spaces.
Definition .2.7. A Banach space is a complete normed vector space.
Juts like the notion of a norm generalizes the length of a vector in an Euclidean space,
that of inner product provides a generalization of the notion of an angle.
Definition .2.8. An inner product on a vector space V is a map ⟨, ⟩ : V × V → k
such that

• The inner product is conjugate-symmetric, i.e. for any pair of vectors we have
⟨v1, v2⟩ = ⟨v2, v1⟩,

• The inner product is linear in the first argument, i.e. for any pair of vectors we
have ⟨λ1v1 + λ2v2, v3⟩ = λ1⟨v1, v3⟩ + λ2⟨v2, v3⟩, and

• The inner-product of a vector with itself is a non-negative (real) number, zero
only for the zero vector, i.e. ⟨v, v⟩ ≥ 0, ⟨v, v⟩ = 0 ⇒ v = 0

A few comments are in order. The first requirement – that of conjugate-symmetricity
– assures that ⟨v, v⟩ is a real number. It also follows that the inner product can not
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be linear in the second argument (the choice of the first or second slot to be linear
is conventional), as it needs to be anti-linear to satisfy the first requirement. Such a
map is often called a sesquilinear form. In a 3-dimensional real Euclidean space the
inner product is given by ⟨v1, v2⟩ = x1x2 + y1y2 + z1z2 = ||v1||||v2||cos(θ), where θ is
the angle between the two vectors and ||_|| the usual norm. The notions of an inner
product and the norm are thus related by ⟨v, v⟩ = ||v||2. In fact, this is a general
feature – having fixed an inner product on a vector space, this formula defines an
associated norm. We then naturally arrive at the notion of a Hilbert space.
Definition .2.9. A Hilbert space is a vector space equipped with an inner product
that is complete in the associated norm.
Thus the Hilbert spaces can be seen as special kinds of Banach spaces – those complete
normed spaces for which the norm comes from an inner product. The simplest non-
trivial complex Hilbert space is the space of complex numbers themselves, with the
inner product given by ⟨z, w⟩ = zw, which generalizes to arbitrary dimension Cn by
⟨z, w⟩ = z1w1 + z2w2 + . . . znwn.
A pair of Hilbert spaces H1,H2 can be considered the same if there is a linear map
T : H1 → H2 that is bijective and preserves the inner product, i.e. we have
⟨Tξ, Tη⟩H2 = ⟨ξ, η⟩H1 for any pair of vectors ξ, η ∈ H1. Such a map is called unitary,
and if there is one, H1 and H2 are called unitarily equivalent. The spaces Cn are, up
to unitary equivalence, the only examples of finite-dimensional complex Hilbert spaces.
We distinguish a class of Hilbert spaces that are particularly tractable and traditionally
used in quantum mechanics.
Definition .2.10. A Hilbert space HS is called separable if it contains a countable
subset of vectors that is dense in HS .
As is a common practice we will only consider separable Hilbert spaces. Assuming
the Axiom of Choice4 one can show that a Hilbert space is separable if and only if it
admits a countable orthonormal basis, defined as follows.
Definition .2.11. An orthonormal basis of a Hilbert space is a set of orthogonal vectors
of norm one that span the Hilbert space. More precisely, it is a subset F ⊂ HS such
that for any pair of vectors f1, f2 ∈ F we have ⟨f, f ′⟩ = 0 unless f = f ′ in which case
we have ⟨f, f ′⟩ = ||f ||2 = 1, with the property that for any vector ξ ∈ HS whenever
⟨f, ξ⟩ = 0 for all f ∈ F we can conclude that ξ = 0.
This generalizes the cartesian coordinates that are commonly used in Euclidean spaces.
Indeed, given a countable orthonormal basis {ϕ0, ϕ1, . . . }, any Hilbert space vector
ξ ∈ HS can be written as ∑∞

n=0⟨ϕn, ξ⟩ϕn. Up to unitary equivalence, there is only
one complex infinite-dimensional separable Hilbert space – it can be constructed as
a space of infinite sequences of complex numbers {λ0, λ1, . . . } for which the sum∑∞

n=1 |λn|2 is finite, with the inner product defined as ⟨λ, λ′⟩ = ∑∞
n=1 λnλ′

n, and is
denoted by l2(N).

4Following an accurate description from Wikipedia: “the Axiom of Choice is an axiom of set theory
equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty.
Informally put, the Axiom of Choice says that given any collection of sets, each containing at least
one element, it is possible to construct a new set by arbitrarily choosing one element from each set,
even if the collection of sets is infinite.
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Bounded operators
We can now turn to the main object of interest in the operator-algebraic approach to
quantum mechanics – the algebras of operators. An linear operator on a Hilbert space
HS is a linear map A : HS ∋ ξ 7→ Aξ ∈ HS . The space of linear operators on HS ,
denoted L(HS), is a vector space under the operations (A1 + A2) = A1ξ + A2ξ and
(λA)ξ = λAξ. It can be equipped with the norm5 defined by ||A|| = supξ∈HS

||Aξ||
||ξ|| .

The operators for which this norm is finite are called bounded and form a Banach
space denoted B(HS). This Banach space is very rich in additional structures that
we now briefly summarise.
As maps, operators on HS can be composed, i.e. AB ≡ A ◦ B : ξ 7→ A(Bξ).
Further, since the composition of two bounded operators remains bounded, we have
an algebra structure on B(HS), i.e. a binary operation B(HS) ×B(HS) ∋ (A,B) 7→
AB ∈ B(HS). Moreover, the inner product in the underlying Hilbert space brings
about an operation, called involution, that can be performed on a bounded operator
returning another one. Namely, it turns out that given A ∈ B(HS) there is a unique
A∗ ∈ B(HS) satisfying ⟨Aξ, η⟩ = ⟨ξ, A∗η⟩ for all pairs of vectors ξ, η ∈ HS , with A∗

referred to as an adjoint operator of A.
It is useful to distinguish special classes of bounded operators on a Hilbert space.
Definition .2.12. A bounded operator A ∈ B(HS) is:

1. unitary if it preserves the inner product, i.e. ⟨Aξ,Aη⟩ = ⟨ξ, η⟩,
2. self-adjoint if it equals its adjoint, i.e. Aξ = A∗ξ for all ξ ∈ HS ,
3. positive if there is B ∈ B(HS) such that A = B∗B,
4. a projection if it is self-adjoint and idempotent, i.e. A = A∗ = A2,
5. trace-class if its trace, defined as tr[A] = ∑∞

n=1⟨Afn, fn⟩ for {fn} an orthonor-
mal basis, is finite.

As a simple example to have in mind take C as the simplest non-trivial Hilbert space
and B(C) ∼= C – complex numbers are precisely the linear bounded maps C → C,
with the complex conjugation providing the involution, and multiplication given by the
usual multiplication of complex numbers. Another simple example is the space B(Cn)
of bounded operators on the n-dimensional complex vector space Cn, so all n × n
complex matrices since all linear operators are matrices and all matrices are bounded
as operators on a finite dimensional space. In this case, the hermitian adjoint provides
the involution operation, matrix multiplication the algebra operation and entry-wise
scaling the scalar multiplication. A few comments are in order.

1. As easily seen, an operator A is unitary if and only if it is invertible and A∗ = A−1,
so that A∗A = AA∗ = 1HS . This generalizes the complex numbers of the form
eiϕ. The unitary operators thus form a group, generalizing the circle group S1.

2. The defining property of a self-adjoint operator is analogous to that of a real
number among the complex ones – z ∈ C is real iff z = z.

3. Any positive number can be written as zz, which is generalized in point 3. above.
Positive operators are then automatically self-adjoint. If A is positive, for any
η ∈ HS we have ⟨η, Aη⟩ = ⟨Bη,Bη⟩ = ||Bη||2 ≥ 0, which is in fact equivalent
– A is positive iff ⟨η,Aη⟩ ≥ 0 for any η ∈ HS .

5Notice here, that this norm can be put on the space of operators on any Banach space, not
necessary a Hilbert space.
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4. One can show that there is a one-to-one correspondence between subspaces of
the Hilbert space HS , i.e. subsets K ⊆ HS that are Hilbert spaces themselves,
and projections as defined in the point 4. above. For any subspace, we have
a unique projection that maps onto it and does not change the vectors that
are already on that subspace. One easily verifies that such maps are indeed
self-adjoint and idempotent.

5. The definition of the trace in 5. generalizes that of a trace of a matrix and
can do not depend on the choice of an orthonormal basis in a separable Hilbert
space. The space of trace-class operators will be denoted by T (HS), and for its
elements, we will usually use the letter Ω ∈ T (HS).

Elementary quantum mechanics
In the textbook quantum mechanics (pure) states are defined as equivalence classes
of unit vectors in a Hilbert space HS , so-called rays, written as kets |ξ⟩. The two
unit vectors ξ, ξ′ define the same state if they are related by a phase, i.e. ξ′ = eiφξ
for some ϕ ∈ [0, 2π). Such states define functionals on B(HS) via associating the
expectation value to an operator, i.e. A 7→ ⟨ξ, Aξ⟩, which is well defined by the class
|ξ⟩ since ⟨eiφξ, Aeiφξ⟩ = ⟨ξ, Aξ⟩ for all ϕ ∈ [0, 2π) and A ∈ B(HS). This can be seen
as the first instance operational equivalence that we encounter – in principle, any unit
vector in HS defines a state understood as a functional that associates expectation
values to bounded operators. We however want to identify those vectors that are not
distinguishable as such functional. Those that give the same expectation values on all
operators can be called "operationally equivalent". This notion plays a prominent role
in the presented framework and is discussed separately in the main part of the thesis
– see 2.1.
The quantum observables in the textbook setting are defined as self-adjoint operators
in B(HS)sa. This assures that the expectation values they give will always be real
numbers. Moreover, it is (often implicitly) assumed, that the relevant observables
A ∈ B(HS)sa define an orthonormal basis of eigenvectors, i.e. the vectors satisfying
Aϕn = λnϕn with λn ∈ C, with the corresponding numbers λn called eigenvalues. This
is always true when the dimension of HS is finite but otherwise holds only for compact6

self-adjoint operators, as in general, a self-adjoint operator may have no eigenvectors.
We will go back to this issue shortly, assuming for now that such a basis is given for
the operator in question. Then A can be written as A = ∑∞

n=0 λnPλn , where Pλn is
a projection operator projecting onto the subspace spanned by the eigenvectors with
the eigenvalue λn. The expectation values the eigenvectors give as functionals when
evaluated on A are then simply the corresponding eigenvalues, i.e. ⟨ϕn, Aϕn⟩ = λn.
But since {λ0, λ1, . . . } form an orthonormal basis, any vector ξ ∈ HS can be written
as ∑∞

n=0⟨ϕn, ξ⟩ϕn and thus the expectation value it gives when evaluated on A reads
⟨ξ, Aξ⟩ = ∑∞

n=0⟨ϕn, ξ⟩λn. The normalization condition, i.e. the norm equals one, of
the states allows for a probabilistic interpretation of the procedure just described along
the following lines. The set of eigenvalues of A, i.e. the real numbers {λ0, λ1, . . . }
is understood as possible outcomes of the measurement of the quantity modeled by
the self-adjoint operator A. The probability of getting the outcome λn if the system

6An operator on a Hilbert space is compact iff it is a limit (in the operator norm) of a sequence
of operators of finite-rank, i.e. such that have an finite-dimensional image. This is an interesting
technical condition that we will not need to use.
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is prepared in a state |ξ⟩ is given by the Born rule

p|ξ⟩(λn) := ⟨ξ, Pλnξ⟩ = |⟨ϕn, ξ⟩|2.

Since the norm of ξ is one, we have7

∞∑
n=0

p|ξ⟩(λn) =
∞∑

n=0
|⟨ϕn, ξ⟩|2 = ||ξ||2 = 1.

The epistemic content of the elementary textbook setup is then that the (pure) states
assign probability distributions over the spectra of (compact) self-adjoint operators. As
such, we find this highly unsatisfactory as a basis for quantum theory for the following
reasons.

1) The pure states do not allow for the description of situations in which the state
is a probabilistic mixture of states.

2) The operators that we would like to use as observables may not be expressible
as operators with a spanning set of eigenvalues, not even as bounded ones.

3) The mathematical machinery is introduced without any conceptual justification.
Regarding the first point above, imagine a situation in which we would like to assign a
state to a system for which there is probability 2/3 of being prepared in |ξ⟩, and 1/3
of being prepared in |ξ′⟩. There is no pure state that will reproduce the probability
distributions corresponding to this situation – this is our first worry.
A simple instance of the second worry is the position observable of a particle on the
real line that acts on wave functions as ψ(x) 7→ xψ(x). There is no representation of
this observable as a bounded self-adjoint operator with the continuum of real numbers
as eigenvalues.
The third worry is a fact – in the hundred years after the advent of quantum mechanics
we still do not have a complete and compelling justification for the mathematical setup
of our arguably most empirically successful theory. Moreover, this setup seems to be in
serious trouble when we demand its compatibility with Special Relativity, as approached
via Quantum Field Theory – to date, no interacting QFT in 4 space-time dimensions
has been rigorously constructed.
There are different strategies for avoiding the first two worries, the last one, to our
understanding, being an open problem. The perspective we would like to advocate for
in this thesis begins with a standard move of generalizing the pure states to density
operators, and a slightly less popular but still fairly standard one of generalizing ob-
servables to positive operator-valued measures, thus addressing the first two worries
above. The third worry should perhaps be addressed by a suitable reconstruction of
the framework (or its generalization). We suggest some research directions of this kind
in chapter 6.

State spaces
Here we address the first worry of our list above, introduce the trace-class/bonded
operators duality, the related topologies that we will use, and briefly discuss maps
between algebras of operators preserving the state spaces.

7We need to use convexity of the |_|2 : C → C function to get the sum inside, which is assured
since e.g. the norm is always convex, and so is the z 7→ z2 function, and hence their compositon.
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.2.0.1 Density operators

The first worry can be phrased mathematically as “the pure state space is not convex”,
meaning that we do not have a pure state corresponding to a convex combination of
pure states like {pi, |ξ⟩}N

i=1 with pi > 0 and ∑N
i=1 pi = 1. We can of course add the

vectors weighted by their probabilities to get |ξ⟩ =
∣∣∣∑N

i=1 piξi

〉
– this is a superposed

state – but the resulting state will not provide the expected probabilities. Indeed, using
the notation from the previous section, we write

p|ξ⟩(λn) = |⟨ϕn, ξ⟩|2 =
N∑

i=1
p2

i |⟨ϕn, ξi⟩|2 =
N∑

i=1
p2

i p|ξi⟩(λn) ̸=
N∑

i=1
pip|ξi⟩(λn).

A way out leads through the following observation. There is 1 − 1 correspondence
between pure states |ξ⟩ and one one-dimensional projections P|ξ⟩ = |ξ⟩⟨ξ|. The ex-
pectation values that |ξ⟩ assigns to operators A ∈ B(HS) can then be expressed by
⟨ξ, Aξ⟩ = tr

[
P|ξ⟩A

]
. If we now instead of taking weighted combinations of vectors

in the Hilbert space, do the same with the corresponding projection operators on the
algebra B(HS) level, we get the correct probabilities. Indeed, writing ρ = ∑N

i=1 piP|ξi⟩
we have

tr[ρPλn ] = tr
[

N∑
i=1

piP|ξi⟩Pλn

]
=

N∑
i=1

pi tr
[
P|ξi⟩Pλn

]
=

N∑
i=1

pi|⟨ξ, ϕn⟩|2 =
N∑

i=1
pip|ξi⟩(λn).

Further, since the trace of a 1-dimensional projection equals one, we have

tr[ρ] = tr
[

N∑
i=1

piP|ξi⟩

]
=

N∑
i=1

pi tr
[
P|ξi⟩

]
=

N∑
i=1

pi,

so that the condition ∑N
i=1 pi = 1 translates to tr[ρ] = 1. Moreover, positivity of ρ is

equivalent to pi > 0 since for any vector η ∈ HS we have

⟨η, ρη⟩ = ⟨η,
N∑

i=1
piP|ξi⟩η⟩ =

N∑
i=1

pi⟨η, P|ξi⟩η⟩ =
N∑

i=1
pi|⟨ξi, η|2⟩,

which is always non-negative only if all pi > 0. Conversely, since trace-class operators
are compact and thus come with an orthonormal basis of eigenvectors, any positive
operator of trace one can be diagonalized and written in the form of ρ = ∑∞

n=0 pnP|λn⟩,
thus representing a convex combination of pure states |λn⟩. Summarizing, the general
notion of a quantum state in the Hilbert space formalism, which allows for convex
combinations of pure states, is that of a density operator.
Definition .2.13. A density operator is a positive operator of trace one.
The density operators are then a subset of the trace-class operators. The span of
one-dimensional projections is dense in the Banach space of trace-class operators (see
below), which then appear naturally as the Banach space generated by the pure states.
Assuming positivity and normalization then allows for the probabilistic interpretation.
The set of density operators will be denoted by S(HS) ⊂ T (HS), elements of which
will be referred to as quantum states and denoted with small Greek letters.
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.2.0.2 States-observables duality

We will now take a closer look at the space of trace-class operators as it is the home
of quantum states. It turns out that, like for positive numbers, we can take a square
root of any positive operator, i.e. find an operator that squares to it.8 The space
of trace-class operators becomes a Banach space on its own when equipped with the
following norm ||A||tr = tr

[√
A∗A

]
. This does not work for arbitrary operators – the

trace-class property is needed for the trace norm to be finite. Notice here that if A is
positive, we have

√
A∗A = A and the trace-norm is just the trace, i.e. ||A||tr = tr[A].

Now given an arbitrary operator A ∈ B(HS) we can define a functional

tr[_A] : T (HS) ∋ Ω 7→ tr[ΩA] ∈ C.

This map is easily shown to be linear and bounded in the sense that supρ
| tr[ρA]|
||ρ||tr

=
||A|| ≤ ∞. The space of all bounded linear functionals on a Banach space V is called
the Banach dual space and will be denoted by V ⋆. It is always a Banach space itself
when equipped with the supremum-norm ||ϕ||∞ = supv∈X

|ϕ(v)|
||v|| for ϕ : V → C as

above. Perhaps surprisingly, one can prove that the map above is the most general
kind of such a functional, i.e. that for any bounded linear ϕ : T (HS) → C there
is Aϕ ∈ B(HS) such that ϕ(Ω) = tr[ΩAϕ] for any Ω ∈ T (HS). The functional ϕ
is real-valued iff Aϕ is self-adjoint. The assignment ϕ 7→ Aϕ is linear, bijective, and
norm-preserving and thus provides a Banach space isomorphism

T (HS)⋆ ∼= B(HS). (1)

The space T (HS) is then a predual of B(HS). One can show that such predual is
unique in the sense that if there was a different Banach space with such property, it
needs to be isomorphic to T (HS). The self-adjoint operators can then be understood
as precisely the real-valued bounded linear functionals on T (HS), perhaps pointing to
a special role played by the state spaces in the quantum mechanical formalism. The
isomorphism above inspires a definition of convergence of operators that is suited to
treating them as functionals on the states.
Definition .2.14. A sequence of operators {A0, A1, . . . } is ultraweakly convergent if
for any trace-class operator Ω ∈ T (HS) the sequence of expectation values tr[ΩAn]
converges in C.
Since S(HS) spans T (HS), ultraweak convergence can be equivalently defined with
ρ ∈ S(HS) instead of Ω ∈ T (HS). We say that a subset O ⊆ B(HS) is weakly
closed if it contains all the limits of weakly converging sequences. This is a stronger
requirement than the usual closeness as a metric space. Given O ⊆ B(HS) we can
weakly close it by extending it to contain all the possibly missing limits. The result of
this operation will be denoted by Ocl. There is a corresponding notion of convergence
in the spaces T (HS) and S(HS).
Definition .2.15. A sequence of trace-class operators (states) {Ω0,Ω1, . . . } is oper-
ationally convergent if for any bounded operator A ∈ B(HS) the sequence of expec-
tation values tr[ΩnA] converges in C.
The quantum states form a convex subset S(HS) ⊆ T (HS) that is operationally
closed. The quantum states can also be seen as normalized bounded linear functionals

8We refrain from entering the functional calculus as it won’t play any role in what follows as we
would like to keep the presentation focused.
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φ : B(H) → C, and indeed this is the general definition used in the context of
operator algebras. However, not every such φ corresponds to a density operator via
φω : B(H) ∋ A 7→ tr[ωA] ∈ C. Those that do are called normal states (on B(H)),
and can be characterized by the following continuity condition:
Definition .2.16. A state φ : B(H) → C is normal if for any orthogonal family of
projections {ei}i∈I we have

φ

(∑
i∈I

ei

)
=
∑
i∈I

φ(ei).

For us, states are thus always normal as functionals on B(H).

Channels and preduals
Here we distinguish some properties of bounded linear maps between algebras of op-
erators on Hilbert spaces relevant in the context of state spaces.
Definition .2.17. A bounded linear map f : B(H1) → B(H2) is called

• Unital if it takes identity to identity, i.e. f(1H1) = 1H2 .
• Positive if it takes positive elements to the alike.
• Completely positive (CP) if all maps of the form f ⊗ 1Cnare positive.
• Normal if for any orthogonal family of projections {ei}i∈I in B(H1) we have

f

(∑
i∈I

ei

)
=
∑
i∈I

f(ei).

• Quantum channel if it is unital, completely positive, and normal.
• Unitary channel if it is given by a unitary operator U : H2 → H1 via

B(H1) ∋ A 7→ U∗AU ∈ B(H2).

As we see, states are exactly normal maps to complex numbers. Normal maps have
an important property of admitting a predual map: given f : B(H1) → B(H2) that
is normal and a state on B(H2) we can use f to construct a state Ω ∈ T (H1) by
simply composing

f∗ : T (H2) ∋ Ω 7→ φΩ ◦ f ∈ T (H1),

where we have used the identification of density operators and normal (bounded,
linear) functionals on B(H) mentioned above. Equivalently, we may think of the map
f∗ as being the unique one making the following true

tr[Ωf(A)] = tr[f∗(Ω)A]

for all A ∈ B(H1) and Ω ∈ T (H2). The map f needs to satisfy the normality
condition to map (normal) states to (normal) states. If we want f∗ to map states to
states, it needs to preserve trace and positivity. As easily seen, f∗ preserve trace iff f
is unital. Indeed, we have

tr[f∗(Ω)] = tr[f∗(Ω)1S′ ] = tr[Ωf(1S′)].
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Similarly, f∗ preserves positivity iff f does, so that f∗ maps states to states iff f
is normal, unital and positive. It is a quantum channel iff also any map of the form
f⊗1Cn maps states to states. This is understood as making sure that if S is considered
as a part of a bigger system (see below), the trivially extended f map will still preserve
states. It turns out, that this is a non-trivial condition. As a final comment we note
that unitary channels are indeed quantum channels, and as easily confirmed the only
invertible ones.

Composite systems
Given a pair of quantum systems S1 and S2, modeled on Hilbert spaces H1 and H2,
a composite system, denoted S1 ⊗ S2, is modeled on the tensor product Hilbert space
H1 ⊗ H2. This is the Hilbert space spanned by the pairs of basis elements of H1 and
H2, i.e. any element v ∈ H1 ⊗ H2 can be written as

v =
∑
n,m

λn,mfn ⊗ gm,

where {fn}n∈N and {gm}m∈N form basis in H1 and H2, respectively. This way any
pair of (pure) states (|ξ⟩ , |η⟩) can be considered a (pure) state of the composite
system, with the dimension of the Hilbert space of S1 ⊗ S2 equal the product of the
dimensions of H1 and H2. The full state space is generated from those as before
by requiring convexity, yielding T (H1 ⊗ H2) ∼= T (H1) ⊗ T (H2), where T (Hi) are
treated as vector spaces on their own right. The states in S(H1⊗H2) ⊆ T (H1⊗H2)sa

that can be written ω ⊗ ρ (without the sum) are called product states. The duality
[T (H)]⋆ ∼= [B(H)] gives

[T (H1 ⊗ H2)]⋆ ∼= B(H1) ⊗B(H2).

The natural inclusions of algebras, e.g. for B(H1) the map

i1 : B(H1) ∋ A 7→ A⊗ 12 ∈ B(H1) ⊗B(H2)

are normal, with the predual maps given by the partial trace, e.g. we have

(i1)∗ : T (H1 ⊗ H2) ∋ Ω 7→ tr2[Ω] ∈ T (H1).

Indeed for product states we get tr[(i1)∗(ω ⊗ ρ)A] = tr[ω ⊗ ρA⊗ 12] = tr[ωA].

Positive operator-valued measures
We now address the second worry of the elementary quantum mechanical setup, namely
that it is not clear how to represent physically relevant observables as self-adjoint op-
erators with eigenvalues understood as possible measurement outcomes. The solution
that we adapt is a relatively simple one, we also find it conceptually compelling. The
idea is that an observable on a quantum system should be primarily thought of as a
map that takes quantum states to probability distributions, which is perfectly aligned
with the epistemic content of the textbook quantum mechanics.
Let us begin by noting the following. One way of phrasing the famous spectral theorem
for bounded self-adjoint operators is that for any A ∈ B(HS)sa there is a closed,
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bounded (and hence compact), non-empty subset of the real line, called the spectrum
of A and denoted by σ(A), such that A can be written as

AS =
∫

σ(AS)
λdPAS (λ), (2)

where PAS : B(σ(AS)) → B(HS) is the projection-valued measure associated with
AS and the integral is interpreted in terms of weak convergence. This means that
PAS a map that assigns projections on HS to the Borel subsets of σ(AS) such that for
any ρ ∈ S(HS) the map B(σ(AS)) ∋ X 7→ tr

[
ρPAS (X)

]
is a probability measure on

σ(AS). It follows that PAS is normalized in that PAS (σ(AS)) = 1HS . Borel subsets
are elements of the smallest σ-algebra containing all the opens. The measurable
subsets X ∈ F(ΣS) represent propositions about the system S, and the numbers
pES

ρ (X) ∈ [0, 1] probabilities of these propositions being true given that the system
S has been prepared in the state ρ ∈ S. This extends the standard setting since the
spectrum of a compact operator is the (discrete) set of eigenvalues and the integral
above becomes the sum ∑∞

n=0 λnPλn that we have seen before. The normalization
condition of PAS is then equivalent to the fact that the eigenvectors span the Hilbert
space HS . The equation 2 provides a 1 − 1 correspondence between self-adjoint
operators and such projection-valued measures. However, this is not enough, since
e.g. the position operator that we mentioned is not bounded. The projection-valued
measure perspective on self-adjoint operators is readily generalized as follows.
Definition .2.18. A positive operator-valued measure (POVM) ES is a map

F(Σ) ∋ X 7→ ES(X) ∈ B(HS),

where F(Σ) is a σ-algebra of subsets of Σ, such that for any state ρ ∈ S(HS) the
assignment

X 7→ pES
ρ (X) := tr[ρES(X)]

is a (non-negative, countably additive) normalized measure on F(Σ). The operators
ES(X) are referred to as the effects of ES . If all the effects of ES are projections, it
is called a projection-valued measure (PVM), also referred to as sharp POVM.
When probability measure is understood as a non-negative, countably additive nor-
malized measure on a measurable space, this is the most general form of a quantum
observable for which the maps XES : S(HS) ∋ ρ 7→ pES

ρ (X) ∈ [0, 1] are continuous.
It follows that the effects of ES are positive operators of the norm at most one, satis-
fying ES(X ∪ Y ) = ES(X) + ES(Y ) for disjoint subsets X ∩ Y = ∅ and that we have
ES(Σ) = 1HS . We refer to such general POVMs as (quantum) observables.
The set of effects on HS , i.e. positive operators of the norm at most one, will be
denoted by E(HS) = {FS ∈ B(HS)|0 ≤ FS ≤ 1HS }, where we introduced the order
on B(HS) given by A ≤ B iff 0 ≤ B − A meaning that B − A is positive. If we are
interested only in probability distributions that arise by evaluating POVMs on quantum
states, the effects in E(HS) are the only operators that we should really be concerned
about. Such a radical attitude does not however change much since they generate the
whole algebra of bounded operators as the span of the effects is dense in B(HS).
Notice that sharp POVMs are more general than bounded self-adjoint operators since
they can be defined on non-compact measurable spaces. Indeed, our motivating ex-
ample of the position observable can be modeled as a sharp POVM on the σ-algebra
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of Borel subsets of the reals as

EQ : B(R) ∋ Y 7→ MχY
∈ B(L2(R)), (3)

where MχY
denotes the operator of multiplication by the characteristic function of the

Borel subset Y , i.e. MχY
ψ(x) = χY (x)ψ(x). Thus if the state of a particle is given

as a wave function ψ(x), the probability of measuring its position in the subset Y ⊆ R
is ⟨ψ, χY ψ⟩ =

∫
Y |ψ(x)|2dx, as desired.

The setup of POVMs allows for a great variety of observables. In particular, they can
be modeled on arbitrary measurable spaces (and not only on R), which is necessary
for the framework presented in this work.
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.3 Coherent frame-change maps
Here we review the approach to quantum reference frames and frame-change maps as
presented in [10]. It is developed on the setup of a collection of identical ideal quantum
reference frames. The idea is to pick one of these systems and use it as a reference for
the description of all the others. Such a reference system is called an internal quantum
reference frame since it can be seen as a subsystem of the composite system composed
by the whole collection. The notion of primary interest is that of a relative pure state,
that is given with respect to a chosen reference system. Given such a relative state a
specific prescription for assigning a relative state from the perspective of some other
reference system from the collection is proposed and dubbed the ‘coherent quantum
reference frame change’.
To stay rigorous, we will present this approach in the context of a finite group G. We
are concerned with a collection of N identical quantum systems {S0,S1, . . . ,SN−1}
each with Hilbert space L2(G). Lets pick a system and the numeration so that our
first quantum reference frame is S0. The relative state from the perspective of S0 is
a ray in H0 := ⊗n−1

j=1 L
2(G)j, and can be written as

H0 ∋
∣∣∣ψ0

〉
=

∑
α0∈G×(n−1)

λα0

∣∣∣α0
〉
,

where α0 an (n − 1)-tuple of elements of G, i.e. α0 = (g0
1, g

0
2, . . . , g

0
n−1) and |α0⟩

is defined as a product state |α0⟩ := |g0
1⟩ |g0

2⟩ . . .
∣∣∣g0

n−1

〉
∈ H0 so that

∣∣∣g0
j

〉
∈ Hj

∼=
L2(G). If we pick a different system, say one with the label i, as a reference, the state
relative to it is a vector

Hi :=
n−1⊗

i ̸=j=0
L2(G)j ∋

∣∣∣ψi
〉

=
∑

αi∈G×(n−1)

λαi

∣∣∣αi
〉

The ‘coherent QRF change’ is then specified as a linear map U0→i : H0 → Hi.
Notice here, that it can be singled out by specifying an action on a basis, which is
in bijection with the (n − 1)-tuples. It is then enough to have a transformation that
will map α0 7→ αi. Such a map is proposed and justified on the ground of classical
considerations that we now recall.

Classical intuition
Consider a pair of classical 3D reference frames in the usual physical understanding,
perhaps made by three sticks with marks on them, glued together in a perpendicular
way. They should not be considered as ’living in’ an auxiliary Euclidean (or perhaps
affine linear) space - we see them simply as physical systems, rigid bodies. Upon
idealization they can be assumed identical. Such a pair of 3D classical reference frames
is then always in a relative orientation, given by an element of the Euclidean group:
frame B is in an orientation g ∈ E with respect to A if g represents the congruence,
or operation (combination of translation, rotation and reflection), that needs to be
preformed on A to align it with B. We then write A g→ B. Then clearly we have
B

g−1
→ A, and A e→ A: to align B to A we need to perform the inverse congruence, and

each frame is always aligned, i.e. in an orientation e ∈ E, with respect to itself. Now
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consider a collection of n such classical reference frames {A0, A1, . . . , An−1}. We can
describe all of their relative orientations by picking one of them, say A0, and providing
the relative orientations A0

g0
j→ Aj. Indeed, when asked for the relative orientation

Ai

gi
j→ Aj of Aj with respect to Ai, we can first align Aj with A0 by (g0

j )−1, and then
align it with Ai via g0

i . This operation is given by the composition: gi
j = g0

i ◦ (g0
j )−1.

Classically speaking, the situation from the perspective of A0 is then described by n
elements of the Euclidean group

α0
T = (g0

0 = e, g0
1, g

0
2, . . . , g

0
n−1).

Such a configuration, when considered from the perspective of the frame Ai, will be
described by the following sequence of group elements:

αi
T = (gi

0, g
i
1, . . . , g

i
n−1) = ((g0

i )−1, g0
1(g0

i )−1, . . . , gi
0(g0

i )−1 = e, . . . , g0
n−1(g0

i )−1).

Classically, the procedure of changing the perspective, or the reference frame, from
A0 to Ai is then given by acting on the right with (g0

i )−1 on all the group elements in
α0

T , which can be formally written as

αi
T := α0

T · (g0
i )−1.

Coherent QRF change
We now go back to the quantum realm. An analog of the configuration α0

T is the
pure product state |α0

T ⟩ := |e0
0⟩ |g0

1⟩ |g0
2⟩ . . .

∣∣∣g0
n−1

〉
∈ HT . It is then postulated that

such a state will transform to |αi
T ⟩ := |α0

T · (g0
i )−1⟩. Employing this analogy is enough

to define the map U0→i. Indeed, given a state |α0⟩ = |g0
1⟩ |g0

2⟩ . . .
∣∣∣g0

n−1

〉
we simply

need to extend it to |α0
T ⟩ = |e⟩0

0 |α0⟩, apply the right regular action UR(g0
i ) : |h⟩ 7→

|h(g0
i )−1⟩ to each factor like we would be dealing with a classical configuration, and

‘forget’ the resulting |e⟩i
i state that is absent from |ψi⟩ ∈ Hi. We thus have∣∣∣αi

〉
=
∣∣∣(g0

i )−1
〉

⊗ UR(g0
i )⊗(n−2)

∣∣∣g0
1

〉
. . .
∣∣∣g0

i−1

〉 ∣∣∣g0
i+1

〉
. . .
∣∣∣g0

n−1

〉
. (4)

More generally, given a state |ψ0⟩ = ∑
α0 λα0 |α0⟩ we need to apply this procedure

to each term in the sum separately – this is the ‘coherence’ assumption. The map
U0→i : H0 → Hi is then given by

U0→i =
∑
g∈G

∣∣∣g−1
〉〈
g
∣∣∣⊗ UR(g)⊗(n−2), (5)

where UR(g)⊗(n−2)acts on HS := ⊗
i ̸=j L

2(G)j and |g−1⟩⟨g| : L2(G)i → L2(G)0.
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