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Abstract

We study non-abelian quantum statistics on graphs via certain topological invariants,
which are the homology groups of configuration spaces. In the first part of this thesis,
we formulate a general framework for studying quantum statistics of particles con-
strained to move in a topological space X. The framework involves the study of flat
complex vector bundles over the space of unordered tuples of points from X, known
as the configuration space of X. In the second part, we apply this methodology for
configuration spaces of graphs. In particular, we use discrete models of graph configu-
ration spaces, which are due to Świątkowski and Abrams. The discrete models are CW
complexes, who carry all information about the topology of graph configuration spaces.
This allows us to use the tools from algebraic topology to compute the homology groups
of graph configuration spaces for some families of graphs. These families are i) tree
graphs, ii) wheel graphs, iii) complete bipartite graphs K2,p and K3,3. We also describe
the generators of the second homology group of simple graphs. Moreover, we compute
the homology groups of graph configuration spaces for some small canonical graphs
via the discrete Morse theory. As a conclusion, we provide families of graphs, which
are good candidates for simplified models in the further study of quantum statistical
phenomena and as such may find use for example in anyonic quantum computations.

Abstract in Polish

W poniższej pracy zajmujemy się problemem opisu nieabelowych statystyk kwan-
towych przy użyciu pewnych topologicznych niezmienników, którymi są grupy ho-
mologii przestrzeni konfiguracyjnych. W pierwszej części pracy formułujemy ogólną
metodologię opisu statystyk kwantowych dle cząstek, których ruch ograniczony jest
do przestrzeni topologicznej X. Metodologia ta korzysta z konstrukcji płaskich ze-
spolonych wiązek wektorowych nad przestrzenią nieuporządkowanych krotek punktów
z przestrzeni X, zwaną przestrzenią konfiguracyjną przestrzeni X. W drugiej części
pracy stosujemy powyższą metodologię do przestrzeni konfiguracyjnych na grafach.
W szczególności, wykorzystujemy dyskretne modele grafowych przestrzeni konifgura-
cyjnych wprowadzone przez Świątkowskiego oraz Abramsa. Modele dyskretne to CW
kompleksy, które niosą całą informację o topologii grafowych przestrzeni konfigura-
cyjnych. Pozwalają one na użycie narzędzi z topologii algebraicznej przy obliczaniu
grup homologii. W efekcie, podajemy pełen opis grup homologii przestrzeni konfigura-
cyjnych dla grafów będących drzewami, grafami kołowymi oraz grafami dwudzielnymi
K2,p i K3,3. Podajemy również generatory drugiej grupy homologii przestrzeni konfigu-
racyjnych na grafach prostych. Ponadto, używając dyskretnej teorii Morse’a, obliczamy
niektóre grupy homologii przestrzeni konfiguracyjnych na wybranych małych grafach.
Na podstawie uzyskanych wyników podajemy rodziny grafów, które są dobrymi kandy-
datami do dalszych badań zjawisk kwantowo statystycznych i jako takie mogą znaleźć
zastosowanie na przykład w anyonowych obliczeniach kwantowych.

The title of the thesis in Polish

Topologia przestrzeni konfiguracyjnych dla cząstek na grafach
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Chapter 1

Introduction

The first part of this thesis (chapters 1-3) contains general considerations about
the connections between topology of configuration spaces and the existence of different
types of quantum statistics. This is an attempt to collect and organise some of the
results that are partially a folklore knowledge in mathematical physics. The underlying
idea is to compare the approach to quantum statistics that dates back to the works
of Souriau [1] and Leinaas and Myrheim [2] with the modern mathematical methods
concerning the classification of complex vector bundles. We especially emphasise the
important role of nontrivial flat vector bundles. One of our main goals is to formulate
our work in a possibly general context, so that the considered topological spaces do
not necessarily have to be differential manifolds. All the results formulated in this
thesis are suitable for topological spaces that have the homotopy type of a finite CW -
complex. Our work results with a number of open problems indicating the possibility
of the existence of some new quantum statistical phenomena. The general methods
that we lay down in the first three chapters of this thesis, are applied to a special class
of configuration spaces of particles on graphs, which may serve as simple models for
studying quantum statistical phenomena. In particular, we compute certain topological
invariants of graph configuration spaces, which are the homology groups. We review
the known methods of computing the homology groups of graph configuration spaces
and develop new computational tools.

Configuration space of n indistinguishable particles confined in a topological space
X is defined as the quotient space

Cn(X) := (X×n −∆n)/Sn,

where ∆n := {(x1, . . . , xn) ∈ X×n : ∃i 6=j xi = xj} and Sn is the permutation group
that acts on X×n by permuting coordinates. Such spaces appear in an alternative
description of physical phenomena that are related to the indistinguishability of parti-
cles, where the property of particles being indistinguishable is imposed already at the
level of their configurations. Such an approach dates back to the works of Souriau [1],
Leinaas and Myrheim [2] (see also [3]), who proved the emergence of quantum statis-
tics by considering wave functions and Schrödinger operators on Cn(X). A systematic
way to do this is to consider a proper quantisation scheme for configuration spaces.
Quantisation is done in two steps.

1. Defining quantum kinematics, i.e. defining the space of wave functions and de-
riving momentum operators that satisfy the canonical commutation rules.
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2. Defining quantum dynamics, i.e. deriving the Schrödinger equation that describes
the evolution of wave functions.

In this thesis, we mainly focus on the problem of defining and classifying quantum
kinematics in the case, when X is a finite graph. We formulate the results in analogy
to the well-studied case, where X is a smooth manifold.

1.1. Quantum kinematics on smooth manifolds
A quantisation procedure for configuration spaces, where X is a smooth manifold,

known under the name of Borel quantisation, has been formulated by H.D. Doebner
et. al. and formalised in a series of papers [4, 5, 6, 8, 9]. Borel quantisation on smooth
manifolds can be also viewed as a version of the geometric quantisation [7]. The main
point of Borel quantisation is the fact that the possible quantum kinematics on Cn(X)
are in a one-to-one correspondence with conjugacy classes of unitary representations
of the fundamental group of the configuration space. We denote this fact by

QKink(Cn(X)) ∼= Hom(π1(Cn(X)), U(k))/U(k),

where QKink are the quantum kinematics of rank k. i.e. kinematics, where wave
functions have values in Ck and π1 is the fundamental group. Let us next briefly
describe the main ideas standing behind the Borel quantisation, which will be the
starting point for building an analogous theory for indistinguishable particles on graphs.

In Borel quantisation on smooth manifolds, wave functions are viewed as square-
integrable sections of hermitian vector bundles (Fig. 1.1).

Figure 1.1: Wave function as a square-integrable section of a hermitian vector bundle
E over a configuration space.

For a fixed hermitian vector bundle, the momentum operators are constructed by
assigning a self-adjoint operator p̂A acting on sections of E to a vector field A that
is tangent to Cn(X) in the way that respects the Lie algebra structure of tangent
vector fields. Namely, we require the standard commutation rule for momenta, i.e.

[p̂A, p̂B] = ιp̂[A,B], A,B ∈ TCn(X). (1.1)

Moreover, for the position operator that acts on sections as multiplication by smooth
functions

q̂f (σ) := fσ, f ∈ C∞(Cn(X)), σ ∈ Sec(E),
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we require the remaining standard commutation rules, i.e.

[p̂A, q̂f ] = q̂Af . (1.2)

It turns out that such a requirement implies the form of the momentum operator, which
is well-known form the minimal coupling principle, namely

p̂A = ι∇A +
ι

2
div(A), (1.3)

where ∇A is a covariant derivative in the direction of A, that is compatible with the
hermitian structure. Moreover, commutation rule (1.1) implies, that ∇A is necessarily
the covariant derivative stemming from a flat connection. Flat hermitian connections
of rank k are classified by conjugacy classes of U(k) representations of π1(Cn(X))
(see [72]). Representatives of these classes can be picked by specifying the holonomy
on a fixed set of loops generating the fundamental group. In order to illustrate these
concepts, consider the following example of one particle restricted to move on the plane
and its scalar wave functions.

Example 1.1. Quantum kinematics of rank 1 for a single particle on the plane. The
momentum has two components that are given by (1.3) for A = ∂x =: ∂1 and A =
∂y =: ∂2.

p̂1 := p̂∂x =
1

ι
∂x − α1, p̂2 := p̂∂y =

1

ι
∂y − α2.

By a straightforward calculation, one can check that commutation rule (1.2) is satisfied.

∀Ψ [p̂i, q̂f ]Ψ = −ιΨ∂if = q̂−ι∂ifΨ.

However, commutation rule (1.1) requires [p̂1, p̂2] = 0. The commutator reads

∀Ψ [p̂1, p̂2]Ψ = ιΨ(∂1α2 − ∂2α1).

Therefore, in order to satisfy the momentum commutation rule, we need ∂1α2−∂2α1 =
0. This is precisely the condition for the connection form Γ := α1dx + α2dy to have
zero curvature, i.e. dΓ = 0. The plane is a contractible space, hence the problem of
classifying flat connections is trivial and there are no topological effects in the quantum
kinematics. However, we can make the problem nontrivial by considering the situation,
where a particle is moving on a plane without a point, i.e. X = R2 − {∗}. Then,
π1(X) = Z generated by a circle around {∗} travelled clockwise. Let us denote such a
loop by γ. The parallel transport of Ψ around γ gives

T̂γΨ = eι
∫
γ ΓΨ.

The phase factor eι
∫
γ Γ does not depend on the choice of the circle. In order to see this,

choose a different circle γ′ that contains γ. Denote by D the area between the circles.
We have ∂D = γ′ − γ. Hence, by the Stokes theorem

0 =

∫
D

dxdy(dΓ) =

∫
∂D

Γ =

∫
γ′

Γ−
∫
γ

Γ.

Hence, all U(1) representations of π1(X) are isomorphic to the representations that
assign a phase factor eiφ to a chosen non-contractible loop. Physically, these represen-
tations can be realised as the Aharonov-Bohm effect and phase φ is the magnetic flux
through point ∗ that is perpendicular to the plane.
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Let us next review two scenarios that originally appeared in the paper by Leinaas
and Myrheim [2] and that led to a topological explanation of the existence of bosons,
fermions and anyons. These are the scenarios of two particles in R2 and R3. In both
cases, the configuration space can be parametrised by the centre of mass coordinate R
and the relative position r. In terms of the positions of particles, we have

R =
1

2
(x1 + x2), r = x2 − x1, xi ∈ Rm.

Then, C2(Rm) = {(R, r) : R ∈ Rm, r ∈ Rm − 0}/S2. Permutation of particles results
with changing r to −r, while R remains unchanged, hence

C2(Rm) = Rm × ((Rm − 0) / ∼) ∼= Rm ×RPm−1.

In the above formula, RPm−1 := Sm−1/ ∼ is the real projective space that is con-
structed by identifying pairs of opposite points of the sphere. Space (Rm − 0) / ∼ can
be deformation retracted to RPm−1 by contracting all vectors so that they have length
1. In the case, when m = 2, RP1 is topologically a circle. Equivalently, (R2 − 0) / ∼
is a cone. Hence, we have

π1(C2(R2)) = Z,

so similarly to Example 1.1, there is a continuum of U(1)-representations of the funda-
mental group that assign an arbitrary phase factor to the wave function when trans-
ported around a non-contractible loop. Note that a loop in the configuration space
corresponds to an exchange of particles (see Fig. 1.2).

Figure 1.2: Exchange of two particles on the plane and the resulting loop in C2(R2).

The case of two particles moving in R3 has an important difference when compared
to the other cases analysed in this thesis so far. Namely, there are two non-isomorphic
hermitian vector bundles of rank 1 that admit a flat connection. In all previous cases
there was only one such vector bundle, which was isomorphic to the trivial vector bundle
E0
∼= Cn(X)×C. For m = 3, there is one more flat hermitian vector bundle, which we

denote by E ′. Neglecting the R3 - component of C2(R3), which is contractible, bundles
E0 and E ′ can be constructed from a trivial vector bundle on S2 in the following way.

E0 =
(
S2 × C

)
/ ∼, (r, z) ∼ (−r, z) ∼= RP2 × C,

E ′ =
(
S2 × C

)
/ ∼′, (r, z) ∼′ (−r,−z).
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Intuitively, nontrivial bundle E ′ is constructed from the trivial vector bundle on S2 by
twisting fibres over antipodal points. In order to determine the statistical properties
corresponding to each bundle, we consider U(1) representations of the fundamental
group for each vector bundle. The choice of statistical properties for each vector bundle
is a consequence of a general construction of flat vector bundles, which we describe in
more detail in section 3.3. The fundamental group reads

π1(C2(R3)) ∼= π1(RP2) ∼= Z2.

There are two types of loops, the contractible ones and the non-contractible ones, which
become contractible when composed twice (see Fig. 1.3).

Figure 1.3: Two types of loops in RP2 pictured as a half-sphere with the opposite points
on the circumference of the base identified. Black loop and red loop are contractible,
while blue loop is non-cntractible. Blue loop becomes homotopy equivalent to the red
loop when crossed twice.

Bundle E0 corresponds to the trivial representation of π1, while E ′ corresponds to the
alternating representation that acts with multiplication by a phase factor eiπ. Con-
sequently, the holonomy group changes the sign of the wave function from E ′ when
transported along a non-contractible loop, while the transport of a wave function from
the trivial bundle results with the identity transformation. Therefore, bundle E0 is
called bosonic bundle, whereas bundle E ′ is called the fermionic bundle.

In general, when particles are constrained to move in a topological space X, which
is paracompact and Hausdorff 1, we aim to realise the following programme.

Classification scheme for quantum kinematics of rank k on a topological
space X

1. Topological classification of wave functions. Classify isomorphism classes of flat
hermitian vector bundles of rank k over Cn(X).

2. Classification of statistical properties. If X is a manifold, for each flat hermi-
tian vector bundle, classify the flat connections. The parallel transport around

1Paracompactness of a space is a property of its open covers. For every open cover {Uα : α ∈ A}
(A being the set of indices), one can form a refinement, which is another cover {Vβ : β ∈ B} such,
that for every α there exists β such, that Vβ ⊂ Uα. Space X is paracompact, when its every open
cover has a refinement, which is locally finite. We assume X to be paracompact, because it makes the
problem of classification of quantum kinematics more tractable. All topological spaces considered in
this thesis are paracompact.
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loops in Cn(X) determines the statistical properties. For general paracompact
X, this point can be phrased as classification of the U(k) - representations of the
fundamental group.

As we have seen in the above examples, there is a fundamental difference between
anyons in R2 and bosons and fermions in R3. Anyons emerge as different flat connec-
tions on the trivial line bundle over C2(R2), while fermions and bosons emerge as flat
connections on non isomorphic line bundles over C2(R3). As we explain in chapter 3,
these results generalise to arbitrary numbers of particles.

In this thesis, we approach the problem of classifying complex vector bundles by
computing the cohomology groups of configuration spaces over integers. Such strategy
has also been used used in [4] to partially classify vector bundles over configuration
spaces of distinguishable particles in Rm. To this end, we combine the following re-
sults concerning the structure of Vect(B), the set of complex vector bundles over a
paracompact base space B.

1. Classification of complex vector bundles by maps f : B → Grk(C∞) and
Chern classes. Any complex vector bundle over a paracompact base space B
can be obtained as a pullback of the universal vector bundle over the infinite
Grassmannian Grk(C∞). The homotopy classes of maps from B to Grk(C∞) are
in a one-to-one correspondence with the isomorphism classes of vector bundles of
rank k. Chern classes are defined as pullbacks of generators of the cohomology
ring of Grk(C∞) to B. Chern classes of isomorphic vector bundles are necessarily
the same. We describe all the above notions in section 3.1.

2. Classification of vector bundles of rank 1 by the second cohomology
group. The set of line bundles equipped with the tensor product, Vect1(B), is
an abelian group. This group is isomorphic to the second cohomology group of
B over integers.

Vect1(B) ∼= H2(B,Z).

3. Classification of vector bundles in the stable range. We use the notion or
stable equivalence of vector bundles. Two vector bundles are stable equivalent if
they become isomorphic after taking a direct sum with a trivial bundle. Stable
equivalence classes of vector bundles under the operation of fiberwise addition
form a group, which is the reduced Grothendieck group K̃(B). We use the result
of Atiyah and Hirzebruch [11] (see also [12]) which states that K̃(B)⊗Q is equal
to the direct sum of even cohomology groups of B over rationals. If B has the
homotopy type of a finite CW-complex and H∗(B,Z) is torsion-free, K̃(B) is the
direct sum of even homology groups of B over integers. In the stable range, i.e.
for k ≥ 1

2
dimB, stable equivalence of vector bundles implies their equivalence,

hence in the case of torsion-free cohomology, we have

Vectk(B) ∼=
∞⊕
i=1

H2i(B,Z), for k ≥ 1

2
dimB.

For more details, see section 3.2.

As we explain in chapter 4, the homotopical dimension of a graph configuration
space for a sufficiently large number of particles is equal to the number of essential

10



vertices of the considered graph. Hence, the stable range for vector bundles over
Cn(Γ) and n large reads

k ≥ 1

2
|{v ∈ V (Γ) : d(v) ≥ 3}|.

A possible source of new signatures of topology in quantum mechanics would be the
existence of non-trivial vector bundles that admit a flat connection. These bundles are
detected by the Chern classes, which for flat bundles belong to torsion components of
H2i(B,Z). We explain this fact and its relation with quantum statistics in section 3.3.

The formulation of quantum dynamics of rank 1 for n identical particles in Rm is
rather straightforward. By the minimal coupling principle, we consider hamiltonians
that describe a single particle in Rmn, i.e.

Ĥ = V (x1
1, . . . , x

1
m, x

2
1, . . . , x

n
m) +

1

2

∑
i=1,...,m
a=1,...,n

(p̂ai )
2, p̂ai = −i∂xai − α

a
i ,

where αai are the coefficients of some closed 1-form Γ =
∑

i,a α
a
i dx

a
i (the connection

1-form). Writing down all hamiltonians is equivalent to the task of classifying all flat
connections over Cn(Rm). For particles in R2, such an approach leads one to the well-
known anyonic hamiltonian [70]. If the one-particle configuration space X is a smooth
manifold, the kinetic part of the hamiltonian is the lift of the Laplace-Beltrami operator
to the considered vector bundle. For details of this construction, see [5]. For X being
a graph, one is led to considering self-adjoint extensions of some symmetric operators,
see chapter 1.2.

1.2. Quantum kinematics on graphs
Configuration spaces of indistinguishable particles on graphs are defined as

Cn(Γ) := (Γ×n −∆n)/Sn,

where ∆n = {(x1, . . . , xn) ∈ Γ×n : ∃i 6=j xi = xj} and graph Γ is regarded as a 1-
dimensional cell complex. Let us take a closer look at the structure of Cn(Γ). Note
first that Γ×n is a CW -complex. More specifically, it is a cube complex, i.e. a CW -
complex, where all d-cells are cubes and the gluing maps are injective. The d-cells of
Γ×n are products of d edges and a number of vertices of Γ. The set of d-cells is denoted
by Σd.

Σd(Γ×n) = {σ1 × · · · × σn : σi ∈ E(Γ) ∪ V (Γ), |{i : σi ∈ E(Γ)}| = d}.

In particular, the n-cells in Γ×n are of the form

Σn(Γ×n) = {e1 × · · · × en : ei ∈ E(Γ)}.

The corresponding chain complex is a bigraded Z-module with the canonical basis⋃∞
d=0 Σd, which has the structure of a monoid with respect to the multiplication by

edges and vertices of Γ (multiplication is associative, but not commutative). The
degrees of the components are

|v| = (1, 0), |e| = (1, 1), v ∈ V (Γ), e ∈ E(Γ),
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where the first index denotes the number of particles and the second index denotes the
dimension. The boundary map is constructed by assigning an orientation to each edge
of Γ, so that one can distinguish its initial vertex ι(e) and terminal vertex τ(e). Then,
we have

∂v = 0, ∂e = τ(e)− ι(e).
The boundary map for elements of a higher degree is determined by the Eilenberg-
Zilber theorem:

∂(χ⊗ η) = (∂χ)⊗ η + (−1)dχ∂η

for d-chain χ. Hence, the boundaries of two d-cells have a non-empty intersection of
dimension d − 1 iff the cells are composed of the same elements except one and the
distinctive elements are edges in Γ that share a vertex. Moreover, a d-cell σ1×· · ·×σn
has a non-empty intersection with ∆n iff σi∩σj 6= ∅ for some i 6= j. Under the quotient
by Sn cells that have an empty intersection with ∆n, become sets of distinct elements
of Γ, as different permutations of elements are identified. Cells that have a non-empty
intersection with ∆n are affected by the quotient map so that closures (as subsets of
Γ×n) of their images have the form of simplices or cubes.

Example 1.2. Configuration space of two particles on graph Y . In Y ×Y there
are 9 two-cells. Six of them are products of distinct (but not disjoint) edges of Y . Their
intersect with ∆2 is a single point, which we denote by (2, 2). The three remaining
two-cells are of the form e×e. They have the form of squares, which intersect ∆2 along
the diagonal. Graph Y and space C2(Y ) are shown on Fig. 1.4.

Figure 1.4: Graph Y and its two-particle configuration space. White dots and dashed
lined denote the diagonal ∆2.

The fact that Cn(Γ) is composed of pieces that are locally isomorphic to Rn is the
key property that allows one to define quantum kinematics as gluing the local quantum
kinematics on Rn. Namely, the momentum operator on (e1 × e2 × · · · × en −∆n)/Sn
has n components that are defined as

p̂i = −ι∂i − αi, i = 1, . . . , n.

We may define orthonormal coordinates and connection coefficients on each n-cell sep-
arately. For each n-cell we require that the connection 1-form Γ =

∑n
i=1 αi is closed,

hence locally the connection is flat. In order to impose global flatness of the consid-
ered bundle, we require that the parallel transport does not depend on the homotopic
deformations of curves that cross different pieces of Cn(Γ). This requirement imposes
conditions on the parallel transport operators along certain edges (1-dimensional cells)
of Cn(Γ). To see this, we need the following lemma by Abrams [28].
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Lemma 1.3. Fix n – the number of particles. If Γ has the following properties: i) each
path between distinct vertices of degree not equal to 2 passes through at least n−1 edges,
ii) each nontrivial loop passes through at least n + 1 edges, then Cn(Γ) deformation
retracts to a CW -complex Dn(Γ), which is a subspace of Cn(Γ) and consists of the
n-fold products of disjoint cells of Γ.

Complex Dn(Γ) is called Abram’s discrete configuration space and we elaborate on its
construction in chapter 4. For the construction of quantum kinematics, we only need
the existence of the deformation retraction. This is because under this deformation,
every loop in Cn(Γ) can be deformed to a loop in Dn(Γ) ⊂ Cn(Γ), which has a nicer
structure of a CW -complex. Therefore, we only need to consider the parallel transport
along loops inDn(Γ). Furthermore, every loop inDn(Γ) can be deformed homotopically
to a loop contained in the one-skeleton of Dn(Γ). The problem of gluing connections
between different pieces of Cn(Γ) becomes now discretised. Namely, we require that the
unitary operators that describe parallel transport along the edges of Dn(Γ) compose
to the identity operator whenever the corresponding edges form a contractible loop. In
other words,

Uσ1Uσ2 . . . Uσl = 1 if σ1 → σ2 → · · · → σl is a contractible loop in Dn(Γ).

By σ1 → σ2 → · · · → σl we denote the path constructed by travelling along 1-cells σi
in Dn(Γ). This is a closed path whenever σl ∩ σ1 6= ∅.

More formally, we classify all homomorphisms ρ ∈ Hom(π1(Cn(Γ)), U(k)) and con-
sider the vector bundles that are induced by the action of ρ on the trivial principal
U(k)-bundle over the universal cover of Cn(Γ). For more details, see chapter 3.

Therefore, the classification quantum kinematics of rank k on Cn(Γ) is equivalent
to the classification of the U(k) representations of π1(Dn(Γ)). The described method
of classification of quantum kinematics in the case of rank 1 becomes equivalent to the
classification of discrete gauge potentials on Cn(Γ) that were described in [15].

Example 1.4. Quantum kinematics of rank 1 of two particles on graph Y .
The two-particle discrete configuration space of graph Y consists of 6 edges that form
a circle (Fig. 1.5). Therefore, any non-contractible loop in C2(Y ) is homeotopic with
D2(Y ).

Figure 1.5: Deformation of a loop from C2(Y ) to D2(Y ).

The classification of kinematics of rank 1 boils down to writing down the consistency
relation for U(1) operators arising from the parallel transport along the edges in D2(Y ).
These operators are just phase factors

Uσ = e−iφσ , φσ =

∫
σ

α1.
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The parallel transport of a wave function results with

T̂γΨ = e−iφ0Ψ, φ0 = φ1 + φ′1 + φ2 + φ′2 + φ3 + φ′3.

This is reflected in the fact that π1(C2(Y )) = Z.

Quantum dynamics on graphs

We define quantum dynamics on graphs by studying self-adjoint extensions of hamil-
tonian

Ĥ =
1

2

n∑
i=1

(−ι∂i − αi)2 (1.4)

on Cn(Γ), where the wave functions are defined piecewise on cells of the topological
closure of Cn(Γ) regarded as a subset of Γ×n. Namely, denote by Σ(n)(Cn(Γ)) the
set of n-cells of the topological closure of Cn(Γ). Then, the wave functions are the
square-integrable functions on Σ(n)(Cn(Γ))

Ψ ∈
⊕

σ∈Σ(n)(Cn(Γ))

L2(σ).

A similar approach has been used in [17, 18, 19] to describe all self-adjoint extensions
of the multi particle hamiltonian on networks

Ĥ =
1

2

n∑
i=1

(−ι∂i)2 (1.5)

with contact delta-interaction, which does not allow the particles to collide. There, the
(scalar) wave functions are defined piecewise on cells of Γ×n and the conditions for Ĥ
from equation (1.5) to be self-adjoint take the form of certain boundary conditions for
the wave functions and their derivatives on the boundaries of cubes from Γ×n. This
approach is different form the approach proposed in this thesis, as the symmetry of wave
functions with respect to the particle exchange must be imposed in the standard way
as suitable symmetry of wave functions on Γ×n. Paper [16] shows a way of constructing
some self adjoint extensions of hamiltonian (1.5) directly on Cn(Γ) for two particles
on a lasso graph and the graph being the wedge sum of two circles (graph of the
shape of figure eight). Interestingly, some of the boundary conditions can be inferred
just from the knowledge of the unitary representations of the fundamental group of
Cn(Γ). Hamiltonian (1.5) does not take into account the possibility of the existence
of some non-trivial connection, which, as we have seen, is also a source of topological
phenomena. The problem of describing the self-adjoint extensions of hamiltonian (1.4)
is an open problem. A possible way of tackling this problem would be to join the
methodology known from studying self adjoint extensions of hamiltonian (1.5) on Cn(Γ)
or on Γ×n and the recent results concerning the unitary representations of π1(Cn(Γ))
[20, 22].
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Chapter 2

CW-complexes

In this chapter, we introduce a family of topological spaces that constitutes a com-
mon ground for all configuration spaces that are considered in this paper. These
topological spaces are called CW complexes, and the reasons why they are important
are the following two theorems.

Theorem 2.1. The configuration space of any graph Γ can be deformation retracted
to a finite cube complex.

The above theorem has been already mentioned in section 1.2. A cube complex is a
special kind of a CW complex, where the building blocks are cubes. We will return to
the notion of a cube complex later in this chapter. This result is due to Świątkowski
and Abrams, who introduced two different ways of derofming Cn(Γ) to a cube complex
[28, 14]. The following theorem regards a CW -complex structure of Cn(Rk) [55, 56].

Theorem 2.2. The configuration space of n particles in Rn has the homotopy type of
a finite CW -complex.

As we explain in this chapter, using the structure of a CW -complex makes some
computational problems more tractable. This is especially useful, while computing
the homology groups of graph configuration spaces, because the corresponding CW -
complexes have a simple, explicit form.

Let us next give the formal definition of a CW -complex.

Definition 2.1. A CW -complex is a pair (X,Σ) that consists of a Hausdorff space X
together with a partition of X into open cells that satisfies the following axioms.

1. For each n-dimensional cell σ ∈ Σ there exists a continuous map Φσ : Dn → X,
called the characteristic map, that maps the interior of n-dimensional disc Dn

homeomorphically to σ and ∂Dn ∼= Sn−1 to a finite sum of cells of dimension less
than n.

2. The closure cl(σ) of every σ ∈ Σ intersects a finite number of cells.

3. Subset A ⊂ X is closed iff A ∩ cl(σ) is closed for all σ.

Axiom 2 is called the axiom of closure finiteness, and axiom 3 is called the weak
topology axiom. The name "CW -complex" stands for these two properties. However,
axioms 2 and 3 become relevant only, when X consists of an infinite number of cells.
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For finite complexes, they are satisfied trivially. We denote by Σ(n) the set of all n-cells
and by X(n) the n-skeleton of X, which is the sum of all cells in X of dimension ≤ n.

X(n) :=
⋃

σ∈Σ(0)∪···∪Σ(n)

Φσ(Ddimσ).

For every closed n-cell cl(σ) = Φσ(Dn) ⊂ X, we distinguish its interior and boundary,
which are defined as1

σ̊ := int(σ) = Φσ(Dn − ∂Dn),
.
σ := cl(σ)− int(σ) = Φσ(∂Dn).

By the above definitions, we have, that .σ ⊂ X(n−1) and σ̊ ⊂ X(n) −X(n−1).
There is a universal inductive way of forming CW -complexes, which relies on gluing

points from the boundary of Dn to the (n − 1)-skeleton. More specifically, consider a
continuous map φσ : ∂Dn ∼= Sn−1 → X(n−1). The quotient

X ∪φσ Dn =: (X tDn) / ∼, x ∼ φσ(x)

is a new CW -complex that has one n-cell more than complex X. The characteristic
map of the new cell is the composition of inclusion and quotient map

Φσ : Dn ↪−→ X tDn → X ∪φσ Dn.

The boundary of the new cell is the set φσ(Sn−1), which is a continuous, but not
necessarily a homeomorphic image of Sn−1 (see Fig. 2.1).

Figure 2.1: Attaching a 1-dimensional cell to complexX. ComplexX is a 2-dimensional
sphere that has one 0-cell and one 2-cell. Figure a) shows the prepared space X tD1,
and figure b) shows D1 attached to X via gluing map φ : S0 → X(0) that identifies
the endpoints of D1 with the one-cell of X.

The definition of a CW -complex allows for the existence of different kinds of irregu-
larities. For example, the dimension of X can vary locally (as on Fig. 2.1) or the gluing
maps need not be injective - they may glue some of the points of Sn. However, while
studying the discrete models of graph configuration spaces we meet a certain class of
CW -complexes that possess some additional regularity properties. The relevant class
of CW -complexes is the class of cube complexes.

1We borrow the following notation from [59].
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Definition 2.2. A cube complex is a CW -complex, where

• the attached cells are cubes [0, 1]n ∼= Dn,

• the characteristic maps are injective,

• the gluing maps identify faces of cubes of the same dimension by a homeomor-
phism.

The above definition means, that each n-cell σ in X is homeomorphic to [0, 1]n, i.e.
σ ∩X contains 2n cells of dimension n− 1 (faces of the cube), 4

(
n
2

)
cells of dimension

(n− 2) that are (n− 2)- dimensional facets of the cube, and so on. However, two cells
can share more than one face (see Fig. 2.2).

Figure 2.2: Illustration of the definition of a cube complex. Picture on the left hand
side is not a cube complex, because one of the characteristic maps is not injective.

2.1. Homotopy
In this section, we explain homotopy - a notion underlying the "topological invari-

ance" of different objects.

Definition 2.3. Two continuous maps between topological spaces f, g : X → Y are
homotopic, f ∼= g, iff there exists a continuous map h : X × [0, 1] → Y such that
h(x, 0) = f(x) and h(x, 1) = g(x) for all X. Map h is called a homotopy.

The relation of homotopy is an equivalence relation. The set of equivalence classes
of maps between X an Y with respect to this relation is denoted by [X, Y ]. The
homotopy classes of certain maps plays a key role in the classification of vector bundles,
see chapter 3. The homotopy of maps yields the notion of homotopy equivalence of
topological spaces.

Definition 2.4. Topological space X is homotopy equivalent to topological space Y iff
there exist continuous maps h : X → Y and g : Y → X such that g ◦ f ∼= IdX and
f ◦ g ∼= IdY .

The precise meaning of an object (a map, a functional) being "topologically invari-
ant" is that such an object does not change, when evaluated on spaces from the same
homotopy class. Using the definition of homotopy directly is usually technically diffi-
cult. A more tractable approach to the problem of deciding homotopic equivalence of
topological spaces is via studying deformation retracts.
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Definition 2.5. Subspace A of a topological space X is a deformation retract of X iff
there exists a continuous map ρ : X → A such that ρ

∣∣
A

= IdA and ρ ∼= IdX . Such
a map is called a deformation retraction. If, additionally, there exists a homotopy
between ρ and IdX such that

ht(a) = a for all a ∈ A, t ∈ [0, 1],

then A is a strong deformation retract and ρ is a strong deformation retraction.

A deformation retraction ρ together with inclusion map iA : A ↪−→ X are the maps
required by definition 2.4 for A and X to be homotopically equivalent. Intuitively, one
can view a strong deformation retraction as contracting space X to A along the lines
given by ht(x), varying t ∈ [0, 1]. The technique of strong deformation retracts has
been used in [28, 14] to prove homotopy equivalence of graph configuration spaces and
their discrete models.

Another notion that we extensively explore in this thesis is the homotopy of paths
and homotopy of loops, that gives rise to the notion of fundamental group. A path γ
is a continuous map from [0, 1] to X

γ : [0, 1]→ X.

A loop is a path, whose endpoints meet. Hence, we can view it as a continuous map
from the circle to X

γ : S1 → X.

Two paths γ and γ′, that have common endpoints, are homotopically equivalent, iff
there exists a homotopy h : [0, 1]× [0, 1]→ X that fixes the endpoints, i.e.

∀s h0(s) = γ(s), h1(s) = γ′(s), ∀t ht(0) = γ(0) = γ′(0), ht(1) = γ(1) = γ′(1).

Intuitively, functions ht form a continuous family of intermediate paths between γ
and γ′. For paths that share at least one endpoint, one can define an operation of
composition, which intuitively means travelling through path γ and γ′ in a consecutive
order. More formally, path γ· γ′ is defined as

(γ· γ′)(s) =

{
γ(2s) 0 ≤ s ≤ 1

2
,

γ′(2s− 1) 1
2
≤ s ≤ 1.

(2.1)

Consequently, equation (2.1) defines composition of loops that are attached to the same
base point x0 ∈ X. For loops, one can also define inverse elements as γ−1 : s→ γ(1−s),
so that γ· γ−1 is a trivial loop (a point). The composition of loops descends to the set
of homotopy classes of loops, which acquires the structure of a group

[γ]· [γ′] := [γ· γ′].

with the identity element being the homotopy class of contractible loops. Such a group
is called the fundamental group of space (X, x0) and denoted by π1(X, x0). If X is
a path-connected space (any pair of its points can be connected by a path), we often
do not specify the base point, as for such a space, the fundamental groups at different
base points are isomorphic. The following fact [57] asserts, that for spaces that are
considered in this thesis, the fundamental group has a finite number of generators.
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Fact 2.1. The fundamental group of a finite CW complex is finitely generated.

This means, that in all scenarios that are relevant in this thesis, the fundamental group
can be described by choosing a finite set of generators a1, . . . , ar and considering all
combinations of generators and their inverses, subject to certain relations

π1(X) = 〈a1, a2, . . . , ar : W1(a1, . . . , ar) = e, . . . , WR(a1, . . . , ar) = e〉.

Relations {Wi} have the form of words in a1, . . . , ar, i.e. can be written as

Wi(a1, . . . , ar) = ap1i1 a
p2
i2
. . . apkik , pi ∈ Z.

For path-connected spaces, one can use the language of homotopy classes of maps
in defining the fundamental group

π1(X) = [S1, X].

One can extend this definition and consider homotopy classes of maps from higher
dimensional spheres to X, which give rise to higher homotopy groups

πk(X) := [Sk, X].

As the last part of this section, we would like to mention a special family of spaces, that
configuration spaces often belong to. These are the Eilenberg-MacLane spaces. They
are defined as spaces that have one single nontrivial homology group and are denoted
by K(G, k). Eilenberg-MacLane space of type K(G, k) has the following properties

πk(X) = G, πi(X) = 0 for i 6= k.

In particular, graph configuration spaces and Cn(R2) are Eilenberg-MacLane spaces of
type K(G, 1), which are also called the aspherical spaces.

2.2. Homology and cohomology of CW -complexes
In this section we introduce the construction of homology groups of CW -complexes.

Computation of homology groups for graph configuration spaces is the main subject of
this thesis. The main references for this section are books by A. Hatcher [58] and E.
Spanier [40].

2.2.1. Homology of chain complexes

We start with the definition of an abstract chain complex, then specify this con-
struction for the case of CW -complexes.

Definition 2.6. A chain complex C = {Cd} is a graded abelian module over ring R,
equipped with a boundary map, i.e. a homomorphism ∂ : Cd → Cd−1, that satisfies
∂ ◦ ∂ = 0.

We denote a basis of Cd by Σ(d). The above definition means, that elements of Cd are
formal linear combinations of basis elements with coefficients in R∑

σ∈Σ(d)

aσσ, aσ ∈ R,
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and the allowed operations are addition of chains and scalar multiplication by elements
of R. The homology groups of chain C in coefficients in R are defined as the following
quotients of abelian modules

Hd(C, R) := ker ∂d/im∂d+1.

In this thesis, we only consider chain complexes as modules over the integers, R = Z, or
rationals, R = Q. If R = Z, the corresponding chain complex Cd is actually an abelian
group isomorphic to a direct sum of copies of Z. Moreover, when the number of basis
elements is finite for every d, we have the following theorem about the structure of
homology groups.

Theorem 2.3. If C is a chain complex of finite dimension with coefficients in Z, then
the homology groups are finitely generated abelian groups, i.e. have the following form

Hd(C,Z) = ZK ⊕
L⊕
i=1

Zpi ,

where K,L ∈ N, and pi divides pi+1.

Number K is called the rank of Hd(C,Z), and is equal to the nth Betti number of
complex X.

K = rk(Hd(C,Z)) = βn(X).

The cyclic part of Hd(C,Z) is called the torsion part and denoted by T (Hd(C,Z))
or Td(C,Z). Let us next show how this theorem follows from theorem 2.4 about the
existence of the Smith normal form of a matrix, as it will be relevant for chapter 5,
where the computational results for graph configuration spaces are presented.

Theorem 2.4. Every m× n matrix A with integer entries can be written as

A = UDV, (2.2)

where

• matrix D is diagonal, i.e. Di,j = 0 for i 6= j, and Di,i are natural numbers such,
that Di,i divides Di+1,i+1 for all i,

• matrices U and V are respectively m × m and n × n integer matrices, whose
determinants are equal to ±1.

Matrix D from theorem 2.4 is called the Smith normal form of matrix A and Di,i are
called elementary divisors of matrix A.

Proof. (of theorem 2.3) Consider the following sequence of maps

Cd+1
∂d+1−−→ Cd

∂d−→ Cd−1, (2.3)

where ∂k := ∂
∣∣
Ck
. Chain complex C is of finite dimension, hence both boundary

maps can be written as finite matrices with integer coefficients, whose dimensions
correspond to the dimensions of the respective chain subcomplexes. Hence, sequence
(2.3) is isomorphic to

Zk ∂d+1−−→ Zm ∂d−→ Zn.
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Because ∂ ◦ ∂ = 0, we have im∂d+1 ⊂ ker ∂d. Therefore, in computing quotient
ker ∂d/im∂d+1, we can firstly restrict to considering a smaller matrix ∂d+1 : Zk → Zs,
where s = dim(ker ∂d). Denote by [∂] the matrix of the boundary map, written in the
standard basis. Using theorem 2.4 for matrix [∂d+1], we show, that

coker∂d+1 := Zs/im∂d+1 = Zs−r ⊕
r⊕
i=1

Zpi ,

where r is the rank of ∂d+1. Indeed, because matrices V and U from formula (2.2)
describe injective morphisms, we have coker∂d+1

∼= cokerD. In general, matrix D has
the form

D = diag(p1, . . . , pr, 0, . . . , 0).

Moving to the basis of Zs, in which matrix D is diagonal, the image of D is spanned
by elements p1a1, . . . , prar, where a1, . . . , ar, ar+1, . . . , as are the basis elements of Zs.
In the quotient space, element aipi gives rise to a Zpi-direct summand, whenever p1 >
1.

If R = Q, we simply have Hd(C,Q) = QK for some K ∈ N.
Realising the above constructions for CW -complexes poses two main problems.

Firstly, one has to properly define the set of generators of C, which are in a one-to-
one correspondence with cells of the considered CW complex. Secondly, one has to
define a boundary map. The theory that deals with these issues and with the compu-
tation of the related homology groups is known under the name of cellular homology.
Let us next review its main aspects. The first step in defining a chain complex over
R, C(X,R), that corresponds to a CW complex X, is choosing an orientation for
each cell of X. This goes as follows (see [59] for more details). Every characteristic
map Φσ : Dn → X induces a homomorphism Hσ : Dn/∂Dn → X(n)/(X(n) − .

σ),
where the slash denotes the quotient by a subspace. Note, that both Dn/∂Dn and
X(n)/(X(n) − .

σ) are homeomorphic to Sn. Hence, map Hσ can be viewed as a home-
omorphism Sn → Sn. Orientation of n-cell σ is defined as the homotopy class of the
corresponding homeomorphism Hσ : Sn → Sn. There are two homotopy classes of
such homeomorphisms, which we denote by ±1. After choosing the ±1 orientation for
each cell, we obtain an oriented CW complex. Chain complex corresponding to X is
the complex generated by oriented cells of X

C(X,R) =
⊕
σ∈Σ

R.

In our notation, we omit the fact, that the cells are oriented, however when talking
about chain complex C(X,R) we keep the orientation in mind. The boundary of cell σ is
a linear combination of cells, who belong to .σ with proper coefficients. The coefficients
are called the incidence numbers and are denoted by [σ : τ ] for τ ⊂ .

σ. The boundary
map is given by

∂σ =
∑
τ∈.σ

[σ : τ ]τ. (2.4)

In general, determining the incidence numbers is a subtle problem. However, for CW
complexes, whose gluing maps are homeomorphisms, the incidence numbers are deter-
mined by comparing the orientation of τ and the orientation induced by σ on τ . The
value of [σ : τ ] is simply +1 if the orientation induced by σ on τ and the orientation
of τ agree, and −1 if they are opposite. If τ ∩ .σ = ∅, we put [σ : τ ] = 0.
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Example 2.5. Möbius band as a regular CW -complex.

Figure 2.3: Möbius band as a regular oriented CW complex. It consists of four 0-
dimensional cells vi, six 1-cells ei, and two 2-cells σi. The orientation of 2-cells is
denoted by circles, the orientation of 1 cells by arrows and the orientation of 0-cells by
±. The induced orientation is along the direction of circles and by the inflow (+) and
outflow (−) of arrows for 1- and 0-cells respectively.

According to equation (2.4) and the discussion about regular complexes, the boundary
map reads

∂σ1 = e1 + e2 + e3 + e4, ∂σ2 = e1 − e2 + e5 − e6.

Clearly, the kernel of ∂2 is trivial, hence H2(X,Z) = 0. The boundaries of 1-cells read

∂e1 = v1 + v2, ∂e2 = v3 + v4, ∂e3 = −v2 − v3, ∂e4 = −v1 − v4,

∂e5 = −v1 + v3, ∂e6 = v2 − v4.

By a straightforward calculation, we check that

ker ∂1 = 〈e1 + e2 + e3 + e4, e1 + e3 + e5, e2 + e3 + e6〉 ∼= Z3.

Note, that the first element of the basis of ker ∂1 is equal to ∂σ1, while the last two
elements are related by (e1 + e3 + e5)− (e2 + e3 + e6) = e1− e2 + e5− e6 = ∂σ2. Hence,
in the quotient by im∂2 there is only one degree of freedom. By computing the Smith
normal form of matrix ∂2, we get, that there are no elementary divisors greater than
1, hence H1(X,Z) = Z. Similarly, we obtain, that H0(X,Z) = Z.

As different choices of orientation yield homotopy equivalent oriented CW -complexes
[59], the homology groups are independent on the choice of orientation.

2.2.2. Homological exact sequences and Künneth formula

In this subsection, we review the basic algebraic tools, which we use in computing
homology groups of discrete models of graph configuration spaces. The first tool is the
Künneth formula, which describes the homology group of the Cartesian product of two
complexes in terms of homology groups of the constituents. The second kind of tools
are the homological exact sequences, which we use in this thesis in two main contexts.
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Firstly, we explain the basic method of deriving homological exact sequences from short
exact sequences of chain complexes. We use this general method to describe the effect
of different manipulations on graphs, like removing a vertex or disjoining an edge, on
the structure of their configuration spaces. We borrow this proof strategy from [61].
Secondly, we utilise the Mayer-Vietoris sequences, when we compute homology groups
of a large complex, using the knowledge of homology groups of its smaller constituents
(section 5.3).

The starting point for all the algebraic methods we use is a situation, where we
have three chain complexes A, B and C that are related by a short exact sequence.

0→ A
f−→ B

g−→ C→ 0. (2.5)

The exactness of the above sequence means, that each map (denoted by an arrow) is a
homomorphism, whose image is the kernel of the succeeding homomorphism. There-
fore, map f in the above sequence is injective and map g is surjective. Moreover, we
have the standard boundary maps in complexes A,B,C, that we denote by a common
letter ∂. If maps f and g are chain maps, i.e. they commute with the boundary map,
sequence (2.5) implies a long exact sequence of homology groups [58]

· · · → Hd(A)
f∗−→ Hd(B)

g∗−→ Hd(C)
δ−→ Hd−1(A)

f∗−→ Hd−1(B)→ . . . .

The ‘boundary map’ δ is defined as follows. Let c ∈ ker ∂ represent an element ofHd(C).
By surjectivity of g, we have c = g(b) for some b ∈ Bd. Because g is a chain map, we
have 0 = ∂c = g(∂b), i.e. ∂b ∈ ker(g : Bd−1 → Cd−1). By exactness of (2.5), ∂b ∈
im(f : Ad−1 → Bd−1). Because map f is injective, there is a unique a ∈ Ad−1 defined
by a = f−1(∂b). Note, that a is a cycle, because 0 = ∂∂b = ∂f(a) = f(∂a), where
ker f = 0. Map δ maps [c] ∈ Hd(C) to [a] ∈ Hd−1(A). It is a matter of straightforward
calculation to check, that δ is well-defined, i.e. i) a is uniquely determined by the choice
of ∂b, ii) chainging b to b+ b′ with b′ ∈ ker g yields a cycle, which is homologous to a,
iii) changing c to c+ ∂c′ leaves a unchanged.

Another useful technique is breaking a long exact sequence into a collection of short
exact sequences. This means, that a long exact sequence of abelian groups

· · · → Ad+2
fd+2−−→ Ad+1

fd+1−−→ Ad
fd−→ Ad−1

fd−1−−→ Ad−2 → . . . ,

can be broken up into short exact sequences

0→ cokerfd+2 → Ad → ker fd−1 → 0.

Map cokerfd+2 → Ad induced by fd+1 is injective, since cokerfd+2 = Ad+1/imfd+2
∼=

Ad+1/ ker fd+1. Map Ad → ker fd−1 is surjective by exactness – imfd = ker fd−1, as any
map is surjective on its image. We often use the following isomorphisms, that follow
from exactness of the long sequence

ker fd−1 = imfd ∼= cokerfd+1.

Similarly, one can consider short exact sequence 0 → A
f−→ B

g−→ C → 0 of abelian
groups A,B,C. We are often interested in cases, when such a short exact sequence
splits. This means, that there is a canonical isomorphism B ∼= A ⊕ C. Equivalently,
i) there is a homomorphism p : B → A such that p ◦ f = idA, or ii) there is a
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homomorphism s : C → B such that s◦g = idC . The above three equivalent conditions
for the exact sequence to split are satisfied if group C is free abelian (has no torsion),
as one can choose a basis {ci} of C and define the desired homomorphism s as ci → bi
for {bi} such that g(bi) = ci.

A special case of the above considerations are the Mayer-Vietoris sequences. Let
X be a CW -complex, and A,B its subcomplexes such, that X = A ∪ B. The Mayer-
Vietoris sequence for X = A ∪B reads [58]

· · · → Hd(A ∩B)
Φ−→ Hd(A)⊕H2(B)

Ψ−→ Hd(X)
δ−→ Hd−1(A ∩B)

Φ−→ . . . (2.6)

The Mayer-Vietoris sequence can be derived from the following short exact sequence
of chain complexes.

0→ Cd(A ∩B)
φ−→ Cd(A)⊕ Cd(B)

ψ−→ Cd(A ∪B)→ 0.

Map φ acts on d-chains from A ∩ B by assigning the same chain to each summand
in the image, i.e. for x ∈ Cd(A ∩ B), φ(x) = (x,−x). Map ψ sums of chains, i.e.
ψ(x, y) = x + y. It is straightforward to check, that imφ = kerψ. The boundary map
δ (also called the connecting homomorphism) acts as follows. Every d-cycle, z, from
A ∪B can be written as a sum of d-chains form A and B respectively

z = x+ y, x ∈ Cd(A), y ∈ Cd(B).

Because ∂z = 0, we have ∂x = −∂y. Chains ∂x and ∂y are (d−1)-cycles, since ∂∂ = 0.
Moreover, these cycles represent the same element of Hd−1(A ∩ B). In other words,
δ[z] := [∂x] = [−∂y]. Note that class [∂x] does not depend on the chosen decomposition
of z. Long exact sequence (2.6) implies the short exact sequence

0→ coker(Φ)→ Hd(X)→ coker(Ψ)→ 0.

If coker(Ψ) is free abelian, the sequence splits, i.e.

Hd(X) = coker(Φ)⊕ coker(Ψ) = coker(Φ)⊕ imδ.

In the last equality we used the fact that imδ is isomorphic of coker(Φ) by exactness of
(2.6). If X = A∪B are general topological spaces (not necessarily CW complexes), for
the Mayer-Vietoris sequence to work, it is necessary for X to be the union of interiors
of A and B.

As the last point of this subsection, we review the Künneth formula, which describes
the homology of products of topological spaces. This theorem will be often used in
computation of homology groups of configuration spaces, as such spaces are locally
Cartesian products. We begin with the observation, that when C(X) and C(Y ) are
cellular chains corresponding to two finite CW complexes, then the set of d-dimesional
cells of C(X × Y ) is given by tensor products of cells from C(X) and C(Y ) of proper
dimensions.

Σ(d)(C(X × Y )) =
⊔

k+l=d

Σ(k)(X)× Σ(l)(Y ).

Using natural isomorphisms R[Σ× Σ′] ∼= R[Σ]⊗ R[Σ′] and R[Σ t Σ′] ∼= R[Σ]⊕ R[Σ′],
we obtain, that

Cd(X × Y ) ∼= (C(X)⊗ C(Y ))d ∼=
⊕
k+l=d

Ck(X)⊗ Cl(Y ).
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The boundary map in C(X × Y ) is described via its action on the tensor products of
chains in the following way.

∂(c⊗ c′) = (∂c)⊗ c′ + (−1)dim cc⊗ (∂c′).

By considering tensor products of cycles, we obtain a homomorphism⊕
k+l=d

Hk(X)⊗Hl(Y )
h−→ Hd(X ⊗ Y ). (2.7)

If all homology groups of the considered spaces are free, then homomorphism (2.7)
is an isomorpism. In general, the kernel of homomorphism (2.7) is described by the
so-called Tor-product of Hi(X) and Hd−i−1(Y ) for i = 0, . . . d− 1,

kerh ∼=
d−1⊕
i=0

Tor (Hi(X), Hd−i−1(Y )) .

The Tor-product of finitely generated abelian groups can be calculated using the fol-
lowing properties [58].

• Tor(A,B) ∼= Tor(B,A).

• Tor (⊕iAi, B) ∼= ⊕iTor(Ai, B).

• Tor(A,B) = 0 if A or B is free.

• Tor(A,B) ∼= Tor(T (A), B).

• Tor(Zp, A) ∼= ker(A
p−→ A), where p : x→ px.

Hence, if we are interested in computing the homology groups over Z, it is enough to
compute Tor(Zp,Zq). The result is Tor(Zp,Zq) ∼= Zs, where s is the greatest common
divisor of p and q, which we denote by GCD(p, q). This happens to be the same as
the tensor product of Zp and Zq, hence, we have the simple formula

Tor(A,B) ∼= T (A)⊗ T (B).

The above discussion can be summed up by the following version of the Künneth
theorem.

Theorem 2.6. Let X and Y be finite CW complexes. Then,

Hd(X × Y,Q) ∼=
⊕
k+l=d

Hk(X,Q)⊗Hl(Y,Q).

For homology groups with coefficients in Z, we have

Hd(X×Y,Z) ∼=
(⊕
k+l=d

Hk(X,Z)⊗Hl(Y,Z)

)
⊕
( ⊕
k+l=d−1

T (Hk(X,Z))⊗ T (Hl(Y,Z))

)
.
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2.2.3. Cohomology and its ring structure

The cohomology of CW complexes is a notion dual to homology. Namely, in co-
homology one considers cellular d-cochains, which are elements of Hom(Cd(X,R), R).
There is a natural coboundary map ∂∗, that maps d-cochains to (d+ 1)-cochains via

∂∗(g) := g ◦ ∂, g ∈ Hom(Cd(X,R), R).

Further on, we will identify cochains with chains via the standard pairing,

F (g) =
∑
σ∈Σ(d)

g(σ)σ,

which boils down to identifying generators of Cd(X,R) with their duals. We denote
the composition F ◦ ∂∗ ◦F−1 : Cd(X,R)→ Cd+1(X,R) by ∆d and sometimes omit the
subscript, when the dimension of the domain is clear, or when ∆ acts collectively on
cochains of different dimensions. The action of this map reads

∆(σ) =
∑

τ∈Σ(d+1): σ⊂.τ
[τ : σ]τ. (2.8)

One can check, that ∆◦∆ = 0. Consequently, we define cohomology groups of complex
X as

Hd(X,R) = ker ∆d/im∆d−1.

As in the case of homology, groups Hk(X,Z) are again finitely generated and abelian.
One of the main structural differences between homology and cohomology is that co-
homology has the structure of a graded ring H∗(X,R) =

⊕
nH

d(X,R), where the
multiplication of cohomology classes is defined via the (associative and distributive)
cup product ^: Hk(X,R)×H l(X,R)→ Hk+l(X,R). The cup product is also skew-
commutative, i.e.

u ^ v = (−1)klv ^ u, u ∈ Hk(X,R), v ∈ H l(X,R).

In order to define the cup product explicitly for any CW complex, one has to refer to a
more general concept than the cellular cohomology, namely to the singular cohomology
[58]. However, for cube complexes it is possible to define the cup product algorithmi-
cally, only in terms of cellular (co)chains [60]. We do not go into the details of this
construction, as in this thesis we will only use the fact, that the cup product exists. We
only mention, that the construction utilises the fact, that tensor products of (co)chains
span the chain complex that corresponds to the Cartesian product X ×X. By defin-
ing a proper chain map from C(X ×X,R) → C(X,R), one obtains the multiplicative
structure on the space of cochains.

In the remaining part of this subsection, we review the universal coefficient theo-
rem, which relates homology to cohomology with different coefficients. For finite CW
complexes and their (co)homology over Z, the universal coefficient theorem boils down
to the following well-known result, which can be proved using elementary methods.

Theorem 2.7. The ranks of Hk(X,Z) and Hk(X,Z) are equal and the torsion of
Hk(X,Z) is equal to the torsion of Hk−1(X,Z).
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Proof. The proof is along the same lines, as the proof of theorem 2.3 with keeping track
of the dimensions of matrices. We consider two finite chain complexes, which are dual
to each other.

0→ CN
∂N−→ . . . −→ Cd+1

∂d+1−−→ Cd
∂d−→ Cd−1 → . . .

∂1−→ C0 → 0, (2.9)

0← CN
∆N−1←−−− · · · ← Cd+1

∆d←− Cd
∆d−1←−−− Cd−1 ← . . .

∆0←− C0 ← 0,

By definition, ∆d = (∂d+1)∗. Both operators are finite matrices over integers, hence we
have [∆d] = [∂d+1]T . By the definition of (co)homology groups, we have

rk(Hd(X,Z)) = dim ker[∆d]− rk[∆d−1] = dim ker[∂d+1]T − rk[∂d]
T ,

rk(Hd(X,Z)) = dim ker[∂d]− rk[∂d+1].

Denote the dimension of Cd by d, i.e. Cd ∼= Zm, and the ranks of boundary maps by
rk[∂d] = p, rk[∂d+1] = r. Then, using the fact, that rkA = rkAT , by direct inspection
of sequences (2.9), we have, that dim ker[∂d] = m− p, dim ker[∂d+1]T = m− r. Hence,

rk(Hd(X,Z)) = rk(Hd(X,Z)) = m− p− r.

To see the inheritance of torsion, compareHd(X,Z) = ker ∂d/im∂d+1 withHd+1(X,Z) =
ker(∂d+2)∗/im(∂d+1)∗. Groups ker ∂d and ker(∂d+1)∗ are free abelian, hence the torsion
in (co)homology groups comes from the quotient. The elementary divisors of matrix
A and of its transposition are the same. This fact applied to matrix [∂d+1] yields the
result.

The complete information about the relation between homology and cohomology is
encoded in the following exact sequence [58].

Theorem 2.8. If chain complex C has homology groups Hd(C,Z), then the cohomology
groups of the corresponding cochain complex are determined by the following split exact
sequence.

0→ Ext(Hd−1(C,Z),Z)→ Hd(C,Z)
h−→ Hom(Hd(C,Z),Z)→ 0.

The natural homomorphism h is defined in the following way. Elements of Hd(C,Z) are
represented by cocycles, i.e. homomorphisms g ∈ Hom(Cd,Z) such, that g ◦ ∂ = 0. In
other words, such homomorphisms vanish on d-dimensional boundaries Bd = im∂d+1.
Hence, when evaluated on elements of Zn = ker ∂d they descend to the quotients
g : Zd/Bd → Z. Recall, that Zd/Bd = Hd. Map h : Zd/Bd = Hd → Hom(Hd,Z)
assigns to g the quotient homomorphism of its restriction to Zn, which we denoted
by g. In fact, every homomorphism from Hd to Z can be obtained in this way. To
see this,decompose the space of d-chains as Cd ∼= Zd ⊕ (Cd/Zd) ∼= Zd ⊕ Bd−1. This
is possible, since all the appearing groups are free abelian. This allows us to define a
map, that takes g : Zd/Bd → Z and assigns an element of Hd to it. Denote by g∗
the pullback of g to Zd. Any element of Hom(Zd,Z) that vanishes on Bn ⊂ Zn can
be extended to an element of Hom(Cd,Z), that also vanishes on Bd by composing it
with the projection on Zd, i.e. g∗ → g∗ ◦ p. Thus, g∗ ◦ p descends to a homomorphism
Hom(Hd,Z) → ker ∆d. Taking the quotient by im∆d−1, we obtain a homomorphism
from Hom(Hd,Z) to Hd. In this way, we proved, that there is a split exact sequence

0→ kerh→ Hd(C,Z)
h−→ Hom(Hd(C,Z),Z)→ 0.
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In other words, Hd(C,Z) = Hom(Hd,Z) ⊕ kerh. If Hd is finitely generated, then
Hom(Hd,Z) ∼= Hd/Td. Group kerh is the torsion part of Hd. It also has the inter-
pretation of the set of isomorphism classes of group extensions of Z by Hd−1, which
we denote by Ext(Hd−1(C,Z),Z) (see [58] for a more detailed discussion). A group
extension G is defined by an exact sequence

0→ Z→ G→ Hn−1 → 0.

In general, group Ext(H,G) for finitely generated H and abelian G can be computed
using the following three properties: i) Ext(H⊕H ′, G) ∼= Ext(H,G)⊕Ext(H ′, G), ii) if
H is free, then Ext(H,G) = 0, iii) Ext(Zp, G) ∼= G/pG. Thus, by taking H = Zk ⊕ T ,
we see, that Ext(Hd−1(C,Z),Z) ∼= Td−1.

Theorem 2.8 can be generalised to describe the change of coefficients from chain
complexes over R, which is a principal ideal domain, and their homolgy to cohomology
with coefficients in abelian group G by the following split exact sequence.

0→ ExtR(Hd−1(C, R), G)→ Hd(C, G)
h−→ Hom(Hd(C, R), G)→ 0.

In particular, if R = Q = G, ExtR(Hd−1(C, R), G) = 0, hence Hd(C,Q) ∼= Hd(C,Q).
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Chapter 3

Vector bundles and their classification

The main motivation for studying (co)homology groups of configuration spaces
comes from the fact that they give information about the isomorphism classes of vec-
tor bundles over configuration spaces. In the following chapter, we review the main
strategies of classifying vector bundles and make the role of homology groups more
precise. Throughout, we do not assume that the configuration space is a differentiable
manifold, as the configuration spaces of graphs are not differentiable manifolds. We
only assume that Cn(X) has the homotopy type of a finite CW -complex. This means
that Cn(X) can be deformation retracted to a finite CW -complex. As we explain in
chapter 4, configuration spaces of graphs are such spaces. The lack of differentiable
structure means, that the flat vector bundles have to be defined without referring the
notion of a connection and all the methods that are used have to be purely algebraic.
We provide such an algebraic definition of flat bundles in section 3.3.

Let us begin with the definition of a vector bundle. In this thesis, we consider only
complex vector bundles, however, throughout this chapter, we provide also examples
of real vector bundles. A vector bundle consists of two topological spaces, which we
denote by E and B, and a continuous surjection π : E → B. Space E is the total
space and B is the base space. For each point p ∈ B the fiber π−1(p) is isomorphic to a
vector space. In the case of complex vector bundles, we have π−1(p) ∼= Ck and in the
case of real vector bundles, we have π−1(p) ∼= Rk. If the dimension of the vector space
is the same and equal to k for all p ∈ B, we say that the vector bundle is of rank k.
To complete the definition, we have to impose one more condition for map π, which
is called the local triviality condition and says that for every point p ∈ B, there is a
neighbourhood U ⊂ B of p such that π−1(U) is isomorphic to U ×Kk with K = R or
K = C respectively. More precisely, there is a homeomorphism

φU : U ×Kk → π−1(U),

such that for all p ∈ U i) (π◦φ)(p, v) = p for all vectors v ∈ Kk and ii) map v 7→ φ(p, v)
is a linear isomorphism between Kk and π−1(p). The set of vector bundles over B will
be denoted by

V ectKk (B).

Example 3.1. Möbius band as a nontrivial real line bundle over S1. There
are two isomorphism classes of real line bundles over S1. The first class is the trivial
one S1 × R, which is homeomorphic to the cylinder S1 × [0, 1]. The nontrivial line
bundle over S1 is constructed by a band [0, 1] × [0, 1] and identifying one pair of its
opposite edges by twisting them, i.e. forming the Möbius band ([0, 1] × [0, 1])/ ∼,
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where (0, t) ∼ (1, 1 − t), see Fig. 3.1. Twisting the edges makes the resulting space
not homeomorphic to the cylinder, hence the Möbius band and the cylinder are two
non-isomorphic vector bundles.

Figure 3.1: Möbius band as a nontrivial real line bundle over S1.

In quantum mechanics on configuration spaces, we view wave functions as sections
of complex vector bundles. A section of a vector bundle is a continuous map σ :
B → E such, that π ◦ σ is the identity map on B. While considering wave functions
as sections of vector bundles, we would like to have the additional property of their
square-integrability. Therefore, technically, when speaking about wave functions, we
mean such square-integrable sections.1 The notion of integrability also requires picking
a measure on the base space. As configuration spaces of euclidean spaces are locally
diffeomorphic to Rn, we pick the standard measure in Rn. For graph configuration
spaces, we do this procedure piecewise with respect to cells of Cn(Γ).

There is a natural notion of homomorphism between vector bundles E1 and E2,
which involves two maps f : E1 → E2 and g : B1 → B2. Maps f and g are required to
commute with projections, i.e. π2 ◦ f = π1 ◦ g, so that diagram (3.1) is commutative.
Moreover, for every p ∈ B1 the map π−1

1 (p)→ π−1
2 (g(p)) induced by f is a linear map

between vector spaces.
E1 E2

B1 B2

f

π1 π2

g

(3.1)

If there exists an invertible homomorphism between two vector bundles, whose inverse
is also a homomorphism of vector bundles, we say that the two vector bundles are
isomorphic. Going back to example 3.1, there are two isomorphism classes of real
line bundles over S1 - the trivial one and the Möbius band. However if we switch
to the complex case, it turns out that there is one isomorphism class of complex line
bundles over S1 - the trivial bundle. Perhaps a more intuitive characterisation of an
isomorphism between two vector bundles is the following [68].

Theorem 3.2. Two vector bundles are isomorphic iff there exists a homeomorphism
between their total spaces, which preserves the fibres.

If two vector bundles belong to different isomorphism classes, there is no continuous
function, which transforms the total spaces to each other, while preserving the fibres.

1If the base space is a smooth manifold, one can even restrict to considering smooth square-
integrable sections with compact support, as they form a dense subspace of square integrable sections
[67].
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Hence, the wave functions stemming from sections of such bundles must describe par-
ticles with different topological properties.

The classification of vector bundles is the task of classifying isomorphism classes
of vector bundles. The set of isomorphism classes of vector bundles of rank k will be
denoted by

EKk (B).

Before we proceed to the specific methods of classification of vector bundles, we
introduce an equivalent way of describing vector bundles, which involves principal
bundles (principal G-bundles). A principal G-bundle ξ : P → B is a generalisation of
the concept of vector bundle, where the total space is equipped with a free action of
group G 2 and the base space has the structure of the orbit space B ∼= P/G. Fibre
π−1(p) is isomorphic to G is the sense that map π : P → B is G-invariant, i.e.
π(ge) = π(e). Moreover, B has a covering by open sets such that homomorphisms

φU : U ×G→ π−1(U)

are G-equivariant, i.e. φU(p, g′g) = g′φU(p, g). Similarly, a morphism of G-bundles is
a completely analogous notion to the notion of the vector bundle morphism with an
additional requirement for map f : P1 → P2 being G-equivariant, i.e. f(gp) = gf(p)
for all g ∈ G and p ∈ P1. Principal G-bundles have particularly nice properties thanks
to the G-equivariance of all maps. In particular, we have the following two facts.

Fact 3.1. Any morphism between principal G-bundles is an isomorphism.

Fact 3.2. A principal G-bundle is trivial iff it admits a section.

The set of isomorphism classes of principal G-bundles over base space B will be denoted
by

PG(B).

The following theorem shows the usefulness of principal bundles in studying vector
bundles.

Theorem 3.3. For a fixed base space B, sets PGLk(K)(B) and EKk (B) for K = R or C
are in a bijective correspondence.

Proof. Let us first describe a map, which assigns a principal GLk(K)-bundle to every
complex vector bundle of rank k. To this end, we pass from considering vector spaces
Kk as fibres to considering all sets consisting of k vectors that form a basis of Kk. A
collection of vectors (v1, . . . , vk) in Kk that are linearly independent is called a frame.
The set of all possible frames in π−1(b) will be denoted by Fb. Taking the sum of all
frames for each fibre π−1(b), we obtain the frame bundle

F (E) :=
⋃
b∈B

Fb.

There is a natural action of GLk(K) on Fb by complex k × k matrices with nonzero
determinant, which reads A(v1, . . . , vk) := (Av1, . . . , Avk). This action is free, hence it

2The action of G on P can be left or right. In this work we pick up the convention of right action.
This means, that g(h(p)) = (gh)(p) for g, h ∈ G, p ∈ P . Group action is free iff for all g ∈ G and
p ∈ P , gp 6= p.
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gives F (E) the structure of a principal GLk(K)-bundle. Conversely, for every principal
GLk(K)-bundle P with base space B there is a corresponding complex vector bundle
E(P ). Bundle E(P ) is constructed as the quotient of P × Kk with the equivalence
relation (gp, r) ∼ (p, g−1r) for all g ∈ GLk(K). The resulting bundle E(P ) = (P ×
Kk)/ ∼ has base space P/GLk(K) ∼= B and each fibre is Kk. What remains to show is
that both maps φ : E → F (E) and ε : P → E(P ) compose to identity. For any E, we
have (ε ◦ φ)(E) = (φ(E)×Kk)/ ∼. The resulting bundle is isomorphic to E by taking
φ(E)×Kk 3 ((v1, . . . , vk), (r1, . . . , rk)) 7→ r1v1 + · · ·+ rkvk ∈ E. To see this, note that
this map descends to a map on (φ(E)×Kk)/ ∼, because expression r1v1 + · · ·+ rkvk is
the same when vectors v1, . . . , vk are transformed by g ∈ GLk(K) or vector (r1, . . . , rk)
is transformed by g−1. The fact that v1, . . . , vk are linearly independent allows one
to determine the coefficients r1, . . . , rk from a given point in E. Finally, consider
composition (φ◦ε)(P ), which is the set of all k-frame bundles in P×Kk/ ∼. An element
of such a principal bundle is a collection of equivalence classes ([(p, r1)], . . . , [(p, rk)]),
ri ∈ Kk. This suggests to define an isomorphism as the map P → F (P × Kk/ ∼)
that assigns p 7→ ([(p, r1)], . . . , [(p, rk)]). This map is a GLk(K)-equivariant morphism,
hence indeed is an isomorphism of principal bundles.

While interpreting sections of vector bundles as wave functions, we need the notion
of a hermitian product on E. This means that we consider hermitian vector bundles,
i.e. bundles with hermitian product 〈· , · 〉 on fibres π−1(p), p ∈ B, that depends on
the base point and varies between the fibres in a continuous way. Then, for a measure
ν on B and two sections σ, σ′, the overlap of the corresponding wave functions reads

〈σ|σ′〉 =

∫
B

〈σ∗(p), σ′(p)〉pdµ(p).

Choosing in the proof of theorem 3.3 sets of unitary frames, we obtain an analogous
correspondence between hermitian vector bundles and principal U(k)-bundles. If the
base space is paracompact, any complex vector bundle can be given a hermitian metric
[35]. Using the fact that principal U(k)-bundles corresponding to different choices of
the hermitian structure are isomorphic [35], we have the following bijection

PU(k)(B) ∼= ECk (B).

From now on, we will focus only on the problem of classification of principal U(k)-
bundles.

3.1. Universal bundles and Chern classes

It turns out, that all vector bundles of rank k over a paracompact topological space
can be obtained from a vector bundle, which is universal for all base spaces. Let us
next outline some main steps of this procedure. The construction of a pullback bundle
is a key construction used in such a classification of vector bundles. Any continuous
map f : B′ → B between base spaces induces a pullback map of vector bundles over B
to vector bundles over B′. The pullback bundle is defined as f ∗E = {(p, e) ∈ B′ ×E :
f(p) = π(e)}. The topology of f ∗E is induced by the topology of B′ × E and the
projection π′ : f ∗E → B′ is just the projection on the first factor. Projection on the
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second factor defines map g : f ∗E → E so that diagram (3.2) commutes.

f ∗E E

B′ B

g

π′ π

f

(3.2)

Similarly, one defines the pullback of principal G-bundles. For a fixed pair of base
spaces A and B, we denote the set of homotopy classes of continuous maps from A to
B by [A,B]. For a fixed principal G-bundle ξ : P → B, the pullback map induces
a map from [A,B] to the set of isomorphism classes of principal G-bundles over A by
f 7→ f ∗ξ. A space B for which such a map is bijective regardless the choice of space A,
is called a classifying space for G and is denoted by BG. If this is the case, bundle ξ is
called a universal bundle. A fundamental theorem [35] asserts, that if the total space
E is weakly contractible (all of its homotopy groups are trivial), then ξ is a universal
bundle. Furthermore, for a fixed G, the universal space is unique up to homotopy. For
G = U(k) one can construct weakly contractible principal bundles as certain canonical
principal bundles over the infinite Grassmannian

BU(k) = Grk(C∞).

Therefore, we have the following bijections classifying isomorphism classes of hermitian
vector bundles over a paracompact base space B.

ECk (B) ∼= PU(k)(B) ∼= [B,Grk(C∞)].

Let us next briefly describe the construction of the infinite Grassmannian. Recall the
standard definition of the finite Grassmannian Grk(Ck+n) as the set of all subspaces
of dimension k in Ck+n. This set carries the topology of a certain quotient space. By
a choice of basis, a subspace of dimension k can be described as a k-tuple of linearly
independent vectors from Ck+n, therefore as an element of the k-fold Cartesian product
Ck+n×Ck+n×· · ·×Ck+n. The set of all such tuples is an open subset of (Ck+n)×k and
is called the Stiefel manifold Vk(Ck+n). Grassmannian Grk(Ck+n) is the quotient space
Vk(Ck+n)/ ∼ with the equivalence relation that identifies tuples that span the same
subspace of Ck+n. We say that a subset of Grk(Ck+n) is open iff its preimage under the
quotient map is open as a subset of (Ck+n)×k. The infinite Grassmannian Grk(C∞) is
constructed by taking the limit n→∞ as the set of all k-dimensional subspaces of C∞.
In order to define topology of the infinite Grassmannian, consider the natural sequence
of subspaces Grk(Ck) ⊂ Grk(Ck+1) ⊂ Grk(Ck+2) ⊂ . . . that converges to Grk(C∞).
We say that a subset of Grk(C∞) is open iff its intersection with each Grk(Ck+n) is an
open set. The universal bundle γkC is constructed as follows. The total space E(γkC) the
set of all pairs

(k − plane in C∞, vector in that plane).

The projection map π projects on the first component of the pair. The topology of
E(γkC) is the topology of a subset of Grk(C∞) × C∞. Having introduced the above
concepts, we sum up the classification procedure by the following theorem.

Theorem 3.4. Any principal U(k)-bundle over a paracompact Hausdorff space B is
the pullback of the universal bundle γkC by a continuous map f : B → Grk(C∞). The
isomorphism class of f ∗(γkC) is determined uniquely by the homotopy class of f and
vice versa.

33



Theorem 3.4 gives us an alternative way of classifying principal bundles by homo-
topy classes of continuous maps from the base space to BU(k). However, the classi-
fication of such homotopy classes of maps, as well as differentiating between different
classes are difficult tasks. A more computable criterion for comparing isomorphism
classes of vector bundles are invariants called characteristic classes. In this work, we
apply a specific class of invariants called Chern characteristic classes. Let us next briefly
introduce this notion. A characteristic class is a map that assigns to each principal
G-bundle ξ : P → B an element of the cohomology ring of B with some coefficients.

c(ξ) ∈ H∗(B).

This assignment is required to satisfy the naturality condition, which states that the
pullback of vector bundles induces the pullback of a given characteristic class, i.e.

c(f ∗(ξ)) = f ∗(c(ξ)).

From this definition it follows that characteristic classes are invariant under isomor-
phisms of principal bundles. We are primarily interested in the characteristic classes
that describe principal U(k)-bundles and have values in H∗(B,Z). Such characteris-
tic classes are called integral Chern classes. The set of all integral Chern classes (i.e.
integral Chern classes for principal U(k)-bundles over all paracompact base spaces)
CharU(k)(Z) has the structure of a ring, which is isomorphic to the cohomology ring of
the classifying space H∗(BU(k),Z).

CharU(k)(Z) ∼= H∗(BU(k),Z).

This can be seen by evaluating Chern classes on the universal bundle γkC. Map c 7→
c(γkC) is a ring homomorphism. Its inverse is constructed in the following way. Let
a ∈ Hq(BU(k),Z). We assign to this element a characteristic class ca, which is defined
defined by its values on an arbitrary principal bundle ξ : P → B. By the classification
theorem, we have ξ = f ∗ξ (γkC) for some continuous map fξ : B → BU(k). Hence, ca is
evaluated as

ca(ξ) := f ∗ξ (a),

where in the above formula f ∗ξ : Hq(BU(k),Z) → Hq(B,Z) is the pullback of co-
homology rings via map fξ. Map f ∗ξ is often called the characteristic homomorphism.
Because ca is an element of the cohomology group of degree q, we say that ca is a Chern
class of degree q. It turns out that the only nonzero Chern classes are of even degree.

Theorem 3.5. The ring of U(k) Chern characteristic classes is a polynomial algebra
on k generators

CharU(k)(Z) ∼= H∗(BU(k),Z) ∼= Z[c1, . . . , ck],

where ci ∈ H2i(BU(k),Z) is the ith Chern class.

For the proof, we refer the reader to [37, 35]. Another important general property of
Chern classes is the splitting principle, which states, that each class ci is completely
determined by a polynomial in first Chern classes. This is done as follows. Consider
an inclusion of the maximal torus i : T = U(1)×n → U(k) (it can be viewed as all
diagonal U(k) matrices in some basis). The inclusion map induces map Bi between
classifying spaces

Bi : BU(1)×n → BU(k).
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The splitting principle asserts, that the corresponding pullback of cohomology groups

Bi∗ : H∗(BU(k),Z)→ H∗(BU(1)×k,Z)

is injective [53]. Because space BU(1)×k is isomorphic to the k-fold Cartesian prod-
uct of BU(1), one can use Künneth theorem, which states that H∗(BU(1)×k) is the
polynomial ring on k generators

H∗(BU(1)×k,Z) = Z[x1, . . . , xk].

The generators can be regarded as first Chern classes of each copy of BU(1). Moreover,
each Chern class ci is uniquely characterised as the pullback of the ith elementary
symmetric polynomial σi3 [53]

ci = Bi∗(σi(x1, . . . , xk)). (3.3)

Chern classes are especially useful in classifying line bundles. This is thanks to
the fact that the universal space BU(1) = P(C∞) is an Eilenberg - MacLane space of
type (Z, 2), which means that only its first two homotopy groups are non vanishing
and both are isomorphic to Z. This in turn implies that the set of homotopy classes of
maps [B,BU(1)] is in a bijective correspondence with H2(B,Z). For more details, see
[36, 37]. Hence, we arrive at the first direct application of the knowledge of cohomology
ring of space B, namely

EC1 (B) ∼= H2(B,Z).

The abelian group structure of EC1 (B) is realised here by the fibrewise tensor product of
vector bundles [49]. The identity element is the trivial line bundle. More applications
of Chern classes and cohomology ring H∗(B,Z) follow in the remaining parts of this
section. In particular, they appear inK-theory and while studying characteristic classes
of flat vector bundles.

For more details and complete proofs of facts used in this section regarding the
structure of characteristic classes, see also [37, 69].

3.2. K-theory

The set of vector bundles over base space B acquires under proper modifications
the structure of an abelian group. This group is denoted by K(B) and called the
Grothendieck group. Let us next briefly review the construction of the Grothendieck
group. As the main objects of interest are complex vector bundles, we immediately
specify all constructions to the complex K-theory. We start with the notion of a
fibrewise direct sum of vector bundles, which is also called the Whitney sum of vector
bundles. Given two vector bundles ξ : E → B, ξ′ : E → B, we denote their fibrewise
sum by ξ ⊕ ξ′ : E ⊕B E ′ → B, where

E ⊕B E ′ := {(v, v′) ∈ E × E ′ : π(v) = π(v′)} ⊂ E × E ′.
3Elementary symmetric polynomials form a basis of symmetric polynomials. In terms of generators,

they are given by formula
σi =

∑
1≤a1<a2<···<ai≤k

xa1 . . . xai .
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This operation of Whitney sum is associative and has the unit element - the trivial
zero-dimensional vector bundle. Whitney sum descends to the isomorphism classes
and gives the set EC(B) the structure of an abelian semigroup with unit (there are no
inverse elements). We denote the addition of isomorphism classes as

[ξ] + [ξ′] =: [ξ ⊕ ξ′].

This situation is analogous to the addition of natural numbers. In fact, there is a
homomorphism between the EC(B) and N, which assigns to a vector bundle its rank.
As one passes from N to Z by considering a certain quotient map, a similar construction
for vector bundles yields Grothendieck group K(B).

Definition 3.1. The Grothendieck group of complex vector bundles over B, K(B),
is the set of pairs of isomorphism classes of vector bundles ([ξ+], [ξ−]), subject to the
following equivalence relation.

(([ξ+], [ξ−]) ∼ (([η+], [η−])) ⇐⇒ ∃µ,ν∈V ectC(B) ([ξ+ ⊕ µ], [ξ− ⊕ µ]) =

= ([η+ ⊕ ν], [η− ⊕ ν]). (3.4)

The equivalence class of ([ξ+], [ξ−]) will be denoted by [([ξ+], [ξ−])] or simply as [ξ+] −
[ξ−] ∈ K(B).

Equivalently, we can formulate relation (3.1) as

(([ξ+], [ξ−]) ∼ (([η+], [η−])) ⇐⇒ ∃γ∈V ectC(B) [ξ+ ⊕ η− ⊕ γ] = [η+ ⊕ ξ− ⊕ γ]. (3.5)

The addition of vector bundles gives rise to associative and commutative operation of
addition in K(B), which works pairwise

[([ξ+], [ξ−])] + [([η+], [η−])] = [([ξ+ ⊕ η+], [ξ− ⊕ η−])] . (3.6)

The zero element is of the form [([ξ], [ξ])] for any ξ. The inverse of [([ξ+], [ξ−])] is
[([ξ−], [ξ+])]. Hence, we have introduced the notion of subtraction between isomorphism
classes of vector bundles via an equivalence relation on EC(B)×EC(B). Consequently,
there is a homomorphism between K(B) and the integers

[ξ+]− [ξ−] 7→ rk(ξ+)− rk(ξ−).

If B is compact and Hausdorff, the above definitions simplify due to the following fact
[49].

Fact 3.3. For every vector bundle ξ : E → B over a compact Hausdorff space B there
exists a vector bundle ξ̃ : Ẽ → B such that

E ⊕B Ẽ ∼= B × Cn.

Using fact 3.3, every element of K(B) over a compact Hausdorff space can be repre-
sented as

[ξ]− [τn] for some n, (3.7)

where τn is the trivial vector bundle of rank n. This is because for any ξ+, ξ− we have

[([ξ+], [ξ−])] ∼
[
([ξ+ ⊕ ξ̃−], [ξ− ⊕ ξ̃−])

]
,
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where ξ̃− can be chosen so that ξ−⊕ξ̃− ∼= τn. A similar argument shows that equivalence
relation (3.5) can be realised just by taking γ = τn for some n. Note that representation
(3.7) is not unique, because by passing to group K(B) we identify some isomorphism
classes of vector bundles. More precisely, let us see when two pairs ([ξ], τn) and ([ξ′], τm)
represent the same element of K(B) in the case, when B is a compact Hausdorff space.
By definition (3.5) and fact 3.3, ([ξ], τn) ∼ ([ξ′], τm) implies that

∃k∈Z [ξ ⊕ τm ⊕ τk] = [ξ′ ⊕ τn ⊕ τk].
This means that bundes ξ ⊕ τm and ξ′ ⊕ τn become isomorphic when summed with a
sufficiently large trivial bundle. Such a fact gives rise to the notion of stable equivalence
of vector bundles.

Definition 3.2. Vector bundles ξ and ξ′ are stably equivalent ξ ∼s ξ′ iff
∃k1,k2∈Z [ξ ⊕ τk1 ] = [ξ′ ⊕ τk2 ].

In terms of stable equivalence, the above considerations can be written in a concise
way as

([ξ]− [τn] = [ξ′]− [τm]) =⇒ (ξ ∼s ξ′) . (3.8)

The set of stable equivalence classes of vector bundles over a compact Hausdorff space
has the structure of an abelian group stemming from the addition of vector bundles.
This group is called the reduced Grothendieck group K̃(B).

Definition 3.3. Let B be a compact Hausdorff space. The reduced Grothendirck group
K̃(B) is an abelian group of stable equivalence classes of vector bundles over B, where
the addition operation reads

[ξ]s + [ξ′]s := [ξ ⊕ ξ′]s.
As a consequence, the inverse element of [ξ]s is the unique class [ξ̃]s such that ξ⊕ ξ̃ ∼= τn
for some n. The neutral element is the equivalence class of the zero-dimensional vector
bundle [τ0]s.

Equation (3.8) suggests, that group K(B) is roughly the same as K̃(B). To be more
precise, let us study the following group homomorphism K(B)→ K̃(B)

[ξ]− [τn] 7→ [ξ]s. (3.9)

Homomorphism (3.9) is surjective and its kernel consists of elements [ξ] − [τn], where
ξ is stably equivalent to τ0. This is only possible, when ξ is a trivial vector bundle
τm. Hence, kernel of (3.9) is the subgroup of K(B) generated by elements of the form
[τm] − [τn]. This subgroup is isomorphic to Z. Thus, we have the following splitting
[50]

K(B) = K̃(B)⊕ Z.
If the base space has the homotopy type of a finite CW -complex, group K̃(B) fully

describes isomorphism classes of vector bundles that have a sufficiently high rank. This
claim is based on the following two theorems, whose proofs can be found for instance
in [52]. The following theorems concern vector bundles, whose rank is in the stable
range, i.e. is greater than or equal to

ks :=

⌈
1

2
dimB

⌉
,

where dxe denotes the smallest integer that is greater than or equal to x.
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Theorem 3.6. If ξ and ξ′ are two vector bundles of rank k, where k ≥ ks and ξ⊕ τn ∼=
ξ ⊕ τn for some n, then ξ and ξ′ are isomorphic.

Theorem 3.7. Every complex vector bundle ξ, whose rank k is greater than or equal
to ks, is isomorphic to η ⊕ τk−ks for some η ∈ V ectCks(B).

Theorem 3.6 means that for vector bundles of a fixed rank in the stable range the
standard notion of isomorphism classes is equivalent to the notion of stable equivalence
classes. Theorems 3.7 and 3.6 together assert, that set of stable equivalence classes of
V ectC(B) is equal to ECks(B). Moreover, by theorem 3.7 ECk (B) is the same for all k ≥ ks
and equal to ECks(B). Therefore,

ECk (B) ∼= K̃(B) for k ≥ ks.

Relation between K-theory and cohomology

The relation between K-theory and cohomology is phrased via the Chern character.
Chern character is a ring homomorphism from K-theory to rational cohomology

ch : K(B)→ H∗(B,Q).

We view K(B) as a commutative ring, where multiplication corresponds to tensor
products of vector bundles

[([ξ+], [ξ−])] · [([η+], [η−])] := [([(ξ+ ⊗ η+)⊕ (ξ− ⊗ η−)], [(ξ+ ⊗ η−)⊕ (ξ− ⊗ η+)])]

and addition works as defined in equation (3.6).
Recall the splitting principle, which asserts that the Chern characteristic classes of

a complex bundle of rank k can be represented as elementary symmetric polynomials
in k variables (equation 3.3). We denote the elementary symmetric polynomials as
σ1, . . . , σk. Such a representation allows one to compute the values of formal symmetric
polynomials of Chern classes. Namely, any symmetric polynomial f(x1, . . . , xk) can be
expressed as a polynomial in elementary symmetric polynomials f̃(σ1, . . . , σk). In order
to determine the value of f̃(c1, . . . , ck), we replace σi with ci in the formula defining
f̃ . The Chern character is such a polynomial. Let us next state its precise definition.
Consider a family of symmetric polynomials of the form

xm1 + · · ·+ xmk .

The prescription of how to represent such polynomials by the elementary symmetric
polynomials is known as the Newton’s identities. As a result, we get

xm1 + · · ·+ xmk = Pm(σ1(x1, . . . , xk), . . . , σk(x1, . . . , xk)),

where Pm is a polynomial. The Chern character is defined as the sum

ch(ξ) =
∑
m

1

m!
Pm(c1(ξ), . . . , ck(ξ)). (3.10)

Note, that for line bundles, ch(ξ) is equal to exp(c1(ξ)). Moreover the splitting principle
implies that

ch(ξ ⊕ ξ′) = ch(ξ) + ch(ξ′), ch(ξ ⊗ ξ′) = ch(ξ)ch(ξ′)

and ch descends to a homomorphism of rings between K(B) or K̃(B) and H∗(B). The
coefficients of H∗(B) must be rational, so that formula (3.10) makes sense. The key
theorem of this section is the following.
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Theorem 3.8. Assume B has the homotopy type of a finite CW -complex. Then,

ch : K̃(B)⊗Q→
⊕
i=1

H2i(B,Q)

is an isomorphism.

This theorem follows from a more general result of paper [11], but for finite CW -
complexes it can also be proved using less advanced methods via induction with respect
to attaching cells of B and cohomological exact sequences, see e.g. [54].

As a consequence of theorem 3.8, the classification of vector bundles in the stable
range asserts that

ECk ∼=
⊕
i=1

H2i(B,Q), for k ≥ 1

2
dimB,

on condition that the even integral cohomology groups of B are torsion-free. In the
case, when there is non-trivial torsion in H∗(B,Z), torsion of K̃(B) is determined by
the Atiyah-Hirzebruch spectral sequence [11]. However, the correspondence between
torsion of even cohomology and K̃(B) is not an isomorphism (for examples, see [65]).
In particular, torsion in K̃(B) can vanish, despite the existence of nonzero torsion in
H2i(B,Z).

3.3. Flat bundles and quantum statistics
In this section, we describe the structure of the set of flat principal G-bundles over

base space B. More precisely, we consider the set of pairs (ξ,A), where ξ is a principal
G-bundle, and A is a connection 1-form on ξ. We divide the set of such pairs into
equivalence classes [ξ,A] that consist of vector bundles isomorphic to ξ and the set of
flat connections that are congruent to A under the action of the gauge group. The
quotient space with respect to this equivalence relation is called the moduli space of
flat connections and is denoted by M(B,G). The culminating point of this section
is to introduce the fundamental relation, which says that M(B,G) is in a bijective
correspondence with the set of conjugacy classes of homomorphisms of the fundamental
group of B.

M(B,G) ∼= Hom(π1(B), G)/G. (3.11)

We use this relation to explain some key properties of quantum statistics that were
sketched in the introduction of this thesis.

Let us begin the description of the moduli space of flat connections in the case,
when B is a smooth manifold. We define a principal connection on principal G-bundle
as a decomposition of the tangent bundle TP that has certain properties. Firstly, we
have H ⊕ kerπ∗ = TP , where π∗ : TP → TB is the push-forward of tangent vectors
with respect to the projection map π : P → B. Secondly, we require space H to
be invariant under the G-action, i.e. the push-forward with respect to any g ∈ G of
all vectors from Hp, p ∈ P gives space Hgp

4. Principal connection H is flat iff the
distribution H ⊂ TP is integrable, i.e. vectors from H are tangent to the leaves of a
foliation. Another criterion for deciding flatness of a principal connection comes from
the fact that a connection can be uniquely encoded in a 1-form defined on the total

4We denote this fact by R∗
g(Hp) = Hgp, where R∗

g is the push-forward (tangent map) to the right
multiplication by elements of G, Rg : P → P .
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space P that has values in the Lie algebra of G. This is done in the following way.
Space kerπ∗ at point p ∈ P is the space tangent to the fibre π−1(π(p)) at p. Using the
fact that G acts transitively on the fibres, we identify kerπ∗ at p with the Lie algebra
of G denoted by g.

Tp
(
π−1(π(p))

) ∼= g by g 3 α 7→ α̂p :=
d

dt

∣∣∣
t=0
eαtp.

Using such identifications pointwise over P , we regard a connection H at every p ∈ P
as the kernel of a linear projection map Ap : TpP → g. We require Ap to vary
smoothly with p and to restrict to the identity map on kerπ∗p. The G-invariance of H
is equivalent to Ap being G-equivariant in the following sense.

Agp(R∗gv) = Adg−1Ap(v), v ∈ TpP, g ∈ G,

where Adg is the adjoint action of G on its algebra, which reads Adg(α) = d
dt

∣∣
t=0
geαtg−1.

Such a linear map Ap can be viewed an element T ∗pP ⊗ g. Collecting such projections
pointwise over P we get the following fact.

Fact 3.4. There is a bijective correspondence between principal connections on P and
equivariant one-forms over P with values in g. In other words, a connection one-form
ω is an element of C∞(P, T ∗P ⊗ g) that satisfies the following conditions.

• R∗gω = Adg−1ω,

• ω(α̂) = α, where α̂ is the fundamental vector field of α ∈ g.

Such one-form ω determines H as Hp = kerωp.

A connection is flat iff its one-form satisfies the Maurer-Cartan equation

dω +
1

2
[ω, ω] = 0.

Having fixed a principal connection on P , we consider parallel transport of elements
of P around loops in B. Parallel transport around loop γ ⊂ B is a morphism of fibres
Γγ : π−1(b)→ π−1(b), where b is the base point of loop γ. Map Γγ is defined as follows.
For a fixed loop γ ∈ B, we construct a curve γ̃ ∈ P such that π(γ̃) = γ and all vectors
that are tangent to curve γ̃ belong to H. Curve γ̃ is called the horizontal lift of γ and
is described by an ordinary differential equation. Hence, γ̃ is fully determined by the
choice of its initial point γ̃(0) ∈ π−1(b). The parallel transport assigns the end point
of γ̃ to its initial point

Γγ : γ̃(0) 7→ γ̃(1).

Because fibres are homogeneous spaces for the action of G, for every choice of the initial
point p = γ̃(0) there is a unique group element g ∈ G such that γ̃(1) = gp. We denote
this element by holp(H, γ) and call the holonomy of connection H around loop γ at
point p. Moreover, by the G-equivariance of the connection, we get that

Γγ(gp) = gΓγ(p), p ∈ P.

This means that holgp(H, γ) = g−1holp(H, γ)g. If connection H is flat, the parallel
transport depends only on the topology of the base space [66], i.e.
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• Γγ depends only on the homotopy class of γ,

• parallel transport around a contractible loop is trivial,

• parallel transport around two loops that have the same base point is the compo-
sition of parallel transports along the two loops.

Γγ1◦γ2 = Γγ1 ◦ Γγ2 .

The above facts show that if H is flat, map π1(B) 3 [γ] 7→ holp(H, γ) ∈ G is a
homomorphism of groups. Because holonomies at different points from the same fibre
differ only by conjugation in G, it is not necessary to specify the choice of the initial
point. Instead, we consider map

SH : π1(B) 3 [γ] 7→ Hol(H, γ) ∈ Conj(G),

where Hol(H, γ) = {holp(H, γ) : p ∈ π−1(γ(0))} is a conjugacy class of group G. If
π1(B) is finitely generated, by picking generators a1, . . . , ar of the fundamental group
and considering set (holp(H, a1), . . . , holp(H, ar)) ∈ G×r, one fixes a group homomor-
phism Hom(π1(B), G). Taking the quotient by the conjugation in G and disregarding
the point p, one can view map SH as an element of Hom(π1(B), G)/G. There is one
more symmetry of this map that we have not discussed so far, namely the gauge sym-
metry. A gauge transformation is a map f : P → G, which is G-equivariant, i.e.
f(gp) = g−1f(p)g. A gauge transformation induces an automorphism of P , which acts
as p→ f(p)p. Consequently, transformation f induces a pullback of connection forms.
It can be shown that map SH is gauge invariant [48, 66], i.e. depends only on the gauge
equivalence class of connection H.

Example 3.9. – Gauge transformations of the U(1) bundle over S1. Parametrise
points from S1 by angle θ ∈ [0, 2π[. In local coordinates, points in P are pairs (θ, eiφ)
and the action of U(1) reads eit(θ, eiφ) = (θ, ei(φ+t)). Because U(1) is abelian, the
equivariance of gauge map means that f(gp) = f(p), i.e. f is constant on the fibres.
In other words, for p = (θ, eiφ), we have f(p) = eiF(θ), where F(θ) is a continuous func-
tion. This gauge transformation translates to the pullback of a connection one-form as
the well-known formula A → A+ dF .

An important conclusion regarding flat bundles on spaces that do not have a dif-
ferential structure comes from the second part of correspondence (3.11). This is the
reconstruction of a flat principal bundle from a given homomorphism Hom(π1(B), G).
It turns out that any flat bundle over B can be realised as a particular quotient bundle
of the trivial bundle over a space, which is called the universal cover of B. In order to
formulate the correspondence, we first introduce the notion of a covering space and a
universal cover. A covering space of B is a topological space C with a continuous sur-
jective map p : C → B such that for every b ∈ B there exists an open neighbourhood
U of b in B such that p−1(U) is a disjoint union of sets in C that are homeomorphic
with U . An universal covering space (universal cover) B̃ is the space that covers any
connected cover of space B. The universal cover is unique up to a homeomorphism. For
a general topological space B there is an issue of the existence of the universal cover.
However, all spaces that are considered in this paper have universal covers. Universal
covers of graph configuration spaces have a particularly nice structure, as they have the
homotopy type of a CAT (0) cube complex [28], which is contractible. The following
theorem will also serve as a definition of a flat principal bundle for spaces that are not
differential manifolds.
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Theorem 3.10. Any flat principal G-bundle P → B can be constructed as the following
quotient bundle of the trivial bundle over the universal cover of B.

P = (B̃ ×G)/π1(B).

In the above formula, group π1(B) acts on B̃ via deck transformations. Action on G is
defined by picking a homomorphism ρ : π1(B)→ G. Then the action reads ag := ρ(a)g
for a ∈ π1(B), g ∈ G.

Deck transformations are a notion, which is analogous to the notion of parallel
transport. Namely, every loop γ ⊂ B based at point b can be lifted to a path γ̃ ⊂ B̃
uniquely by specifying the initial point of γ̃ in fibre p−1(b). The endpoint of γ̃ also
belongs to p−1(b). We define the action of [γ] ∈ π1(B) in B̃ as map γ̃(0) → γ̃(1).
This definition is independent of the choice of γ in the given homotopy class of loops.
Proofs concerning the above lifting properties can be found in [38]. Intuitively, the
fundamental group acts on B̃ by permuting points in fibres.

If the base space is a differential manifold, the corresponding flat connection can
be constructed as follows. For B̃ × G we consider tangent vectors in T (B̃ × G) that
have components only in the direction of B̃, i.e. tangent vectors that correspond to
curves γ(t) = (b(t), g) in local coordinates. The quotient map q : B̃ × G → P is a
local diffeomorphism, and the push-forward of such tangent vectors by q∗ defines the
corresponding horizontal flat bundle on P . For such a connection, homomorphism ρ
arises as the holonomy.

Summing up, in order to describe the moduli space of flat G-bundles, one has
to classify conjugacy classes of homomorphisms π1(B) → G. All spaces that are
considered in this thesis have finitely generated fundamental group. This fact makes
the classification procedure easier. Namely, one can fix a set of generators a1, . . . , ar
of π1(B) and represent them as group elements g1, . . . , gr. Matrices g1, . . . , gr realise
π1(B) in G in a homomorphic way iff they satisfy the relations between the generators
of π1(B). In general, the relations have the form of words in the generators composing
to the identity element

ap1i1 a
p2
i2
. . . apkik = e, pj ∈ Z.

Assume there are nR relations. They give rise to nR equations for chosen elements
of group G. In the case, when G = U(n), these are just matrix equations and the
classification problem reduces to the problem of solving sets of polynomial equations.
This means that the moduli space of flat connections can be given the structure of an
algebraic variety. In other words, we consider map

Q : G×r → G×nR ,

which returns the values of words describing the relations between generators of π1(B).
Then,

M(B,G) = Q−1(e, . . . , e)/G.

We view Q−1(e, . . . , e) as the zero locus of a set of multivariate polynomials. In general,
such a zero locus has many path connected components. This reflects the topological
structure ofM(B,G). Namely, one can decompose the moduli space of flat connections
into a number of disjoint components, that are enumerated by the isomorphism classes
of bundles

M(B,G) =
⊔

[ξ]∈PG(B)

M[ξ](B,G).
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M[ξ](B,G) is the space of flat connections on principal bundles from the isomorphism
class [ξ] modulo the gauge group. The following fact gives a necessary condition for
two flat structures to be non-isomorphic.

Fact 3.5. Two points inM(B,G) that correspond to two non-isomorphic flat bundles,
belong to different path-connected components ofM(B,G).

Equivalently, if two flat structures are mapped to the same path-connected component
ofM(B,G), they are isomorphic. Path connecting the two points inM(B,G) gives a
homotopy between the corresponding flat structures.

Example 3.11. – The moduli space of flat U(1) bundles over spaces with
finitely generated fundamental group. As conjugation in U(1) is trivial, we have

M(B,U(1)) ∼= Hom(π1(B), U(1)).

Moreover, Hom(π1(B), U(1)) is the same as the space of homomorphisms from the
abelianization of π1(B) to U(1). A standard result from algebraic topology says that

π1(B)/[π1(B), π1(B)] ∼= H1(B,Z).

H1(B,Z) as any finitely generated abelian group decomposes as the sum of a free
component and a cyclic (torsion) part

H1(B,Z) = Zp ⊕
q⊕
i=1

Zpi .

Therefore, we can generate H1(B,Z) as

H1(B,Z) = 〈a1, . . . , ap, b1, . . . , bq : bpii = e〉.

We represent ai as eιφi , φi ∈ [0, 2π[ and the cyclic generators as roots of unity eι2kiπ/pi ,
where ki = 0, 1, 2, . . . , pi − 1. This way, we get

∏q
i=1 pi connected components in

the space of homomorphisms Hom(H1(B,Z), U(1)) that are enumerated by different
choices of numbers ki. Each connected component is homeomorphic to a p-torus, whose
points correspond to phases φi. In fact, the connected components are in a one-to-one
correspondence with isomorphism classes of flat bundles. To see this, recall the fact
that set of U(1)-bundles has the structure of a group, which is isomorphic to H2(B,Z).
Moreover, as we explain in remark 3.1, Chern classes of flat bundles are torsion. This
means that flat U(1)-bundles form a subgroup of the group of all U(1)-bundles, which
is isomorphic to the torsion of H2(B,Z). By the universal coefficient theorem, torsion
of H2(B,Z) is the same as torsion of H1(B,Z). Note that there is exactly the same
number of connected components in Hom(H1(B,Z), U(1)) as the number of group
elements in the torsion component of H1(B,Z). In this case, fact 3.5 implies that each
connected component represents one isomorphism class of flat bundles.

Recall that for particles in R2 and R3, we had

H1(Cn(R2),Z) = Z, H1(Cn(R3),Z) = Z2.

Hence, the moduli spaces read (see also Fig. 3.2)

M(Cn(R2), U(1)) ∼= Hom(Z, U(1)) ∼= S1,

M(Cn(R3), U(1)) ∼= Hom(Z2, U(1)) ∼= {∗, ∗′} ⊂ T 2.
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Figure 3.2: The moduli space of flat U(1) bundles a) for n particles on a plane, b)
n particles in R3. Homomorphisms from Z to U(1) are parametrised by points from
S1 via the map φ 7→ eιφ. The corresponding homomorphism reads n 7→ eιnφ. There
is only one path-connected component in Hom(Z, U(1)), which reflects the fact that
there is only one flat U(1) bundle over Cn(R2) (the trivial one) and points form the
circle parametrise different flat connections. For particles in R3, there are two homo-
morphisms of Z2 = {1,−1} - the trivial one and 1 7→ e2πι, −1 7→ eιπ. They correspond
to two isolated points on the torus T 2 = U(1) × U(1). The trivial homomorphism
corresponds to the bosonic bundle, while the other homomorphism corresponds to
the fermionic bundle. The fundamental difference between these two types of quan-
tum statistics is that anyons arise as different flat connections on the trivial bundle,
whereas bosons and fermions arise as canonical flat connections on two non-isomorphic
flat bundles.

In the following example we demonstrate some of the nontrivial problems that can
be encountered when studying the moduli space of flat U(n) bundles over configuration
spaces of particles for n > 1.

Example 3.12. – The moduli space of flat U(2) bundles over C3(R2). For three
particles on a plane, the fundamental group is the braid group on three strands

π1(C3(R2)) = Br3 = 〈a, b : aba = bab〉.

Hence, space Hom(Br3, U(2)) is the space of solutions to the following matrix equation

ABAB−1A−1B−1 = 1, A,B ∈ U(2). (3.12)

One can study regularity properties of map Q : (A,B) 7→ ABAB−1A−1B−1 in a
straightforward way by differentiating curves A(t), B(t) ⊂ U(2). Such methods proved
to be useful in studying moduli spaces of flat connections on surfaces [47, 48], where
the fundamental group is also described by one relation between generators. One
can show, that map Q is singular, when matrices A and B commute and regular (of
full rank) for generic A,B. The solution of (3.12) for commuting A,B is A = B.
After taking the quotient by U(2), this singular set gives rise to a singular point in
M(C3(R2), U(2)). Further study of topological properties of Q−1(e)/G would be an
interesting and nontrivial problem.

Characteristic classes of flat bundles

From this point, we can move away from considering connections and use the wider
definition of flat G-bundles, which makes sense for bundles over spaces that have a
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universal covering space. As stated in theorem 3.10, such flat bundles have the form

P = (B̃ ×G)/π1(B),

where we implicitly use a group homomorphism ρ : π1(B) → G in the definition
of the quotient. Diagram 3.13 combines two perspectives on the classification of flat
U(n)-bundles.

B̃ × U(n) P γnC

B̃ B BU(n)

q gP

π′ π

p fP

(3.13)

On one hand, P is realised as the image of quotient map q, where the mapping between
base spaces is projection p from the universal covering space to B. On the other hand,
P is the pullback of the canonical U(n) bundle via classifying map fP .

f ∗P (γnC) = P = (B̃ × U(n))/π1(B).

For such flat U(n)-bundles over connected CW -complexes we have the following general
result about the triviality of rational Chern classes [39].

Theorem 3.13. Let G be a compact Lie group, B a connected CW -complex and ξ :
P → B a flat G-bundle over B. Then, the characteristic homomorphism

f ∗ξ : H∗(BG,Q)→ H∗(B,Q)

is trivial.

Remark 3.1. Theorem 3.13 in particular means that if B is a finite CW -complex,
then by the universal coefficient theorem for cohomology (see e.g. [40]), the image of
the characteristic map f ∗ξ : H∗(BG,Z) → H∗(B,Z) consists only of torsion elements
of H∗(B,Z).

Specifying the above results for U(n)-bundles, we get that the lack of nontrivial
torsion in H2i(B,Z) has the following implications for the stable equivalence classes of
flat vector bundles.

Proposition 3.14. Let B be a finite CW complex. If the integral homology groups of
B are torsion-free, then every flat complex vector bundle over B is stably equivalent to
a trivial bundle.

Proof. If the integral cohomology of B is torsion-free, then by the Chern character
we get, that the reduced Grothendieck group is isomorphic to the direct sum of even
cohomology of B. Thus, if all Chern classes of a given bundle vanish, this means that
this bundle represents the trivial element of the reduced Grothendieck group, i.e. is
stably equivalent to a trivial bundle.

Interestingly, in the following standard examples of configuration spaces, there is torsion
in cohomology.
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1. Configuration space of n particles on a plane. Space Cn(R2) is aspherical, i.e. is
an Eilenberg-Maclane space of type K(π1, 1), where the fundamental group is the
braid group on n strands Brn. Cohomology ring H∗(Cn(R2),Z) = H∗(Brn,Z) is
known [41, 42, 43]. Its key properties are i) finiteness – H i(Brn,Z) are cyclic
groups, except H0(Brn,Z) = H1(Brn,Z) = Z, ii) repetition – H i(Br2n+1,Z) =
H i(Br2n,Z), iii) stability – H i(Brn,Z) = H i(Br2i−2) for n ≥ 2i−2. Description
of nontrivial flat U(n) bundles over Cn(R2) for n > 2 is an open problem.

2. Configuration space of n particles in R3. Much less is known about H∗(Cn(R3)).
Some computational techniques are presented in [44, 46] (see also [51] for an up-
to-date review), but no explicit results are given. Ring H∗(C3(R3) is equal to
Z, 0,Z2, 0,Z3 [45] and Hq(C3(R3)) = 0 for q > 4. However, it has been shown
that there are no nontrivial flat SU(n) bundles over C3(R3).

3. Configuration space of n particles on a graph (a 1-dimensional CW -complex Γ).
Spaces Cn(Γ) are Eilenberg-Maclane spaces of type K(π1, 1). The calculation of
their homology groups is a subject of this thesis. Group H1(Cn(Γ),Z) is known
[20, 22] for an arbitrary graph. We review the structure of H1(Cn(Γ)) in section
4.4. By the universal coefficient theorem, the torsion of H2(Cn(Γ)) is equal to
the torsion of H1(Cn(Γ)), which is known to be equal to a number of copies of
Z2, depending on the structure of Γ. We interpret this result as the existence
of different bosonic or fermionic statistics in different parts of Γ. The existence
of torsion in higher (co)homology groups of Cn(Γ), which is different than Z2,
is an open problem. In this thesis, we compute homology groups for certain
canonical families of graphs. However, the computed homology groups are either
torsion-free, or have Z2-torsion.

Concluding remark and an open problem As we have seen while studying the
example of anyons, the parametrisation of different path-connected components of the
moduli space of flat bundles corresponds physically to changing some fields. On the
other hand, while studying the example of particles in R3, we learned that on each path-
connected component ofM(B,G) there may exist points that correspond to nontrivial
action of the holonomy without the requirement of introducing any additional fields in
the physical model. Such points are for example the isolated points ofM(B,G). It is
worthwhile to pursue the search of such canonical points inM(B,G), as they may lead
to some new spontaneously occurring quantum statistical phenomena. The existence
of torsion in higher cohomology groups suggests, that such phenomena may be possible
for higher dimensional bundles over Cn(R2). However, by inspection of the table of
cohomology of Cn(R2) [41], they are expected to appear in systems that consist of at
least 10 particles, which makes their rigorous study difficult. Perhaps a more tractable
discrete model can be found for graph configuration spaces. In view of proposition 3.14,
the first step in this direction would be construction of non-trivial flat vector bundles
for graphs, whose configuration spaces have torsion-free cohomology ring. In chapter
5 we provide examples of graphs that have such a property.
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Chapter 4

Configuration spaces of graphs

The general structure of configuration spaces of graphs has been introduced in
section 1.2. For computational purposes, we use discrete models of graph configuration
spaces. By a discrete model we understand a CW -complex, which is a deformation
retract of Cn(Γ). The existence of discrete models for graph configuration spaces
enables us to use standard tools from algebraic topology to compute homology groups
of graph configuration spaces. In particular, we use different kinds of homological exact
sequences. There are two discrete models that we use.

1. Abram’s discrete configuration space [28]. The Abram’s deformation retract of
Cn(Γ) is denoted by Dn(Γ). We use Abram’s discrete model mainly in the first
part of this thesis, where we apply discrete Morse theory to the computation of
homology groups of some small canonical graphs (section 5.2) and compute ho-
mology groups of configuration spaces of certain graphs of connectivity 1 (section
5.3).

2. The discrete model by Świątkowski [14], that we denote by Sn(Γ). We use this
model in sections 5.4-5.6 to compute homology groups of configuration spaces of
wheel graphs and some families of complete bipartite graphs.

Świątkowski model has an advantage over Abram’s model in the sense that its di-
mension agrees with the homological dimension of Cn(Γ), and as such, stabilises for
sufficiently large n. The dimension of Abram’s model is equal to n for sufficiently large
n. Hence, the Świątkowski model is more suitable for rigorous calculations. However,
sometimes it is more convenient to use Abram’s model with the help of discrete Morse
theory. The computational complexity of numerically calculating the homology groups
of Cn(Γ) for a generic graph is comparable in both approaches.

4.1. Elements of graph theory

In this section we define the notions from graph theory, that we use in the following
part of the thesis. An undirected graph Γ is a 1-dimensional CW -complex. In other
words, this is a collection of vertices, that are connected by edges. The set of edges
is denoted by E(Γ), and the set of vertices is denoted by V (Γ). So far, we have not
made any assumptions on the structure of connections, i.e. we allow multiple edges
and self-loops to occur in the graph (see figure 4.1a). We distinguish two types of edges
according to the way they are connected to the vertices of Γ. Edges, whose endpoints
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are connected with distinct vertices are called regular, while edges, whose endpoints
are connected to the same vertex are called the self-loops.

Figure 4.1: a) Example of a graph with a double edge and a self-loop. b) Topologically
isomorphic graph, which has been subdivided, so that it is now a simple graph.

Definition 4.1. The degree of vertex v ∈ V (Γ) denoted by d(v) is equal to the number
of regular edges adjacent to v plus twice the number of self-loops at v.

Vertices, whose degree is greater than or equal to 3, are called essential. Often we need
to assume certain regularity properties by requiring the graphs to be simple.

Definition 4.2. A simple graph is a graph, where every pair of vertices is connected
by at most one edge.

This is often a technical condition, as any non-simple graph can be made simple by
suitably subdividing its edges, i.e. adding a number of vertices of degree 2 (see figure
4.1b). Clearly, a subdivision of edges does not affect the topological properties of
Cn(Γ). If we want to emphasise the fact, that a graph is not subdivided, we call it a
smooth graph.

Definition 4.3. Γ is a smooth graph iff all its vertices have degree different than 2.

Any graph can be made smooth by removing the vertices of degree 2 and gluing the
endpoints of edges, that were incident to those vertices.

By assigning arbitrary orientations to the edges of Γ, we make the considered graph
a directed graph. Every edge of the directed graph has its initial vertex and terminal
vertex, denoted by ι(e) and τ(e) respectively. After assigning ± orientations to the
vertices of Γ, the graph becomes a chain complex, that consists of 0-cells and 1-cells.
The Betti numbers read

β0(Γ) = N, β1(Γ) = E(Γ)− V (Γ) +N,

where N is the number of connected components of Γ. The first Betti number gives
the number of linearly independent cycles in directed Γ. A cycle is an embedding of S1

in Γ. Using the language of CW complexes, we define cycles via the notion of paths.

Definition 4.4. A path P ⊂ Γ is a subset P = e1 ∪ e2 ∪ · · · ∪ el, where ei ∈ E(Γ) for
i = 1, . . . , l and ei∩ei+1 ⊂ V (Γ) for i = 1, . . . , l−1. Number l is the length of the path.

A path is simple iff it is a simple graph as a subgraph of Γ, and closed iff el ∩ e1 6= ∅.
Two paths are called independent iff their sets of interior vertices are disjoint.

Definition 4.5. A cycle O ⊂ Γ is a closed, simple path.
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Remark 4.1. To every path P = e1 ∪ e2 ∪ . . . el we can assign a chain

cP =
∑
e∈P

±e.

Chain cP can be made unique up to an overall sign by choosing the signs, so that the
common vertices ei∩ei+1 for i = 1, . . . , l−1 have coefficients 0 in expression ±ei±ei+1.

A tree graph is a graph, which has no cycles. For every simple graph Γ one defines
a spanning tree as a connected tree graph T ⊂ Γ, which contains all vertices of Γ,
V (T ) = V (Γ). Sometimes, given a tree graph T , we fix the root of T , which is a vertex
of T of degree 1.

As a final paragraph of this section, we introduce different notions of graph con-
nectivity. We say, that a given graph is connected, if any two vertices of Γ can be
connected by a path. Let us next define further connectivity properties. To this end,
we need the notion of vertex deletion.

Definition 4.6. A vertex deletion of v ∈ V (Γ) is the operation of removing v from Γ
together with edges incident to v. The resulting graph is denoted by Γ/v. Its edges and
vertices are

V (Γ/v) = V (Γ)− {v}, E(Γ/v) = {e ∈ E(Γ) : e ∩ v = ∅}.

If one deletes a set of vertices W ⊂ V (Γ), the resulting graph is denoted by Γ/W .

Definition 4.7. Graph Γ is k-connected, if Γ contains at least k + 1 vertices and the
minimal size of set W ⊂ V (Γ) such, that Γ/W is disconnected is larger than k − 1.

Menger’s theorem [71] gives an equivalent characterisation of k-connectivity.

Theorem 4.1. Let u and v be two nonadjacent vertices of Γ. The minimal number of
consecutive vertex deletions disconnecting u and v is equal to the number of pairwise
independent paths from u to v.

We denote the number of independent paths between u and v by κ(u, v). By Menger’s
theorem, one can compute the largest k such, that Γ is k-connected as

κ = min
u,v∈V (Γ)

k(u, v).

Definition 4.8. We say, that Γ has connectivity κ ∈ N iff κ is the largest k such, that
Γ is k-connected.

Note, that the property of being k-connected is not well-defined for complete graphs,
i.e. graphs, whose every pair of vertices is connected by a single edge. This is because
there is no set of vertices, whose deletion disconnects the graph. For complete graphs
on n vertices (denoted by Kn) k(u, v) is equal to n − 1, regardless of the choice of u
and v. Therefore, Kn has connectivity (n− 1). If Γ is not a complete graph, then the
above definitions work well.
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4.2. Abrams discrete model

Let us next describe in detail the discrete configuration spaces Dn(Γ) by Abrams.
For the deformation retraction from Cn(Γ) to Dn(Γ) to be valid, the graph must be
simple and sufficiently subdivided, which means that

• each path between distinct vertices of degree not equal to 2 passes through at
least n− 1 edges,

• each nontrivial loop passes through at least n+ 1 edges.

The discrete configuration space Dn(Γ) is a cubic complex. The n-dimensional cells in
Dn(Γ) are of the following form.

Σn(Dn(Γ)) = {{e1, . . . , en} : ei ∈ E(Γ), ei ∩ ej = ∅ for i 6= j}.

We denote cells of Dn(Γ) by the set notation using curly brackets. Lower dimensional
cells are described by sets of edges and vertices from Γ, that are mutually disjoint. A
d-dimensional cell consists of d edges and n − d vertices. In other words, cells from
Σd(Dn(Γ)) are of the form

Σd(Dn(Γ)) = {σ ⊂ E(Γ) ∪ V (Γ) : |σ| = n, |σ ∩ E(Γ)| = d, ε ∩ ε′ = ∅ ∀ε,ε′∈σ}.

In particular, when there are not enough pairwise disjoint edges in the sufficiently
subdivided Γ, the dimension of the discrete configuration space can be smaller than n.

The corresponding chain complex is formed by the basis composed of cells of Dn(Γ),
i.e.

C(Dn(Γ), R) =
⊕

σ∈Σ(Dn(Γ))

R, R = Z or R = Q.

In order to define the boundary map, we introduce a suitable order on vertices of Γ,
following [24, 22]. To this end, we choose a spanning tree T ⊂ Γ and fix its planar
embedding. We also fix the root ∗ of T by picking a vertex of degree 1 in T . For every
v ∈ V (Γ) there is the unique path in T that joins v and ∗, called the geodesic gv,∗.
For every vertex with d(v) ≥ 2 we enumerate the edges adjacent to v with numbers
0, 1, . . . , d(v) − 1. The edge contained in gv,∗ has label 0. The remaining edges are
labelled increasingly, according to their clockwise order starting from edge 0. The
enumeration procedure for vertices goes in an inductive manner. The root has number
1. If vertex v has label k and d(v) = 2, the vertex adjacent to v is given label k + 1.
Otherwise, if d(v) ≥ 2, the vertex adjacent to v in the lowest direction with vertices
that have not been yet labelled is given label kmax+1, where kmax is the maximal label
among all of the already labelled vertices. If d(v) = 1, we look for essential vertices in
gv,∗ and go back to the closest essential vertex that contains a direction with unlabelled
vertices. In other words, the vertices are labelled in the clockwise direction. This way
every edge is given an initial and terminal vertex that we denote by ι(e) and τ(e)
respectively. The terminal vertex is the vertex with the lower index, i.e. τ(e) < ι(e).
We can unambiguously specify an edge by calling its initial and terminal vertices, hence
we denote the edges by eιτ . Given a cell from Dn(Γ)

σ = {e1, . . . , ed, v1, . . . , vn−d},
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we order the edges from σ according to their terminal vertices, i.e. τ(e1) < τ(e2) <
· · · < τ(ed). The ith pair of faces from the boundary of σ reads

(∂ισ)i := {e1, . . . , ei−1, ei+1, . . . , ed, v1, . . . , vn−d, ι(ei)},
(∂τσ)i := {e1, . . . , ei−1, ei+1, . . . , ed, v1, . . . , vn−d, τ(ei)}.

The full boundary of σ is given by the following alternating sum of faces.

∂σ =
k∑
i=1

(−1)i ((∂ισ)i − (∂τσ)i) . (4.1)

For examples, see section 4.4 and chapter 5.

4.3. Świątkowski discrete model
Świątkowski complex is denoted by Sn(Γ). In order to define it, we regard graph

Γ as a set of edges E, vertices V and half-edges H. A half-edge of e ∈ E(Γ) assigned
to vertex v, h(v) ⊂ e, is the part e, which is an open neighbourhood of vertex v.
Intuitively, the half-edges are places, where the particles are allowed to ‘slide’. By e(h)
we will denote the unique edge, for which e ∩ h 6= ∅. Similarly, we have vertex v(h) as
the vertex, for which h is a neighbourhood. By H(v) we will denote all half edges that
are incident to vertex v. Chain complex S(Γ) =

⊕
n Sn(Γ) reads

S(Γ) = Z[E]⊗
⊗
v∈V

Sv,

where Sv = Z〈v, h ∈ H(v), ∅〉. This is a bigraded module with respect to the multipli-
cation by E(Γ) (a bigraded Z[E] module). The degrees of the components are

|v| = (0, 1), |e| = (0, 1), |h| = (1, 1).

The boundary map reads

∂v = ∂e = 0, ∂h = e(h)− v(h).

The boundary map for elements of a higher degree is determined by the Eilenberg-
Zilber theorem:

∂(χ⊗ η) = (∂χ)⊗ η + (−1)dχ∂η

for d-chain χ. There is a canonical basis for S(Γ), whose elements of degree (d, n) are
of the form

h1 . . . hdv1 . . . vke
n1
1 . . . enll , {v1 . . . vk} ∩ {h1, . . . hd} = ∅, (4.2)

d+ k + n1 + · · ·+ nl = n.

The basis elements form a cube complex. In calculations we use the notion of support
of a given cell or a chain.

Definition 4.9. The support of d-cell c = h1 . . . hdv1 . . . vke
n1
1 . . . enll ∈ Sn(Γ) is the set

of the corresponding edges and vertices of Γ

Supp(c) :=

(
d⋃
i=1

{e(hi), v(hi)}
)
∪ {v1, . . . , vk} ∪ {e1, . . . , el} ⊂ E(Γ) ∪ V (Γ).
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The support of a chain b =
∑

i pici, pi ∈ Z is given by

Supp(b) :=
d⋃
i=1

Supp(ci).

In this thesis we will also use a variation of S(Γ), which we will call the reduced
Świątkowski complex with respect to a subset of vertices U ⊂ V (Γ) and denote by
S̃U(Γ). In most cases, the reduced complexes lack a canonical basis, however they
have a smaller number of generators than S(Γ). The reduction is done by changing
the generators at vertex v to differences of half edges hij := hi − hj, hi, hj ∈ H(v),
S̃v := Z〈∅, hij〉.

S̃U(Γ) = Z[E]⊗
⊗
v∈V \U

Sv ⊗
⊗
v∈U

S̃v.

Intuitively, this means, that effectively, the particles always slide from one half-edge
to another without staying at the central vertex. Both reduced and the non-reduced
Świątkowski complexes have the same homology groups [61]. From now on, the default
complex we will work with is the complex, which is reduced with respect to all vertices
of degree one. Intuitively, this means that we do not consider redundant cells, where
particles move from an edge to some vertex of valency one. Such complexes have the
canonical basis, which corresponds to cells of a cube complex of the form (4.2). By a
slight abusion of notation, we will denote such a default reduced complex by S(Γ). In
other words, from now on

S(Γ) := Z[E]⊗
⊗

v∈V : d(v)>1

Sv.

For examples, see figure 4.2. As a direct consequence of the dimension of Sn(Γ), we

Figure 4.2: Świątkowski complex of the Y -graph and of the lasso graph, where vertices
of degree 1 have been reduced. a) Świątkowski complex of C2(Y ). Only vertices of
S2(Γ) are captioned. The Y -cycle reads e1(h2 − h3) + e2(h3 − h1) + e3(h1 − h2). b)
Świątkowski complex of C2(Γ) for the lasso graph. Vertices and some chosen edges of
S2(Γ) are captioned. The O-cycles are e1(h2−h3) and e2(h2−h3). The Y -cycle is their
sum, hence can be written as (e1 − e2)(h2 − h3).

get the following fact.
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Fact 4.1. Let Γ be a graph. Then, the following homology groups of Cn(Γ) vanish.

Hd(Cn(Γ)) = 0 if d < n or d > NΓ,

where NΓ = |{v ∈ V (Γ) : d(v) ≥ 3}|.

Vertex blowup

In the following, we will explore relations on homology groups that stem from
blowing up a vertex of Γ: Γ→ Γv (Fig. 4.3).

Figure 4.3: Vertex blow up at vertex v in Γ.

We borrow this nomenclature and the methodology of this subsection from [61]. We
start with the reduced complex with respect to vertex v, S̃v(Γ). Any chain b ∈ S̃v(Γ)
can be decomposed in a unique way by extracting the part that involves generators
from S̃v. In order to do it, we fix a half-edge h0 ∈ H(v) and write b as

b = b0 +
∑

h∈H(v)\h0

(h0 − h)bh.

Note that chains b0 and bh belong to S(Γv). We associate two chain maps to the above
decomposition. The first map φ is the embedding of any chain b0 from S(Γv) to S̃v(Γ).
Clearly, this map is injective and commutes with the boundary operator.

φn : Sn(Γv)→ S̃vn(Γ), φ(b0) = b0 ∈ S̃v(Γ),

The other map ψ is the projection of b ∈ S̃v(Γ) to its h-components. It assigns a
number of n− 1-particle d− 1-chains to a n-particle d-chain in the following way

ψn : S̃vn(Γ)→
⊕

h∈H(v)\h0

Sn−1(Γv), ψ(b) =
⊕

h∈H(v)\h0

bh.

Map ψ is surjective, because any chain b′ ∈ Sn−1(Γv) can be obtained by ψ for exmaple
from chain (h0 − h)b′ ∈ S̃vn(Γ). In order to see that ψ is a chain map, consider a cycle
c ∈ S̃vn(Γ). We have

0 = ∂c = ∂c0 +
∑

h∈H(v)\h0

((e(h0)− e(h))ch − (h0 − h)∂ch) .
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Grouping the summands that entirely belong to Sn−1(Γv), we get

∂c0 +
∑

h∈H(v)\h0

(e(h0)− e(h))ch = 0,

∑
h∈H(v)\h0

(h0 − h)∂ch = 0.

By the same argument, the second equation implies that ∂ch = 0 for all h ∈ H(v)\h0.
We can write down the two maps as a short exact sequence

0→ Sn(Γv)
φn−→ S̃vn(Γ)

ψn−→
⊕

h∈H(v)\h0

Sn−1(Γv)→ 0. (4.3)

Short exact sequence (4.3) of chain maps implies the long exact sequence of homology
groups

. . .
Ψn,d+1−−−−→

⊕
h∈H(v)\h0

Hd (Sn−1(Γv))
δn,d−−→ Hd (Sn(Γv))

Φn,d−−→ Hd

(
S̃vn(Γ)

)
Ψn,d−−→ (4.4)

Ψn,d−−→
⊕

h∈H(v)\h0

Hd−1 (Sn−1(Γv))
δn,d−1−−−→ Hd−1 (Sn(Γv))

Φn,d−1−−−−→ . . . ,

where the connecting homomorphism reads

δ[bh] = [∂ ((h0 − h)bh)] = e(h0)[bh]− e(h)[bh].

Long exact sequence (4.4) implies a collection of short exact sequences

0→ coker (δn,d) −→ Hd

(
S̃vn(Γ)

)
−→ ker (δn,d−1)→ 0.

Intuitively, the coker (δn,d) identifies different distributions of free particles in Sn(Γv)
on the two sides of the junction h0 − h and ker (δn,d−1) is responsible for creating new
cycles at vertex v (for example, the cY cycles).

4.4. Review of the structure of the first homology group
With a discrete model at hand, the computation of homology groups for a given

graph boils down to studying the kernel and the image of the boundary map. Denote
by ∂d the restriction of the boundary map to d-chains

∂d : Cd → Cd−1, ∂d := ∂|Cd .

There are some particular types of cycles that play an important role in this work.
These are O-cycles and Y -cycles. We specify them for the Abram’s model. The con-
struction for Sn(Γ) is fully analogous.

Definition 4.10. Let O ⊂ Γ be a simple cycle (an embedding of S1 in Γ). Choose sign
coefficients se ∈ {−1, 1}, e ∈ O such that ∂

∑
e∈O see = 0 in D1(Γ). An O-cycle in

Dn(Γ) is a 1-chain of the form

cO :=
∑
e∈O

se{e, v1, . . . , vn−1},
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where {v1, . . . , vn−1}∩O = ∅ is some choice of vertices. In order to define an O-cycle in
Sn(Γ), note that for all v ∈ V (Γ)∩O, set H(v)∩O contains exactly two half-edges. We
denote these half-edges by hv, h′v, where the labels are such, that ∂

∑
v∈V (Γ)∩O(h′v−hv) =

0. Then,

cO =

 ∑
v∈V (Γ)∩O

(h′v − hv)

⊗(⊗
w∈W

w

)
⊗

 ⊗
e∈E(Γ)

ene

 ,

W ⊂ (V (Γ)− V (Γ) ∩O), #W +
∑
e∈E(Γ)

ne = n− 1.

Definition 4.11. Let Y ⊂ Γ be a Y -subgraph of Γ spanned on vertices u0, uh, u1, u2

such that u0, u1, u2 are adjacent to uh and u0 < uh < u1 < u2. The Y -cycle in D2(Γ)
associated to subgraph Y is of the following form

cY := {eu1uh , u0}+ {euhu0 , u1}+ {eu2uh , u1} − {eu1uh , u2} − {euhu0 , u2} − {eu2uh , u0}.

A Y -cycle in Dn(Γ) is formed by distributing the free particles outside of subgraph Y ,
i.e.

c
(n)
Y :=

∑
σ∈cY

sσ (σ ∪ {v1, . . . , vn−2}) ,

where {v1, . . . , vn−2}∩Y = ∅ and sσ is the sign of cell σ in cycle cY . In order to define
the Y -cycle in Sn(Γ), denote the half edges of subgraph Y as {hi}2

i=0, where hi ∈ H(uh)
are such, that e(h0) = euhu0 , e(h1) = eu1uh, e(h2) = eu2uh. Then,

cY = euhu0 (h2 − h3) + eu1uh(h3 − h1) + eu2uh(h1 − h2).

Cycle c(n)
Y ∈ Sn(Γ) is formed by multiplying cY by a suitable polynomial in V (Γ) and

E(Γ).

c
(n)
Y = cY ⊗

(⊗
w∈W

w

)
⊗

 ⊗
e∈E(Γ)

ene

 , W ⊂ (V (Γ)− {uh}), #W +
∑
e∈E(Γ)

ne = n− 2.

Figure 4.4: A Y -graph, its configuration space (b) and its discrete configuration space
D2(Γ) (a).
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It has been shown in [20] that subject to certain relations, cycles cO and c(n)
Y gen-

erate H1(Dn(Γ)) (see also [61] for the proof of an analogous fact for H1(Sn(Γ))). The
fundamental relation between Y -cycles is shown on Fig. 4.5 and Fig. 4.6.

Figure 4.5: The fundamental relation between the two-particle cycle on a Y -graph and
the AB-cycle and a two-particle cycle c2 in the lasso graph.

Cycle c(1)
AB is the cycle, where one particle goes around the cycle in the lasso graph and

the other particle occupies vertex 1.

c
(1)
AB = cO × {1} = {e3

2, 1}+ {e4
3, 1} − {e4

2, 1}.
Cycle c2 is the cycle, where two particles go around the cycle in lasso.

c2 = {e4
2, 3} − {e3

2, 4} − {e4
3, 2}.

It is straightforward to check that

c
(1)
AB + c2 − cY = ∂S, (4.5)

where S = {e2
1, e

4
3}. Consider next a situation, where two disjoint Y -graphs share one

cycle cO and their free ends are connected by a path pv1,v2 , which is disjoint with cO
(Fig. 4.6). In other words, consider an embedding of a graph, which is isomorphic to
the Θ- graph1.

Figure 4.6: Cycles cY1 and cY2 are homologically equivalent.

Then,

c
(v1)
AB + c2 − cY1 = ∂S1,

c
(v2)
AB + c2 − cY2 = ∂S2.

1The Θ graph consists of two vertices, which are connected by three edges. It can be also viewed
as complete bipartite graph K2,3.
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Subtracting both equations, we get

cY1 − cY2 = ∂(S2 − S1) + c
(v1)
AB − c

(v2)
AB . (4.6)

But the existence of pv1,v2 gives us that c(v1)
AB − c

(v2)
AB = ∂ (cO × pv1,v2). This in turn

means that cY1 and cY2 are homologically equivalent. Relation

cY1 − cY2 = ∂ (S2 − S1 + cO × pv1,v2) (4.7)

will be called a Θ-relation. It turns out that considering all Θ-relations stemming
from different Θ-subgraphs and relations (4.6) that express different distributions of
particles in the O-cycles as differences of Y -cycles, one can compute the first homology
group of Dn(Γ). Let us next summarise the results concerning the structure of the first
homology group of graph configuration spaces. We formulate the results assuming,
that the considered graphs are simple. The general form of the first homology group
reads

H1(Dn(Γ),Z) = (Z)N ⊕ (Z2)L,

where N and L are the numbers of copies of Z and Z2 respectively. Numbers N and
L depend on the connectivity and some combinatorial properties of the given graph.
The simplest case is, when Γ is 3-connected. Then, if Γ is planar, we have L = 0 and
N = β1(Γ) + 1. Otherwise, if Γ is non-planar, we have L = 1 and N = β1(Γ). This is
because for 3 connected graphs, all cY -cycles are equal up to a sign in H1(Dn(Γ)). For
planar graphs they generate a Z-component and for non-planar graphs they generate
the Z2-component in H1(Dn(Γ)). The remaining Zβ1(Γ)-component is generated by
the AB-cycles. The generation of torsion can be proved using Kuratowski theorem
[62], which asserts, that every non-planar graph contains a graph isomorphic to K5

or K3,3 (called Kuratowski graphs) as a subgraph. The 2-particle configuration space
of a Kuratowski graph is a non-orientable closed surface of dimension 2 [28]. Such
surfaces embedded in Dn(Γ) of a non-planar graph give relations, that are responsible
for torsion in H1(Dn(Γ)).

If the given graph is 2-connected, the first homology group is stable with respect
to the number of particles in the sense, that H1(Dn(Γ)) = H2(Dn(Γ)) for n ≥ 2. For a
general connected graph the rank of H1(Dn(Γ)) grows polynomially with n for n ≥ 2.
In order to fully describe H1(Dn(Γ)) for any connected graph, we need to decompose
Γ by performing a sequence of vertex cuts, that results with a decomposition of Γ into
a number of 3-connected components [20, 22, 73]. Let us next briefly describe the
decomposition procedure.

Definition 4.12. A cut of graph Γ is a set of vertices W ⊂ V (Γ), whose removal from
Γ results with a decomposition of Γ into disconnected components. In other words,
Γ−W is disconnected as a topological space.

A cut is closely related to the vertex deletion from definition 4.6. Namely, the number
of connected components of Γ/W and Γ−W is the same. Therefore, if Γ has connectivity
k, it has a k-vertex cut. We denote the components by Gi, so that

Γ−W =

µ⊔
i=1

Gi.

By giving the connected components of Γ −W the topology of a subspace of Γ, we
consider their closures in Γ. We refer to them as the closed components of Γ − W .
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Each closed component is a subgraph of Γ and contains a copy of vertices from W . By
denoting the closed components by Γi, we have

V (Γi) = W ∪ (V (Γ) ∩Gi), E(Γi) = {e ∈ E(Γ) : e ∩Gi 6= ∅}.

The relevant types of cuts are the one- and two-vertex cuts (see figure 4.7). If the

Figure 4.7: Examples of one- and two-vertex cuts. a) A one-vertex cut of a graph of
connectivity one with three components. b) A two-vertex cut of a graph of connectivity
two with two components.

given graph has connectivity one, we perform a series of one-vertex cuts, until the
components are either graphs of connectivity 2, or are isomorphic to line segments
(single edges). A one-vertex cut affects the first homology group as follows.

Lemma 4.2. Let v ∈ V (Γ) be a one-vertex cut, which decomposes Γ into µ components.
Then,

H1(Dn(Γ)) ∼=
(

µ⊕
i=1

H1(Dn(Γi))

)
⊕ ZN1(n,µ,v),

where

N1(n, µ, v) = (d(v)− 2)

(
n+ d(v)− 2

n− 1

)
−
(
n+ d(v)− 2

n

)
− (d(v)− µ− 1).

Denote by W1 ⊂ V (Γ) the set of one-vertex cuts. We collect the overall change of
H1(Dn(Γ)) to N1(n).

N1(n,Γ) :=
∑
v∈W1

N1(n, µ(v), v).
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Then, for the components of connectivity 2, we perform further two-vertex cuts (Fig.
4.7b) and form the marked components. The marked components are formed from the
standard components as follows. Let u, v be a two-vertex cut of Γ. Then, the marked
components are of the form Γ̂i := Γi ∪ evu, where evu is an additional edge that joins
u and v in Γi. Group H1(Dn(Γ)) is expressed by the first homology of the marked
components as follows.

Lemma 4.3. Let u, v be a two-vertex cut of graph Γ, that decomposes Γ into µ marked
components denoted by {Γ̂i}µi=1. Then,

H1(Dn(Γ))⊕ Z ∼=
(

µ⊕
i=1

H1(Dn(Γ̂i))

)
⊕ Z(µ−1)(µ−2)/2.

By iterating the two-vertex cuts, we obtain components, that are either cycles or 3-
connected graphs [73]. Denote by W2 the set of pairs of vertices of Γ, at which the
two-vertex cuts are done. We collect the overall impact on H1(Dn(Γ)) in N2(n).

N2(Γ) :=
∑

{u,v}∈W2

1

2
(µ({u, v})− 1)(µ({u, v})− 2).

Moreover, denote by N3(Γ) the number of resulting 3-connected planar components
and by N ′3(Γ) the number of 3-connected non-planar components. We summarise the
above review by a theorem.

Theorem 4.4. Let Γ be a simple graph. Then, for n ≥ 2

H1(Dn(Γ)) = ZN1(n)+N2(Γ)+N3(Γ)+β1(Γ) ⊕ ZN
′
3(Γ)

2 .

59





Chapter 5

Calculation of homology groups of
graph configuration spaces

This chapter contains the techniques that we use for computing homology groups
of graph configuration spaces. We tackle this problem from the ‘numerical’ and the
‘analytical’ perspective. The numerical approach means using a computer code for
creating the boundary matrices and then employing the standard numerical libraries
for computing the kernel and the elementary divisors of given matrices. The proce-
dures for calculating the boundary matrices of Dn(Γ), Sn(Γ) and the Morse complex
(see section 5.2) were written by the author of this thesis, based on papers [24, 22].
The analytical approach means computing the homology groups for certain families
of graphs by suitably decomposing a given graph into simpler components and using
various homological exact sequences. Recently in the mathematical community, there
has been a growing interest in computing the homology groups of graph configuration
spaces. A significant part of the recent work has been devoted to explaining certain
regularity properties of the homology groups of Cn(Γ) [30, 31, 32, 34, 33]. In this thesis,
by a direct study of some families of graphs, we give new evidence supporting the reg-
ularity of Betti numbers of graph configuration spaces. By the regularity property we
understand the following conjecture, which has been stated in a similar form (without
giving explicit bound on n) in [30].

Conjecture 5.1. For n ≥ 2d, the behaviour of βd(Cn(Γ)) becomes regular, i.e. βd(Cn(Γ))
grows polynomially with n.

In view of conjecture 5.1, we will call Hd(C2d(Γ)) the first regular homology group of
order d.

5.1. Product cycles
Considering simultaneous exchanges of pairs of particles on disjoint Y -subgraphs of

Γ and the O-type cycles with the remaining particles distributed on the free vertices
of Γ, one can construct some generators of H∗(Dn(Γ)) or H∗(Sn(Γ)). Such cycles are
products of 1-cycles, hence are isomorphic to tori embedded in the discrete configu-
ration space. To construct a product d cycle in Dn(Γ), we choose Y -subgraphs of Γ
{Yi}dYi=1 and cycles in Γ (O-subgraphs of Γ) {Oi}dOi=1, where dY +dO = d. All the chosen
subgraphs must be mutually disjoint.

Yi ∩ Yj = Oi ∩Oj = ∅ for i 6= j, Yi ∩Oj = ∅ for all i, j.
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Moreover, we choose vertices {v1, . . . , vn−2dY −dO} ⊂ V (Γ), so that vi∩Oj = vi∩Yj = ∅
for all i, j. Product cycle on Y1 × · · · × YdY × O1 × · · · × OdO with the free particles
distributed on {v1, . . . , vn−2dY −dO} is the following chain.

cY1 ⊗ · · · ⊗ cYdY ⊗ cO1 ⊗ · · · ⊗ cOdO ⊗ {v1, . . . , vn−2dY −dO}.

In an analogous way, we form product cycles in Sn(Γ).
We study such product cycles for configuration spaces of different graphs and de-

scribe relations between them. We show that in some cases such a cycles generate the
entire homology groups. These cases are

• configuration spaces of tree graphs (section 5.3),

• configuration spaces of wheel graphs (section 5.4),

• all homology groups of the configuration space of graph K3,3, except the third
homology group (section 5.5),

In sections 5.5 and 5.6 we also discuss examples of cycles that are different than tori.
In particular, we compute all homology groups of configuration spaces of complete
bipartite graphs K2,p, that are often pointed out in the literature as an unsolved exam-
ple, where the simple use of product cycles is not sufficient to generate the homology
groups. We show, that some of the generators of H∗(Sn(K2,p)) are cycles of a new type,
that have the homotopy type of triple tori.

5.2. Discrete Morse theory for Abrams model

In this section, we review a version of Forman’s discrete Morse theory [23] for
Abram’s discrete model that was formulated in [24]. As a final part of this chapter, we
formulate a pseudocode that we use for computing homology groups of graph config-
uration spaces with small numbers of partices for some canonical graphs. The results
are listed in tables 5.1 and 5.2.

The central notion of discrete Morse theory is that of a discrete vector field. A dis-
crete vector field W on Dn(Γ) is a collection of maps Wd : Σd(Dn(Γ))→ Σd+1(Dn(Γ))
that satisfies the following conditions.

1. Each Wd is injective.

2. If Wd(σ) = τ , then σ is a face of τ .

3. The image of Wd is disjoint from the domain of Wd+1.

For a given discrete vector field, we distinguish three types of d-cells.

• Redundant cells, i.e. cells that belong to the domain of Wd.

• Collapsible cells, i.e. cells that lie in the image of Wd−1.

• Critical cells, i.e. cells that lie neither in the image of Wd−1 nor in the domain of
Wd.

62



We are interested in a particular class of discrete vector fields. These are called discrete
gradient vector fields and they are distingushed by the property that they have no
closed, non-stationary paths. A path is a sequence of d-cells σ1 → σ1 → · · · → σr such
that i) if σi does not belong to the domain of Wd, then σi+1 = σi, ii) if σi belongs to
the domain of Wd, then σi+1 6= σi and σi+1 ∈ ∂Wd(σi). A path is non-stationary if
σ2 6= σ1 and closed if σ1 = σr.

From a discrete gradient vector fieldW we construct the discrete flow F : C(Dn(Γ))→
C(Dn(Γ)). Map F is linear and has the property that

∀c∈C(Dn(Γ)) ∃r F r(c) = F r+1(c).

In other words, the action of F on a given chain becomes trivial, when applied suffi-
ciently many times. The Morse complex is the chain complex of chains invariant under
F .

M(Dn(Γ)) := {c ∈ C(Dn(Γ)) : F (c) = c}.
The chain map form C(Dn(Γ)) toM(Dn(Γ)) will be denoted by F∞. It is realised by
iterating the action of F on c so many times that the chain becomes invariant under
F . In terms of the discrete gradient vector field, map F is defined on Σd(Dn(Γ)) as
follows. If σ is a critical cell, then F (σ) = σ. If σ is collapsible, then F (σ) = 0. If σ is
redundant

F (σ) = ±∂W (σ) + σ,

where the sign is chosen such that the coefficient of σ in ±∂W (σ) is −1.
Let us next state the precise form of gradient vector fieldW on Dn(Γ) following [24].

Fix a spanning tree T ⊂ Γ and assume that the vertices of Γ are ordered as described
in chapter 4. The idea is to prescribe a motion of particles on Γ that attracts the
particles to the root of T . More precisely, for every v ∈ V (Γ) there is unique e ∈ E(T )
such that v = ι(e). We denote this edge by e(v) - this is the possible direction of
movement of particle that occupies vertex v. A d-cell σ = {e1, . . . , ed, v1, . . . , vn−d} can
be viewed as a movement of d particles along the edges e1, . . . , ed and n − d particles
occupying vertices v1, . . . , vn−d. Cell σ belongs to the domain of Wd (is redundant) iff
it does not belong to the image of Wd−1 (which we are about to characterise) and there
exists i ∈ {1, . . . , n− d} so that for all j ∈ {1, . . . , d} we have e(vi) ∩ ej = ∅ . We call
such a vertex vi an unblocked vertex. Cell W (σ) corresponds to the movement of the
unblocked vertex of lowest index among the vertices from σ, i.e. it substitutes such a
vertex in σ with the edge, which is its direction of movement. In other words, if vj is
the unblocked vertex of lowest index, then

W ({e1, . . . , ed, v1, . . . , vj−1, vj, vj+1, . . . , vn−d}) =

= {e1, . . . , ed, e(vj), v1, . . . , vj−1, vj+1, . . . , vn−d}.

This rule means that on the junctions in T , the particle with lowest index has the
priority to move. In order to identify the critical d-cells, we have to determine the
conditions, under which a cell whose all vertices are blocked, does not lie in the image
of Wd−1. This happens, whenever every e ∈ σ breaks the priority rule or e /∈ T . Edge
e breaks the priority rule iff for all v ∈ σ the fact that e(v)∩ e = τ(e) implies v > ι(e).

The boundary matrices of the Morse complex ∂̃d : Md(Dn(Γ)) → Md−1(Dn(Γ))
are calculated in bases, which consist of critical d-cells and critical (d − 1)-cells. The
explicit formula reads

∂̃d(σ) = F∞(∂d(σ)).
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Example 5.2. – Morse complex of the two-particle configuration space on
the lasso graph.

Figure 5.1: A discrete Morse theory for the lasso graph. We have H1(C2(Γ)) = Z⊕ Z.
Arrows denote the gradient vector field, whose flow contracts the configuration space
to a bow-tie. The critical 1-cells are marked by dashed lines. There is only one critical
0-cell – {1, 2}.

The spanning tree of Γ is denoted on figure 5.1 by solid lines. There are two critical
cells - one, that contains the edge, which is not contained in the spanning tree and
the unique vertex disjoint with this edge, σ1 = {e4

3, 1}. The second critical cell has
the priority-breaking edge e4

2, which blocks particle at vertex 3, σ2 = {e4
2, 3}. Let

us compute the boundary of σ2 in the Morse complex. From formula 4.1, we have
∂ ({eιτ , v}) = − ({ι, v} − {τ, v}) . Hence, ∂ ({e4

2, 3}) = {2, 4} − {3, 4}. Both cells are
redundant, as in general there cannot be any collapsible 0-cells. The discrete gradient
vector field acts as follows

W ({2, 4}) = {e2
1, 4}, W ({3, 4}) = {e3

2, 4}.

That said, we have F ({2, 4}) = {1, 4}, F ({3, 4}) = {2, 4}. By iterating the procedure,
we get F∞({2, 4}) = {1, 2} = F∞({3, 4}). Hence, by linearity of F∞, we have ∂̃(σ2) =
0. Similarly, ∂̃(σ1) = 0. As there are no critical 2-cells, we conclude, that H1(D2(Γ)) =
Z⊕ Z.

Some chosen homology groups over integers for configuration spaces of exemplary
graphs have been calculated using the above formulation of discrete Morse theory.
The results are collected in tables 5.1 and 5.2. One can readily see the regularity of
second Betti numbers in table 5.1. Namely, for n ≥ 4, the second Betti numbers grow
quadratically, as the differences between β2(Cn(Γ)) and β2(Cn+1(Γ)) become constant.
As we explain in the following sections, higher Betti numbers also become regular, with
polynomial behaviour of a higher degree.

Table 5.2 presents the results for the second and third homology groups for graphs
from the Petersen family (fig. 5.2). These graphs serve as examples, where torsion
in higher homology groups appears. Interestingly, the torsion subgroups are always
equal to a number of copies of Z2. This phenomenon can be explained by embedding a
nonplanar graph in Γ and considering suitable product cycles, as discussed in subsection
5.3.5. The question about the existence of torsion different than Z2 in higher homologies
remains open.
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Algorithm 1 Main steps of the algorithm for computing Hd(Dn(Γ)) via discrete Morse
theory
1: Input: Sufficiently subdivided graph Γ, number of particles n.
2: Output: βd(Dn(Γ)), Td(Dn(Γ))
3: F← flow of the discrete gradient vector field
4: ∂ ← the boundary map in C(Dn(Γ))
5: procedure MorseBoundaryMap(d)
6: critcellsd← list of critical d-cells
7: critcellsdminus← list of critical d− 1-cells
8: DM ← integer matrix of size Length(critcellsd)×Length(critcellsdminus)
9: for i = 0 to Length(critcellsd) do
10: b← ∂(critcellsd[i])
11: repeat
12: b← F (b)
13: until F (b) == b
14: for σ′ in b do
15: DM[i][Index(σ′, critcellsdminus)]← Coefficent(σ′, b)

16: return DM
17: Dd ← MorseBoundaryMap(d)
18: dimker← Length(Dd[0])−MatrixRank(MorseBoundaryMap(d))
19: Dd+1 ← MorseBoundaryMap(d+ 1)
20: divisors← ElementaryDivisors(Dd+1)
21: nonzerodivisors← number of nonzero elements of divisors
22: torsion← list of elements of divisors that are greater than 1
23: return (dimker − nonzerodivisors), torsion
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Γ n β2(Cn(Γ)) β3(Cn(Γ)) β4(Cn(Γ))

K4

3 3 0 -
4 9 0 0
5 15 0 0
6 21 4 0
7 27 16 0
8 33 40 1
9 39 80 6

K3,3

2 0 - -
3 8 0 -
4 19 1 0
5 28 10 0
6 37 39 0
7 46 88 0
8 55 157 15

K5

2 0 - -
3 30 0 -
4 76 1 0
5 116 77 0
6 156 381 0
7 196 961 0

Table 5.1: Betti numbers for chosen graphs computed using the discrete Morse theory
[24]. The calculated groups were torsion-free.

K6 P7 K3,3,1 K4,4 P8 P9 P10

β2(C4(Γ)) 264 177 172 144 114 70 40

T2(C4(Γ)) Z2 Z2 Z2 (Z2)2 Z2 Z2 Z2

β3(C6(Γ)) 4137 2058 1919 1460 986 452 191

T3(C6(Γ)) 0 0 0 (Z2)73 0 0 0

Table 5.2: The first regular homology groups of order 2 and 3 for the Petersen family.

5.3. Graphs of connectivity one

This section is taken almost verbatim from paper [10]. It concerns graphs of con-
nectivity one, by which we understand connected graphs, that have a vertex, which
when removed together with its adjacent edges, results with a decomposition of the
graph into a number of disjoint components. The existence of such a vertex has im-
plications for the structure of the discrete configuration space. Namely, Dn(Γ) has a
natural decomposition into simpler components, where Mayer-Vietoris sequences can
be conveniently used. This allows us to give recursive formulae for computing the
homology groups of Dn(Γ). In particular, we show first computation of the homology
groups for particles on tree graphs, that has been repeated later in the work [30] using
different methods. We argue, that for particles on tree graphs the homology groups
are free, hence in view of proposition 3.14 tree graphs provide a simple playground
for studying flat complex vector bundles over configuration spaces. In comparison to
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Figure 5.2: Graphs that form the Petersen family.

paper [10], this section contains some additional comments about the generating set
of H2(D2(Γ)) (subsection 5.3.2) and about the structure of homology groups of con-
figuration spaces of two graphs connected by a single edge (subsection 5.3.4). We also
provide an extensive discussion concerning torsion in homology groups for particles on
graphs of connectivity one (subsection 5.3.5).

Let us begin with an overview of the general methodology used in this section. We
will regard a tree graph as a loopless lattice of star graphs 1. Namely, for every tree
graph one can construct the underlying tree, whose vertices denote the central vertices
of the star graphs and the edges symbolise the connections between the star graphs, see
Fig. 5.3. The homology groups for star graphs are well-known. In particular, Dn(S)
is homotopy equivalent to a wedge sum of circles [64, 28]. Recall that a wedge sum
of topological spaces X and Y is a space, which is created by identifying a point in
X with a point in Y . In other words, this is the space (X t Y )/ ∼, where ∼ is the
quotient map that identifies the two distinguished points. Hence, Hk(Dn(S)) = 0 for
k ≥ 2. Moreover, the dimension of H1(Dn(S)) is given by [20, 22]

β
(n)
1 (S) =

(
n+ E − 2

E − 1

)
(E − 2)−

(
n+ E − 2

E − 2

)
+ 1, (5.1)

1A star graph is a connected graph with a single vertex of degree larger than 2 (called the hub, or
the central vertex) and a number of edges attached to the vertex.
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Figure 5.3: a) A tree graph regarded as a lattice of star graphs. b) The underlying
scheme of connections.

where E is the number of edges adjacent to the central vertex of S.
Homology groups ofDn(T ) have been studied from the Morse-theoretic point of view

by Farley and Sabalka in [26]. The authors show that Hk(Dn(T )) are free with rank
equal to the number of k-dimensional critical cells of the discrete vector field. However,
as they point out, it is a difficult task to give a simple formula for the number of critical
cells. In this paper, we construct an over-complete basis of ker ∂k for Dn(T ) using the
knowledge of the critical cells of the discrete vector field. The idea is to construct a
k-cycle for a given critical k-cell, which contains the critical cell and which is carried
by the vector field’s flow to the corresponding cell in the Morse complex. Critical cells
of the discrete vector field for trees are known [22, 26]. A critical k-cell, like any k-cell,
contains k edges and n−k vertices, all disjoint. Each edge from the considered critical
k-cell is incident to a vertex of degree ≥ 3. Let us call such a vertex the hub of a star
graph. The vertices from the critical cell are blocked, i.e. are stacked behind the hubs
or stacked behind the tree’s root. For a full description of critical cells of the discrete
vector field, see section 5.2. See Fig. 5.4 for an example of a critical 2-cell.

The corresponding cycle, that is carried by the vector field’s flow to a proper critical
cell is of the form

cY1 ⊗ cY2 ⊗ · · · ⊗ cYk ⊗ {v1, . . . , vn−2k},

where each of the Y -subgraphs consists of one edge from the critical cell, one edge,
which contains the hub and a free vertex in the star graph, and one edge, which
contains the hub and a vertex from the critical cell (Fig. 5.4). Clearly, such a cycle
contains a single critical cell, which is the desired one. Moreover, one can check that
the remaining cells from such a cycle are collapsible or redundant, i.e. are collapsed
by the vector field’s flow. The over-complete basis for tree graphs that we consider,
consists of all such cycles, however we do not require the vertices {v1, . . . , vn−2k} to be
blocked. They can be arbitrary vertices of T . Hence, our over-complete basis is much
larger than the number of critical cells. Subsection 5.3.3 uses a proper topological
machinery to handle the relations between the cycles from the over-complete basis.
These relations come from the (k + 1)-cells from Dn(T ) and from linear dependence
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Figure 5.4: The correspondence between the critical cells of the discrete gradient vector
field and cycles in the configuration space. The edges from the critical cell are marked
with dashed lines. Arrows mark the Y -subgraphs, where the pairs of particles exchange.
The occupied vertices (black dots) denote the free particles, which are stacked behind
the hubs.

within ker ∂p.
The fact that the homology groups are free, can be also proved using the above

correspondence between the critical cells and cycles in Dn(T ). Namely, there are no
relations between the k-cycles of the Morse complex that stem from the boundaries of
(k+ 1)-cells. This is because every cell of the Morse complex has no boundary, as it is
the image under the chain map F∞ of a cycle in the configuration space.

Let us next describe the intuition standing behind the proof of the formulae for
the ranks of the homology groups. Particles on a tree graph can exchange only on
Y -subgraphs. Using the above arguments from Morse theory, it is enough to consider
exchanges of pairs of particles that involve separate Y -subgraphs. There are two kinds
of relations between the cycles corresponding to such exchanges

• relations between the exchanges on Y -subgraphs from the same star subgraph,

• relations between the exchanges on distinct star subgraphs, that stem from the
connections between the subgraphs.

The relations of the first kind can be handled by choosing the 1-cycles, which are the
representatives of the basis of the first homology group for the proper star subgraphs.
The number of independent 1-cycles for particles on a star graph is given by formula
(5.1). For example, consider a tree, which consists of exactly two star graphs (Fig.
5.10), S and S ′. The representatives of the second homology group for four particles
on such a tree are the 2-cycles, which are products of two-particle 1-cycles from S and
two-particle 1-cycles from S ′. Hence, the rank of H2(D4(S, S ′)) reads

β
(4)
2 (S, S ′) = β

(2)
1 (S)β

(2)
1 (S ′).

When the number of particles on T is larger than 4, the relations of the second kind
come into play. There are 2-cycles, that come from all possible distributions of par-
ticles between S and S ′. In the case of 5 particles, the number of such cycles is
β

(2)
1 (S)β

(3)
1 (S ′) + β

(3)
1 (S)β

(2)
1 (S ′). However, each such 2-cycle has one free particle,

that does not take part in the exchange. Hence, the 2-cycles, where the free parti-
cle is sitting on the path connecting S and S ′, were counted twice. To obtain the
rank of H2(D5(S, S ′)), we have to subtract the double-counted cycles, whose number
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is β(2)
1 (S)β

(2)
1 (S ′). In the case of n particles, we have to subtract the cycles, where at

least one particle is sitting on the connecting path, which is exactly the number of
(over-complete) cycles for n− 1 particles. The formula reads

β
(n)
2 (S, S ′) =

n−2∑
l=2

(
β

(l)
1 (S)− β(l−1)

1 (S)
)
β

(n−l)
1 (S ′).

A similar result holds for a situation, where star graph S is connected with a single
edge to a tree graph T ′, i.e. S ′ can be replaced in the above formula by T ′. Recall
that β(n−l)

1 (T ′) is the sum of β(n−l)
1 (S ′) for all S ′ ⊂ T ′. Hence, we have β(n)

2 (T ) =∑
(S,S′)⊂T β

(n)
2 (S, S ′) for any tree. The same reasoning can be used to compute the

rank of the dth homology group. The conditions for Hd to be nonzero are: i) the
tree contains at least d star subgraphs, ii) the number of particles is at least 2d. The
simplest case is when n = 2d and the tree contains exactly d star subgraphs. Then, it
is enough to multiply the two-particle 1-cycles from the distinct star subgraphs, i.e.

β
(2d)
d (T ) =

∏
S⊂T

β
(2)
1 (S) for #T = d.

For a larger number of particles, handling the multiply-counted cycles is a more difficult
task than in the case of H2, because there are more connecting paths, where the
free particles can be distributed. However, this problem can be tackled recursively.
Consider a star graph S connected by an edge with a tree, which consists of m − 1
star subgraphs. Every d-cycle in Hd(Dn(S, T ′)), n > 2d, is a product of a 1-cycle
from Dl(S) and a (d− 1)-cycle from Dn−l(T

′). Multiplying the (d− 1)-cycles with the
1-cycles and subtracting the multiply-counted cycles, we get

β
(n)
d (S, T ′) =

n−2∑
l=2

(
β

(l)
1 (S)− β(l−1)

1 (S)
)
β

(n−l)
d−1 (T ′).

Considering tree T ′ as a star S ′ connected by an edge with tree T ′′, we get a similar
relation for β(n−l)

d−1 (T ′). Proceeding in this way, we end up with a formula, which
expresses βd(n)(T ) by the first Betti numbers of the star subgraphs of T for different
distributions of particles. The final expression is given in equation (5.17) in subsection
5.3.3.

The above reasoning is just a sketch of the main ideas standing behind the rigorous
proof, which is given in the following subsections of this section.

5.3.1. Configuration space for graphs of connectivity one

In this subsection, we describe the structure ofDn(Γ) for graphs of connectivity one.
The results of this subsection play a key role in the method of computing homology
groups by Mayer-Vietoris sequences. As a preliminary exercise, consider the case of n
particles on a disjoint sum of two graphs, Γ = Γ1 t Γ2. One can distinguish different
parts of Dn(Γ), which correspond to distributing k particles on Γ1 and l particles on
Γ2, k + l = n. Because the two graphs are disjoint, such a component is isomorphic
to the Cartesian product of the corresponding configuration spaces for Γ1 and Γ2, i.e.
Dk(Γ1) ×Dl(Γ2). The following lemma shows, that there are no connections between
different components.
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Lemma 5.3. The n-particle configuration space for a disjoint pair of graphs is a dis-
joint union of the following connected components.

Dn(Γ1 t Γ2) =
⊔

k+l=n

Dk(Γ1)×Dl(Γ2).

Proof. Because Γ1 and Γ2 are disjoint, there is no possibility for the particles to move
from one graph to another. Such a possibility is essential for the existence of connections
between different components of Dn(Γ1 t Γ2). More formally, for any two cells

c ∈ Dk(Γ1)×Dl(Γ2) and c′ ∈ Dk′(Γ1)×Dl′(Γ2),

where k 6= k′ or l 6= l′, there is no path in Dn(Γ1 t Γ2) joining c with c′. To see this,
recall that the n-particle configuration space is a cubic complex. The existence of a
path joining two vertices of a cubic complex, is equivalent to the existence of a 1-chain
in the complex that joins the two vertices. Such a 1-chain necessarily contains a 1-cell,
whose endpoints belong to Dk(Γ1) × Dl(Γ2) and Dk′(Γ1) × Dl′(Γ2) respectively. We
will next show that such a 1-cell does not exist. The endpoints of such a cell are the
0-cells of the form

c(0) = {v(1)
1 , v

(1)
2 , . . . , v

(1)
k , v

(2)
1 , v

(2)
2 , . . . , v

(2)
l } ∈ Dk(Γ1)×Dl(Γ2),

c′
(0)

= {v′(1)
1 , v′

(1)
2 , . . . , v′

(1)
k′ , v

′(2)
1 , v′

(2)
2 , . . . , v′

(2)
l′ } ∈ Dk′(Γ1)×Dl′(Γ2),

where v(1)
i , v′

(1)
i ∈ Γ1, v

(2)
i , v′

(2)
i ∈ Γ2. For c′(0) and c(0) to be the endpoints of a 1-cell,

there must exist a pair of vertices (v
(1)
i , v′

(1)
j ) or (v

(2)
i , v′

(2)
j ), who are adjacent in Γ1 or

Γ2 respectively. Without loss of generality, we can assume that (v
(1)
1 , v′

(1)
1 ) is such a

pair. Then, any 1-cell that contains c(0) is of the form

c(1) = {e, v(1)
2 , . . . , v

(1)
k , v

(2)
1 , v

(2)
2 , . . . , v

(2)
l },

where ∂1(e) = ±(v
(1)
1 − v′(1)

1 ). Therefore, both endpoints of any 1-cell containing c(0)

belong to Dk(Γ1)×Dl(Γ2), which is a contradiction.

Because the configuration space is a disjoint sum, we have

Hd(Dn(Γ1 t Γ2)) =
⊕
k+l=n

Hd(Dk(Γ1)×Dl(Γ2)).

Furthermore, by Künneth theorem (2.6)

Hd(Dk(Γ1)×Dl(Γ2)) =

(⊕
i+j=d

Hi(Dk(Γ1))⊗Hj(Dl(Γ2))

)
⊕

⊕
⊕

i+j=d−1

T (Hi(Dk(Γ1)))⊗ T (Hj(Dl(Γ2)))

Hence, for a disjoint sum of graphs, the knowledge of the homology groups of the
configuration spaces of the components is sufficient to compute the homology groups
ofDn(Γ). Let us next move to the case of graphs of connectivity one. Recall, that graph
of connectivity one is a graph, which becomes disconnected after removing a particular
vertex together with the adjacent edges. In other words, any graph of connectivity one
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Figure 5.5: A graph of connectivity one Γ as a wedge sum of three components. Γ =
(tiΓi)/ ∼, where v′ ∼ v′′, v′′ ∼ v′′′.

can be viewed as a wedge sum of graphs, which we call components. Consider first
a simpler case, where Γ has two components (see Fig. 5.5). Our goal is to describe
the connections in Dn(Γ) between the components Dk(Γ1) ×Dl(Γ2) that are induced
by the gluing map. In fact, we have to consider some disjoint subgraphs of Γ, hence
sometimes we have to remove vertex v from each component. To this end, we do an
extra subdivision of edges that connect Γi with v and remove the last segment of each
such edge. The component after such an operation will be denoted by Γ̃i (see Fig. 5.6).
Let us next show how the different components of Γ come into play in D2(Γ). Cells of

Figure 5.6: The components of a graph with κ = 1, that has two components.

D2(Γ) are

Σ(0)(D2(Γ)) = {{v, v′} : v 6= v′}, Σ(1)(D2(Γ)) = {{e, v} : e ∩ v = ∅},
Σ(2)(D2(Γ)) = {{e, e′} : e ∩ e′ = ∅}.

Next, we write each set of cells as a sum of cells from different components.

Σ(0)(D2(Γ)) = {{v, v′} : v 6= v′ and v, v′ ∈ V (Γ1)} ∪
{{v, v′} : v 6= v′ and v, v′ ∈ V (Γ2)} ∪ ∪{{v, v′} : v ∈ V (Γ1) and v′ ∈ V (Γ̃2)} ∪

∪{{v, v′} : v ∈ V (Γ̃1) and v′ ∈ V (Γ2)}.
The sets of cells of a higher dimension can be written in an analogous way. In other
words,

Σ(i)(D2(Γ)) = Σ(i)(D2(Γ1)) ∪ Σ(i)(D2(Γ2)) ∪ Σ(i)(Γ1 × Γ̃2) ∪ Σ(i)(Γ̃1 × Γ2).
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Some of the above summands are not disjoint, i.e.

Σ(i)(D2(Γ1)) ∩ Σ(i)(Γ̃1 × Γ2) = Σ(i)(Γ̃1 × v),

Σ(i)(Γ̃1 × Γ2) ∩ Σ(i)(Γ1 × Γ̃2) = Σ(i)(Γ̃1 × Γ̃2),

Σ(i)(D2(Γ2)) ∩ Σ(i)(Γ1 × Γ̃2) = Σ(i)(Γ̃2 × v).

The structure of D2(Γ) is shown on Fig. 5.7. Configuration space from Fig. 5.7 can be

Figure 5.7: A scheme of D2(Γ) for Γ with two components.

represented as a diagram, Fig. 5.8. A node represents a subcomplex of D2(Γ), while
the edges describe the common parts of neighbouring subcomplexes. For n > 2, one

D2(Γ1) Γ̃1 × Γ2 Γ1 × Γ̃2 D2(Γ2)
Γ̃1 × v Γ̃1 × Γ̃2 Γ̃2 × v

Figure 5.8: Configuration space diagram of D2(Γ) for Γ from Fig. 5.6.

has many possibilities of distributing the particles among the components. However,
the structure of Dn(Γ) is still linear, see Fig. 5.9. There are two kinds of connections.

Figure 5.9: Configuration space diagram of Dn(Γ) for Γ from Fig. 5.6.

Namely, the connections, where the number of particles between the components is the
same, and the connections, where one particle moves from Γ1 to Γ2. Connections of the
first kind exist between Dk(Γ̃1)×Dl(Γ2) and Dk(Γ1)×Dl(Γ̃2), where the common part
is Dk(Γ̃1)×Dl(Γ̃2). Connections of the second kind describe a change in the number of
particles, hence they exist between Dk(Γ1) ×Dl(Γ̃2) and Dk−1(Γ̃1) ×Dl+1(Γ2), where
the common part is Dk−1(Γ̃1)×Dl(Γ̃2)× v.

As a final remark, note that for a graph, which is a wedge sum of a larger number
of components, the presented results for two components can be applied inductively.
Choose Γ1 to be one of the components and Γ′2 to be the wedge sum of the remaining
components, {Γi : i ≥ 2}. Subgraph Γ̃′2 is a disjoint sum of graphs. Therefore,
Dk(Γ1) × Dl(Γ̃

′
2) = tiDk(Γ1) × Dl(Γ̃i) and the configuration space diagram splits in

such a node. Detaching inductively the remaining components of Γ′2, we obtain the full
configuration space diagram.
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5.3.2. Second homology group of D2(Γ)

In this subsection, we continue the considerations regarding the example of two
particles on graphs of connectivity one with two (Fig. 5.6), or more components.
Using this example, we introduce tools that we finally apply for Dn(Γ), where Γ is a
tree graph. In the end of this subsection we also give a formula for the second Betti
number of D2(Γ), which is a generalisation of the formula by Farber [29] for two graphs
connected by a single edge.

Consider graph Γ, which has two components. By the construction of D2(Γ), there
are no 3-cells in the complex, hence H2(D2(Γ)) is free. To compute the second ho-
mology, we use Mayer-Vietoris sequence for different components of the configuration
space diagram. Let X be any subcomplex of D2(Γ) and let A and B be subcomplexes
of X such that A ∪B = X. The Mayer-Vietoris sequence for X reads [58]

0→ H2(A ∩B)
Φ−→ H2(A)⊕H2(B)

Ψ−→ H2(X)
δ−→ H1(A ∩B)

Φ−→ . . . (5.2)

Long exact sequence (5.2) implies the short exact sequence

0→ coker(Φ)→ H2(X)→ coker(Ψ)→ 0.

If the homology groups in the Mayer-Vietoris sequence are free (in fact, it is enough
to require coker(Ψ) to be free abelian), which is the case for H2(D2(Γ)), the sequence
splits, i.e.

H2(X) = coker(Φ)⊕ coker(Ψ) = coker(Φ)⊕ imδ.

Often we will consider elements of imδ as elements of H2(X), i.e. use the isomorphism
imδ ∼= coimδ = H2(X)/ ker δ. Then,

H2(X) = coker(Φ)⊕ coimδ. (5.3)

Theorem 5.4. Let Γ be a graph of connectivity one with two components and let
Γ1, Γ̃1,Γ2, Γ̃2 be the components of Γ, as on Fig. 5.6. Then,

β2 (D2(Γ)) = β2(D2(Γ1)) + β2(D2(Γ2)) + β1(Γ̃1)β1(Γ2) + β1(Γ1)β1(Γ̃2)− β1(Γ̃1)β1(Γ̃2).
(5.4)

Proof. Decompose the configuration space part-by-part, as follows

X0 = D2(Γ), A0 = D2(Γ1), B0 = (Γ̃1 × Γ2) ∪ (Γ1 × Γ̃2) ∪D2(Γ2), A0 ∩B0 = Γ̃1 × v,
X1 = B0, A1 = Γ̃1 × Γ2, B1 = (Γ1 × Γ̃2) ∪D2(Γ2), A1 ∩B1 = Γ̃1 × Γ̃2,

X2 = B1, A2 = Γ1 × Γ̃2, B2 = D2(Γ2), A2 ∩B2 = Γ̃2 × v.

The ansatz is to write Mayer-Vietoris sequence for each Xi = Ai ∪ Bi and proceed
inductively, beginning with X2. Namely,

cokerΦ2 = (H2(A2)⊕H2(B2))/imΦ2 = (H1(Γ1)⊗H1(Γ̃2))⊕H2(D2(Γ2)), (5.5)

where in H2(A2) we used the Künneth theorem. The image of Φ2 is trivial, because
H2(A2∩B2) = H2(Γ̃2× v) = 0, therefore coimΦ2 = 0. Next, we give a characterisation
of elements of coimδ for i = 2. Recall that

δ2 : H2(X2)→ H1(A2 ∩B2) ∼= H1(Γ̃2).
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Denote by z a representative of H2(X2). Two-cycle z can be decomposed as a sum of
2-chains from A2 and B2 respectively

z = x+ y, x ∈ C2(A2), y ∈ C2(B2). (5.6)

The above decomposition is in this case unique, because there are no 2-cells in the
subcomplex A2 ∩ B2. The boundary map assigns to [z] the 1-cycle class [−δ2y]. Then
it follows from (5.3) and (5.5) that

H2(B1) = H2(X2) = H2(D2(Γ2))⊕ coimδ2 ⊕ (H1(Γ1)⊗H1(Γ̃2)). (5.7)

Let us proceed with i = 1. We have coimΦ1 = H1(Γ̃1)⊗H1(Γ̃2), hence

cokerΦ1 =
(
H2(B2)⊕ (H1(Γ̃1)⊗H1(Γ2)

)
/
(
H1(Γ̃1)⊗H1(Γ̃2)

)
.

Note that the quotient does not affect H2(D2(Γ2)) and coimδ2 from equation (5.7),
hence the quotient can be taken with respect to the summand

(
H1(Γ̃1)⊗H1(Γ2)

)
⊕(

H1(Γ1)⊗H1(Γ̃2)
)
only. This is because every 2-cycle from coimΦ1 is of the form

z = c⊗ c′, [c] ∈ H1(Γ̃1), [c′] ∈ H1(Γ̃2). (5.8)

Cycle z is a 2-cycle from D2(Γ̃1× Γ̃2). Therefore, decomposition (5.6) for such a 2-cycle
yields y = 0, i.e. z ∈ ker δ2. Moreover, none of the representatives of a homology class
from H2(D2(Γ2)) is of the form (5.8). Therefore,

H2(B1) = H2(D2(Γ2))⊕ coimδ2 ⊕ coimδ1 ⊕
(H1(Γ1)⊗H1(Γ̃2))⊕ (H1(Γ̃1)⊗H1(Γ2))

H1(Γ̃1)⊗H1(Γ̃2)
.

Finally, for i = 0, by an analogous reasoning as in the case of i = 2, we have imΦ0 = 0,
hence

H2(D2(Γ)) = H2(D2(Γ1))⊕H2(D2(Γ2))⊕coimδ⊕(H1(Γ1)⊗H1(Γ̃2))⊕ (H1(Γ̃1)⊗H1(Γ2))

H1(Γ̃1)⊗H1(Γ̃2)
,

where coimδ = ⊕2
i=0coimδi. Using a theorem by Farber [29], we prove in lemma 5.6

that coimδ = 0, which completes the proof.

The last thing to show is the fact that imδ ∼= coimδ = 0. To this end, we consider a
specific over-complete basis of the second homology group. First, we briefly review the
known facts about the second homology group of the two-particle configuration spaces.

Theorem 5.5 (Farber [29]). For a planar graph Γ, there exists a basis of H2(D2(Γ)),
where the representatives are of the form

z = c⊗ c′, [c], [c′] ∈ H1(Γ).

Moreover, cycles c and c′ are necessarily disjoint, i.e. for

c =
∑
i

aiei, c
′ =
∑
j

bje
′
j,

we have ei ∩ e′j = ∅ for all i, j. Then, z =
∑

i,j aibjei × e′j.
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Hence, for planar graphs the generating set of H2(D2(Γ)) consists of all possible pairs
of disjoint cycles in Γ. The construction of an over-complete basis for two particles
on non-planar graphs carries an additional subtlety. Recall a theorem by Kuratowski
[62], which states that every non-planar graph contains a subgraph that is isomor-
phic to graph K3,3 or K5 (which we call the Kuratowski graphs). It was shown by
Abrams [28] that graphs K3,3 and K5 are the only possible graphs, whose two-particle
discrete configuration spaces are closed surfaces. However, the question whether all
closed surfaces in the two-particle configuration space of a graph Γ can be obtained by
embedding a pair of disjoint cycles or a Kuratowski graph in Γ remained open until
recently [63]. Paper [63] shows, that there is one more type of surfaces, stemming from
certain subgraphs of Γ, called quad subgraphs.

Definition 5.1. A quad of graph G is subgraph K = P1 ∪ P2 ∪ P3 ∪ Q1 ∪ Q2 ∪ Q3 ∪
R1 ∪R2 ∪R3 such, that

• K consists of four distinct vertices a, b, c, d,

• paths P1, P2, P3 connect a and b, are independent (mutually internally disjoint)
and contain at least one vertex,

• paths R1, R2, R3 connect c and d, are independent and contain at least one vertex,

• paths Q1, Q2, Q3 are independent, each Qi has ends ui, vi such, that ui ∩ (Pi −
{a, b}) = ∅, ui∩(Ri−{c, d}) = ∅, and (Qi−{ui, vi})∩(P1∪P2∪P3∪R1∪R2∪R3) =
∅,

• for every i ∈ {1, 2, 3}, the vertices of Pi ∩ (R1 ∪R2 ∪R3) are contained in the set
of vertices of Qi.

Hence, in order to get the generating set of H2(D2(Γ)) for non-planar graphs, it is
enough to consider all 2-cycles, that are products of disjoint cycles in Γ and the two-
particle configuration spaces of all Kuratowski and quad subgraphs of Γ.

Lemma 5.6. Let Γ be a graph of connectivity one with two components and {(Ai, Bi)}2
i=0

be the subcomplexes of D2(Γ) defined in the proof of theorem 5.4. Moreover, let δi be
the boundary map from the Mayer-Vietoris sequence

δi : H2(Ai ∪Bi)→ H1(Ai ∩Bi).

Then, imδi = 0 for all i.

Proof. Because H2(D2(Γ)) contains coimδ as an independent contribution, theorem 5.5
applies also to 2-cycles representing coimδ. The strategy for the proof in the case of
planar graphs is to show that all possible products of disjoint 1-cycles in Xi = Ai ∪Bi

are in ker δi.
For δ2 : H2((Γ̃1 × Γ2) ∪ D2(Γ2)) → H1(Γ̃2 × v), a 2-cycle, which does not belong

to ker δ2, has a nonzero part in both C2(Γ̃1 × Γ2) and C2(D2(Γ2)). Let z denote such a
product 2-cycle, i.e. z = c⊗ c′. Note, that every 1-cycle in Γ can be written as a sum
of cycles that are wholly contained in Γ1 or Γ2. Therefore, the only possibility for the
choice of z to contain cells from both A2 and B2 is to take c ∈ C1(Γ2) that contains
an edge adjacent to v. However, c and c′ are disjoint, hence c′ must be contained in
Γ̃1 or Γ̃2. This is a contradiction, because then z ∈ C2(Γ̃1 × Γ2) or z ∈ C2(D2(Γ2))
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respectively, which implies, that z ∈ ker δ2. Analogous reasoning for A0 and B0 leads
to the conclusion that imδ0 = 0. Finally, consider δ1 : H2((Γ1 × Γ̃2) ∪ (Γ̃1 × Γ2)) →
H1(Γ̃1 × Γ̃2). The desired 2-cycle can be a product of

c ∈ C1(Γ1), c ∩ v 6= ∅, c′ ∈ C1(Γ̃2), or c ∈ C1(Γ̃1), c′ ∈ C1(Γ2), c′ ∩ v 6= ∅.

It is straightforward to see that in both cases z ∈ C2(Γ1 × Γ̃2) or z ∈ C2(Γ̃1 × Γ2)
respectively. Therefore, z ∈ ker δ1.

For nonplanar graphs, the argumentation is as follows. Consider the additional ele-
ments of the over-complete basis stemming from all quad subgraphs of Γ and subgraphs
of Γ that are isomorphic to K3,3 or K5. From the definition of Kuratowski graphs and
quad subgraphs, one can see, that it is not possible to embed these graphs in Γ such,
that K ∩ Γ̃1 6= ∅ and K ∩ Γ̃2 6= ∅. Hence, such a subgraph K must be necessarily
contained either in Γ1 or in Γ2. Therefore, the 2-cycles that are isomorphic to D2(K)
are always contained in the two-particle configuration spaces of Γ1 or Γ2 respectively,
i.e. are mapped by δ to zero.

Note that the derived formula for β2 (D2(Γ)) can be written in a simpler form using
µi := β1(Γi)− β1(Γ̃i). Then,

β2 (D2(Γ)) = β2(D2(Γ1)) + β2(D2(Γ2)) + β1(Γ1)β1(Γ2)− µ1µ2. (5.9)

Numbers µi are the numbers of cycles lost after detaching vertex v. If Γi is connected
with v with Ei edges, then µi = Ei − 1.

The above formulae can be easily extended to a graph with more than two com-
ponents. Assume that Γ has three components, {Γi}3

i=1. Then, Γ can be viewed as a
two-component graph, where the first component is Γ1 and the second component is
the wedge sum of Γ2 and Γ3, which we denote by Γ23. Moreover, Γ̃23 = Γ2 t Γ3. Next,
we apply formula (5.4), using the fact that β1(Γ̃23) = β1(Γ̃2)+β1(Γ̃3) and µ23 = µ2 +µ3.

β2 (D2(Γ)) = β2(D2(Γ1)) + β2(D2(Γ23)) + β1(Γ1) (β1(Γ2) + β1(Γ3))− µ1(µ2 + µ3).

Finally, we put β2(D2(Γ23)) = β2(D2(Γ2)) + β2(D2(Γ3)) + β1(Γ2)β1(Γ3)− µ2µ3. Then,

β2 (D2(Γ)) =
∑
i

β2(D2(Γi)) +
∑
i<j

(β1(Γi)β1(Γj)− µiµj).

5.3.3. Tree graphs

Let us first compute the second homology group for n particles on a tree, which
consists of two star graphs, S and S ′, connected by an edge. We will assume that both S
and S ′ are sufficiently subdivided for n particles, see Fig. 5.10. The general procedure
for computing H2(Dn(T )) will be to decompose the n-particle configuration space part-
by-part from the chain shown on figure 5.9. After the decomposition we obtain a family
of complexes {Xi}n−1

i=0 , which are related by X0 ⊃ X ′1 ⊃ X1 ⊃ X ′2 ⊃ · · · ⊃ Xn−1.
Complex X0 is the whole configuration space of T . Detaching the leftmost part of the
chain we decompose X0 as the sum of A0 = Dn(S) and B0 being the remaining part
of the chain. In the next step B0 plays the role of complex X ′1 and we decompose X ′1
in an analogous way, namely X ′1 = A′1 ∪ B′1, where A′1 = Dn−1(S̃)× S ′ is the leftmost
part of chain B0. Next, from B′1 = X1 we detach A1 = Dn−1(S) × S̃ ′, and so on. We
denote complexes from the second step by primed superscripts, because the third and
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Figure 5.10: A tree graph, which is a wedge of two star graphs, and its components for
n = 3. Compare with Fig. 5.6.

the second step together describe the transport of one particle from graph S to graph
S ′. After completing the decomposition we obtain the following list of complexes.

X0 = Dn(T ), A0 = Dn(S), B0 = (Dn−1(S̃)× S ′) ∪ (Dn−1(S)× S̃ ′) ∪ · · · ∪Dn(S ′),

X ′1 = B0, A
′
1 = Dn−1(S̃)× S ′, B′1 = (Dn−1(S)× S̃ ′) ∪ · · · ∪Dn(S ′),

X1 = B′1, A1 = Dn−1(S)× S̃ ′, B1 = (Dn−2(S̃)× S ′) ∪ · · · ∪Dn(S ′),

. . .

Xn−1 = B′n−1, An−1 = S ×Dn−1(S̃ ′), Bn−1 = Dn(S ′).

We distinguish two kinds of subcomplexes with respect to the type of their intersections.
A pair (A′k, B

′
k) of the first kind, describes subcomplexes that have the same number

of particles on S and S ′, i.e.

A′k = Dn−k(S̃)×Dk(S
′), B′k = (Dn−k(S)×Dk(S̃

′)) ∪ · · · ∪Dn(S ′),

A′k ∩B′k = Dn−k(S̃)×Dk(S̃
′), X ′k = A′k ∪B′k, k ∈ {1, 2, . . . , n− 1}.

The second kind of subcomplexes describes pairs, where the numbers of particles on S
and S ′ are different.

Ak = Dn−k(S)×Dk(S̃
′), Bk = (Dn−k−1(S̃)×Dk+1(S ′)) ∪ · · · ∪Dn(S ′),

Ak ∩Bk = Dn−k−1(S̃)×Dk(S̃
′)× v, Xk = Ak ∪Bk, k ∈ {0, 1, . . . , n− 1}.

Next, we write the Mayer-Vietoris sequence for each pair of subcomplexes, as in (5.2).

0→ H2(Ak ∩Bk)
Φk−→ H2(Ak)⊕H2(Bk)

Ψk−→ H2(Xk)
δk−→ H1(Ak ∩Bk) −→ . . . (5.10)

We use the fact that H3(Xk) = 0, since there are just two connected star graphs, which
give no 3-cells in the Morse complex. Because homology groups for tree graphs are
free, the Mayer-Vietoris sequence splits and we have

H2(Xk) = coker(Φk)⊕ coimδk, H2(X ′k) = coker(Φ′k)⊕ coimδ′k (5.11)

as in (5.3). There are a few differences between the case of tree graphs and a general
graph of connectivity one with two components, which allow to compute the second
homology for any number of particles. The first simplification comes from the fact that
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Dk(S) is homotopy equivalent to Dk(S̃) for k < n, and Dk(S) is homotopy equivalent
to a wedge of circles. The same holds for distinguishable particles. For n = 2, formula
(5.9) yields β2(D2(T )) = 0. For n = 3, note that all subcomplexes in the configura-
tion space diagram have trivial homology groups in the corresponding Mayer-Vietoris
sequences. Therefore, β2(D3(T )) = 0 and the first nontrivial case is n = 4.

Theorem 5.7. Let T be a tree graph with two components S and S ′ (Fig. 5.10). The
rank of the second homology group for n indistinguishable particles on T is

β
(n)
2 (S, S ′) =

n−2∑
l=2

(
β

(l)
1 (S)− β(l−1)

1 (S)
)
β

(n−l)
1 (S ′), (5.12)

where β(k)
1 (S) is the rank of the first homology group for k particles on star graph S,

given in equation (5.1).

Proof. Consider two Mayer-Vietoris sequences for two consecutive subcomplexes, Xk

and X ′k. We will obtain a recurrence relation for H2(Bk). Maps from the sequence for
Xk are

Φk : H2(Dn−k−1(S̃)×Dk(S̃
′)× v)→ H2(Dn−k(S)×Dk(S̃

′))⊕H2(Bk),

δk : H2(Xk)→ H1(Dn−k−1(S̃)×Dk(S̃
′)× v).

Because H3(Xk) = 0, the Mayer-Vietoris sequence implies that map Φk is injective.
Hence, imΦk

∼= H2(Ak ∩Bk). Moreover, imδk = 0. This is because each element of the
over-complete basis of 2-cycles is a chain, which is properly contained in Dn−k(S̃) ×
Dk(S

′) or Dn−k(S)×Dk(S̃
′) for some k. Therefore, we have

H2(B′k) = cokerΦk
∼=
((
H1(Dn−k(S))⊗H1(Dk(S̃

′))
)
⊕H2(Bk)

)
/imΦk.

The quotient can be realised as follows. Any element of coimΦk can be written as a
tensor product of chains of the following form

[c⊗ c′]× v : [c] ∈ H1(Dn−k−1(S̃)), [c′] ∈ H1(Dk(S̃
′)).

Furthermore, each such 2-cycle can be written as 2-cycle (c× v)⊗ c′, which belongs to
C2(Ak), or 2-cycle c⊗ (c′× v), which belongs to C2(Bk). Map Φk acts on the homology
classes as

Φk([c⊗ c′]× v) = ([(c× v)⊗ c′], [−c⊗ (c′ × v)]).

On the other hand, every element of H2(Ak) can be decomposed in the basis of the
tensor product

[c̃⊗ c̃′] : [c̃] ∈ H1(Dn−k(S)), [c̃′] ∈ H1(Dk(S̃
′)).

By the injectivity of Φk, cycles (c1× v)⊗ c′1 and (c2× v)⊗ c′2 represent different classes
in H2(Ak) if [c1] 6= [c2] or [c′1] 6= [c′2]. Therefore, from every element [a] ∈ H2(Ak) we
can extract in a unique way the part, which belongs to H2(Ak ∩Bk), i.e.

[a] =
∑
[c],[c′]

[(c× v)⊗ c′] + [ã]. (5.13)

Therefore, for a pair ([a], [b]) ∈ H2(Ak)⊕H2(Bk), where [a] is decomposed, as in (5.13),
we have

([a], [b]) ∼
(

[ã], [b] +
∑
[c],[c′]

[(c× v)⊗ c′]
)
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under the quotient by imΦk. Moreover, pairs, where [a] = [ã], yield different equivalence
classes for different a, b. This means that the quotient by imΦk can be realised by taking
the quotient by coimΦk only on H2(Ak). In other words,

H2(Bk′) ∼=
H1(Dn−k(S))⊗H1(Dk(S̃

′))

H1(Dn−k−1(S̃))⊗H1(Dk(S̃ ′))
⊕H2(Bk).

A similar result holds for pair (A′k, B
′
k), i.e. Φ′k is injective and imδ′k = 0. The quotient

by Φ′k reads

H2(Bk−1) ∼= H1(Dn−k(S̃))⊗H1(Dk(S
′))

H1(Dn−k(S̃))⊗H1(Dk(S̃ ′))
⊕H2(B′k)

∼= H2(B′k).

Subtracting ranks in the equation for H2(B′k), we obtain a recurrence relation for ranks
of H2(Bk) and H2(Bk−1)

β2(Bk−1) =
(
β

(k)
1 (S)− β(k−1)

1 (S)
)
β

(n−k)
1 (S ′) + β2(Bk). (5.14)

The initial condition is β2(Bn−1) = 0.

The following theorem shows how to compute the second homology group of any tree.

Theorem 5.8. Let T be a tree graph and let a pair (S, S ′) denote the subgraph of T ,
which consists of two star graphs S and S ′ and the unique path in T that connects the
essential vertices of S and S ′ (see Fig. 5.11a). Then,

H2(Dn(T )) ∼=
⊕

(S,S′)⊂T

H2(Dn((S, S ′))).

Proof. The strategy for the proof is to show that every cycle from the over-complete
basis of H2(Dn(T )) is homologically equivalent to a 2-cycle from Dn(S, S ′) for a pair
of star subgraphs of T . Assume first that every star subgraph of T is sufficiently sub-
divided for n particles. This in particular means that the edges that connect essential
vertices (vertices of degree greater than 2) are subdivided twice as much as the con-
dition of sufficient subdivision requires. Every 2-cycle from the over-complete basis of
H2(Dn(T )) is isomorphic to a tensor product of two chains, each describing exchange of
particles a Y -subgraph of T , and the remaining n− 4 particles distributed on free ver-
tices of T . Let S and S ′ be the star-subgraphs of T that contain the two Y -subgraphs,
where the particles exchange (Fig. 5.11a). The remaining particles are distributed on
the remaining vertices of T . Some of them may occupy free vertices of S or S ′. Assume
that k − 2 out of free particles occupy star graph S and l− 2 free particles occupy S ′.
The remaining n − (k + l) particles are distributed outside S and S ′. The element of
the over-complete basis of H2(Dn(T )) that corresponds to such a situation is of the
form

σ = (c⊗c′)×{v1, . . . , vn−k−l}, [c] ∈ H1(Dk(S)), [c′] ∈ H1(Dl(S
′)), {v1, . . . , vn−k−l} /∈ S, S ′.

We will next give a construction of a path inDn(T ) that connects point {v1, . . . , vn−k−l}
with a point, where all the particles are distributed on star graphs S and S ′. To this
end, remove from T subgraphs S and S ′ by removing star subgraphs that are sufficiently
subdivided for k and l particles respectively. After removing the star subgraphs, graph
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Figure 5.11: Illustration for the proof of Theorem 5.8. White vertices denote vertices
that are occupied by particles from the outside of Dk(S) and Dl(S

′). Starred points
denote the roots of the trees. Figure b) shows the construction of the path that brings
each particle to a configuration space of one of the star subgraphs, where the particles
exchange.

T decomposes into a number of connected components (see Fig. 5.11b). Each com-
ponent has a number of vertices of degree one, where the star graphs were attached.
Order these vertices according to their distance from the root in T . For each compo-
nent, choose the new root to be the vertex, which was the closest one to the original
root in T (Fig. 5.11b). Finally, move all particles in the components to the roots. The
resulting configuration is a configuration, where all particles are distributed on star
graphs S and S ′.

As a consequence, the rank of the second homology group for n particles reads

β
(n)
2 (T ) =

∑
S,S′⊂T

β
(n)
2 (S, S ′). (5.15)

An analogous result holds for all the higher homology groups. For the dth homology one
has to take the sum over all tree subgraphs of T that contain exactly d star subgraphs,
i.e.

Hd(Dn(T )) ∼=
⊕

T ′⊂T : #T ′=d

Hd(Dn(T ′)).

The proof is the same as the proof of theorem 5.8 – for every d-cycle from the over-
complete basis decompose T by removing the star graphs that belong to T ′ and move
the remaining particles within the components.

Hence, the problem of computing Hd(Dn(T )) for any tree boils down to the problem
of computing the dth homology for a tree containing d essential vertices. To this end,
we consider a bipartition (S, T ′) of such a tree, where S is one of the star graphs of
degree 1 in the sense of the scheme of connections in the tree (see Fig. 5.3b), and T ′
is the tree with graph S removed.

Theorem 5.9. Let T ′ be a tree graph with d − 1 essential vertices. Construct a tree
graph T with d essential vertices as a wedge sum of T ′ and a star graph S, i.e. T =
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(T ′ t S)/ ∼, where gluing map ∼ identifies two vertices of degree 1 in T ′ and S. The
rank of the dth homology group for n indistinguishable particles on T is

β
(n)
d (S, T ′) =

n−2∑
l=2

(
β

(l)
1 (S)− β(l−1)

1 (S)
)
β

(n−l)
d−1 (T ′). (5.16)

Proof. Note first that for such a tree graph, we have Hd+1(Dn(T )) = 0, because the di-
mension of the corresponding Morse complex is d. Consider T as a graph of connectivity
one with two components, where the components are S and T ′. Vertex v connecting
the components has degree 2. Next, construct the sequence of subcomplexes

Dn(T ) = X0 ⊃ X ′1 ⊃ X1 ⊃ · · · ⊃ Xn−1 =
(
S ×Dn−1(T̃ ′)

)
∪Dn(T ′),

as in the case of two star graphs. The Mayer-Vietoris sequence for each subcomplex
reads

0→ Hd(Ak ∩Bk)
Φk−→ Hd(Ak)⊕Hd(Bk)

Ψk−→ Hd(Xk)
δk−→ Hd−1(Ak ∩Bk) −→ . . .

The above sequence splits and we have

Hd(Xk) = coker(Φk)⊕ coimδk, Hd(X
′
k) = coker(Φ′k)⊕ coimδ′k.

Consider two Mayer-Vietoris sequences for two consecutive subcomplexes, Xk and X ′k.
We will obtain a recurrence relation for Hd(Bk), as in the proof of theorem 5.7. Maps
from the sequence for Xk are

Φk : Hd(Dn−k−1(S̃)×Dk(T̃
′)× v)→ Hd(Dn−k(S)×Dk(T̃

′))⊕Hd(Bk),

δk : Hd(Xk)→ Hd−1(Dn−k−1(S̃)×Dk(T̃
′)× v).

The corresponding maps for X ′k read

Φ′k : Hd(Dn−k(S̃)×Dk(T̃
′))→ Hd(Dn−k(S̃)×Dk(T

′))⊕Hd(B
′
k),

δ′k : Hd(X
′
k)→ Hd−1(Dn−k(S̃)×Dk(T̃

′)).

Again, from the construction of the over-complete basis, every d-cycle from the basis
is contained in Ak or Bk, hence imδk = 0 and imδ′k = 0 for all k. Hence, the homology
groups of the subcomplexes are

Hd(B
′
k)
∼=
(

(H1(Dn−k(S))⊗Hd−1(Dk(T̃
′)))⊕Hd(Bk)

)
/imΦk,

Hd(Bk−1) ∼=
(

(H1(Dn−k(S̃))⊗Hd−1(Dk(T
′)))⊕Hd(B

′
k)
)
/imΦ′k.

As in the proof of theorem 5.7, the above quotients can be realised by taking the
quotient by coimΦk and coimΦ′k on Hd(Ak) and Hd(A

′
k) respectively. By doing so, we

get Hd(Bk−1) ∼= Hd(B
′
k) and

Hd(B
′
k)
∼= Hd(B

′
k)⊕

(H1(Dn−k(S))⊗Hd−1(Dk(T̃
′))

H1(Dn−k−1(S̃))⊗Hd−1(Dk(T̃ ′))
.

This gives us the following recursive equation for βm(Bk)

βd(Bk−1) = βd(Bk) +
(
β

(n−k)
1 (S)− β(n−k−1)

1 (S)
)
β

(k)
d−1(T ′)

with the initial condition βd(Bn−1) = 0. The solution is equation (5.16).
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Note that equation (5.16) allows one to express β(n)
d (T ) for a tree with d essential

vertices by the ranks of the first homology groups for different numbers of particles
on the star subgraphs contained in T . To this end, one has to apply equation (5.16)
recursively, until all star subgraphs of T are removed. One can check by a straight-
forward calculation that the solution to such a recursion with the initial condition
β

(n)
1 (T ) = β

(n)
1 (S) is

β
(n)
d (T ) =

d−1∑
i=0

(−1)i
(
d− 1

i

) ∑
l1+···+ld=n−i,lj≥2

β
(l1)
1 (S(1))β

(l2)
1 (S(2)) . . . β

(ld)
1 (S(d)), (5.17)

where {S(j)}dj=1 is the set of all star subgraphs from T .

5.3.4. Two graphs connected by a single edge

In this subsection we continue the line of thought from the previous subsections
and show how to compute the homology groups for configurations of n particles on
a graph, which consists of two arbitrary graphs, that are connected by a single edge.
In other words, vertex v on figure 5.6 has degree 2. The results of this subsection
can be viewed as another generalisation of the formula for the second homology group
for two particles on such a graph from [29]. As in previous subsections, we consider
the Mayer-Vietoris sequence for pairs (Ak, Bk), (A′k, B

′
k) from the configuration space

diagram, where

Dn(Γ1) = X0 ⊃ X ′1 ⊃ X1 ⊃ · · · ⊃ Xn−1 =
(

Γ1 ×Dn−1(Γ̃2)
)
∪Dn(Γ2). (5.18)

The sequences for decomposition Xk = Ak ∪Bk are of the form

· · · → Hd+1(Xk)
δk−→ Hd(Ak ∩Bk)

Φk−→ Hd(Ak)⊕Hd(Bk)
Ψk−→ Hd(Xk)

δk−→ (5.19)
δk−→ Hd−1(Ak ∩Bk) −→ . . .

In paper [10] we conjectured, that in all such sequences, we have imδ = 0. This fact
has been proven independently by considering homology groups of the corresponding
Świątkowski complex [61]. Namely, in the Świątkowski complex all cycles are products
of cycles, that are entirely contained in Sk(Γ1) and Sl(Γ2). This implies, that cycles in
Dn(Γ) behave in an analogous way. Hence, we have the following lemma.

Lemma 5.10. Consider Dn(Γ) for Γ consisting of two arbitrary graphs connected by
a single edge. Let Xk be any subcomplex in the decomposition (5.18) of Dn(Γ). The
boundary maps from the Mayer-Vietoris sequence for Xk

δ : Hd(Xk)→ Hd−1(Ak ∩Bk), d ≥ 2.

have a trivial image.

By the above lemma, all homology groups ofDn(Γ) are determined by the homology
groups of the configuration spaces of the components by a collection of short exact
sequences.

0 −→ Hd(Ak ∩Bk)
Φk−→ Hd(Ak)⊕Hd(Bk)

Ψk−→ Hd(Xk) −→ 0, (5.20)

0 −→ Hd(A
′
k ∩B′k)

Φ′k−→ Hd(A
′
k)⊕Hd(B

′
k)

Ψ′k−→ Hd(X
′
k) −→ 0.

The above short exact sequences immediately give

Hd(Xk) ∼= cokerΦk, Hd(X
′
k)
∼= cokerΦ′k.
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Theorem 5.11. Let Γ be a wedge sum of Γ1 and Γ2, where gluing map identifies two
vertices of degree 1 in Γ1 and Γ2. Then, the Betti numbers for n indistinguishable
particles on Γ can be expressed as

β
(n)
d (Γ) = β

(n)
d (Γ2) + β

(n)
d (Γ1) +

n∑
k=1

∑
p+r=d

(
β(k)
p (Γ1)− β(k−1)

p (Γ1)
)
β(n−k)
r (Γ2). (5.21)

Proof. In order to find the desired relation for Betti numbers, it is easier to work with
the homology groups with coefficients in Q. Using the fact, that Dk(Γ̃i) ∼= Dk(Γ̃i) for
i = 1, 2 and for all k, we have, that Hd(Bk−1) ∼= Hd(B

′
k) and

Hd(X
′
k) = Hd(B

′
k)
∼= Hd(Bk)⊕

⊕
p+r=dHp(Dn−k(Γ1))⊗Hr(Dk(Γ2))⊕
p+r=dHp(Dn−k−1(Γ1))⊗Hr(Dk(Γ2))

.

The sequence for Xk yields H2(Bk−1) ∼= H2(B′k). From these equations we obtain the
following recurrence relation for the rank of Hd(Bk−1).

βd(Bk−1) = βd(Bk) +
∑
p+r=d

(
β(n−k)
p (Γ1)− β(n−k−1)

p (Γ1)
)
β(k)
r (Γ2)

for k = 0, 1, . . . , n− 1. The initial condition is Bn−1 = Dn(Γ2). Solving the recurrence
and using the fact that

∑n−1
k=0

(
β

(n−k)
d (Γ1)− β(n−k−1)

d (Γ1)
)

= βd(Dn(Γ1)) we obtain
equation (5.21).

5.3.5. Inheritance of torsion

As one can see from the Künneth formula, there are two mechanisms of inheritance
of torsion in the homology of Dn(Γ1 ∨ Γ2) from the homology of configuration spaces
of Γ1 and Γ2. Consider first the situation from subsection 5.3.4, where graphs Γ1 and
Γ2 are connected by a single edge. From the decomposition (5.18) and short exact
sequences (5.20), we obtain the recursive formula

Hd(B
′
k)
∼= Hd(Bk)⊕

Hd(Dn−k(Γ1)×Dk(Γ2))

Hd(Dn−k−1(Γ1)×Dk(Γ2))
, k = 0, 1, . . . , n− 1. (5.22)

with
Bn−1 = Dn(Γ2) and Hd(Dn(Γ)) ∼= Hd(Dn(Γ1))

Hd(Dn−1(Γ1))
⊕Hd(B0).

The two types of torsion are denoted by T1 and T2.

T (Hd(B
′
k))
∼= T (Hd(Bk))⊕ T (k)

1 ⊕ T (k)
2 .

The first type of torsion is the torsion stemming from the tensor product of the homol-
ogy groups of components that multiply to order d.

T
(k)
1 =

⊕
p+r=d T (Hp(Dn−k(Γ1))⊗Hr(Dk(Γ2)))⊕
p+r=d T (Hp(Dn−k−1(Γ1))⊗Hr(Dk(Γ2)))

.

Torsion T1 can be interpreted as torsion stemming from embedding in Dn(Γ) a sub-
complex, which has torsion in its homology. The particular realisation is embedding
of a graph Γ′ in Γ1 or Γ2, which has torsion in Hp(Dk(Γ

′)) for some p and k. By
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considering tensor products of p-cycles from Dk(Γ
′) with some disjoint (d−p)-cycles in

Dn−k(Γ− Γ′), we get a homomorphism T (Hp(Dk(Γ
′)))→ T (Hd(Dn(Γ))). The second

type of torsion is a less obvious contribution inherited from (d− 1)-homology of Dn(Γ)

T
(k)
2 =

⊕
p+r=d−1 T (Hp(Dn−k(Γ1)))⊗ T (Hr(Dk(Γ2)))⊕
p+r=d−1 T (Hp(Dn−k−1(Γ1)))⊗ T (Hr(Dk(Γ2)))

.

Torsion T2 appears even in configuration spaces with low numbers of particles, when
embedding a proper subcomplex in Dn(Γ) to obtain T1 is not possible. As an example
of such a situation, consider graph Γ, which is constructed by joining two graphs K5

with an edge (Fig. 5.12) and compute H3(D4(Γ)).

Figure 5.12: Two graphs K5 connected by a single edge.

Because H3(D3(Γi)) = 0 and H2(D2(Γi)) = 0, recurrence (5.22) gives

H3(D4(Γ)) = H3(D4(Γ1))⊕ (H2(D3(Γ1))⊗H1(D1(Γ2)))⊕
⊕ (H1(D1(Γ1))⊗H2(D3(Γ2)))⊕H3(D4(Γ1))⊕ (T (H1(D2(Γ1)))⊗ T (H1(D2(Γ2)))) =

= Z⊕
(
Z39 ⊗ Z6

)
⊕
(
Z6 ⊗ Z39

)
⊕ Z⊕ Z2 = Z470 ⊕ Z2.

The torsion component comes from T2 and there is no T1-torsion. Homology groups
H2(D3(Γi)) = Z39 and H3(D4(Γ1)) = Z were computed via the discrete Morse theory.

5.3.6. When is imδ nontrivial?

The main obstacle in the continuation of this section’s approach in a rigorous way
is the knowledge of cycles that do not belong to ker δ. In this subsection we provide
an example of such cycles for Dn(Γ). We conjecture, that the types of cycles described
in this subsection are all possible cycles that do not belong to ker δ. The first class of
cycles appears while considering a simultaneous exchange of particles in Dk(Γ̃1), Dl(Γ̃2)
and on a Y -subgraph centered at vertex v, see Fig. 5.13. Such a cycle is isomorphic
to the tensor product of cycles z = c⊗ c′ ⊗ cY , where c ∈ Cp(Dk(Γ̃1)), c′ ∈ Cs(Dl(Γ̃2))
and

cY = {eu′v , u}+ {evu, u′}+ {eu′′v , u′} − {eu
′

v , u
′′} − {evu, u′′} − {eu

′′

v , u}.
We will next show that the homology class [z] is a nonzero element of coimδ′l+1 from
the Mayer-Vietoris sequence describing complex Xl+1 (defined as in section 5.3.3 and
5.3.4). We have

δ′l+1 : Hp+s+1(Xl+1)→ Hp+s(Dk+1(Γ̃1)×Dl+1(Γ̃2)).
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Figure 5.13: A cycle, for which δ[c⊗ c′ ⊗ cY ] 6= 0 for the boundary map in the proper
Mayer-Vietoris seqience. Chain cY corresponds to the exchange of two particles on the
Y -subgraph centered at v and spanned on vertices u, u′, u′′. Chains c, c′ are cycles of
arbitrary dimensions that are contained in Dk(Γ̃1) and Dl(Γ̃2) respectively.

The decomposition z = x+ y, x ∈ Cp+s+1(A′k), y ∈ Cp+s+1(B′k) yields

x = c⊗ c′ ⊗
(
{eu′v , u} − {eu

′′

v , u}
)
∈ Cp+s+1(Dk+1(Γ̃1)×Dl+1(Γ2)),

y = c⊗ c′ ⊗
(
{evu, u′}+ {eu′′v , u′} − {eu

′

v , u
′′} − {evu, u′′}

)
∈ Cp+s+1(Dk+1(Γ1)×Dl+1(Γ̃2)).

For the boundary of a 1-cell ∂{eba, c} = {b, c} − {a, c}, we have ∂′x = −∂′y = c⊗ c′ ⊗
({u′, u} − {u′′, u}) 6= 0.

We conjecture the only nontrivial elements from imδ are the ones that involve
exchanges of particles on Y -subgraphs centred at vertex v, as described above. Based
on such a conjecture, the methods from this section can be used mutatis mutandis to
express Hm(Dn(Γ)) of an arbitrary graph of connectivity one by the homology groups
of its higher-connected components.

5.4. Wheel graphs
In this section, we deal with the class of wheel graphs. A wheel graph of order

m is a simple graph that consists of a cycle on m − 1 vertices, whose every vertex
is connected by an edge (called a spoke) to one central vertex (called the hub). We
provide a complete description of the homology groups of configuration spaces for
wheel graphs. In particular, we show, that all homology groups are free. Therefore, in
addition to tree graphs, wheel graphs provide another family of configuration spaces
with a simplified structure of the set of flat complex vector bundles. The general
methodology of computing homology groups for configuration spaces of wheel graphs
is to consider only the product cycles and describe the relations between them. We
justify this approach in subsection 5.4.3.

The simplest example of a wheel graph is graph K4, which is the wheel graph of
order 4. Let us next calculate all homology groups of graph K4 and then present the
general method for any wheel graph.

5.4.1. Graph K4

Graph K4 is shown on figure 5.14. It is the 3-connected, complete graph on 4
vertices.
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Figure 5.14: Graph K4 and the relevant Y -subgraphs and cycles. We omit the subdi-
vision of edges in the picture.

Second homology group

There are three independent cycles in K4 graph. These are the cycles that contain
the hub and two neighbouring vertices from the perimeter. However, any two such
cycles always share some vertices. Hence, there are no tori that come from the products
of cO cycles. Hence, the product 2-cycles are either cY ⊗ cO or cY ⊗ cY ′ . There are four
cycles of the first kind: cY1 ⊗ cO1 , cY2 ⊗ cO2 , cY3 ⊗ cO3 and cYh ⊗ cO, where cO is the
outermost cycle. However, cycle cYh ⊗ cO can be expressed as a linear combination of
cycles cY1⊗cO1 , cY2⊗cO2 , cY3⊗cO3 . Therefore, the second homology of the three-particle
configuration space is

H2(D3(K4)) = Z3.

If n > 3, there are still three independent O × Y -cycles, as the differences between
distributions of free particles in such cycles can always be expressed as combinations
of Y × Y -cycles. To see this, consider the following example. For n = 4, consider the
O×Y -cycles that involve cycle cO1 , subgraph Y1 and one of three possible free vertices
(Fig. 5.15). The cycles are cY1 ⊗ cuAB, cY1 ⊗ cvAB, cY1 ⊗ cwAB, where cvAB := cO1 × v. From
(4.5) we have

cY2 ∼ c2 + cvAB, cY3 ∼ c2 + cwAB, cYh ∼ c2 + cuAB.

Subtracting the above equations and multiplying the results by cY1 , we get

cY1 ⊗ cYh − cY1 ⊗ cY2 ∼ cY1 ⊗ cuAB − cY1 ⊗ cvAB,
cY1 ⊗ cYh − cY1 ⊗ cY3 ∼ cY1 ⊗ cuAB − cY1 ⊗ cwAB.

This means that the differences between distribution of particles in AB-cycles can
be expressed as combinations of Y × Y cycles. This fact generalises to n > 4 in a
straightforward way.

Consider next all possible ways of choosing two Y -subgraphs. There are six Y ×Y -
cycles modulo the distribution of free particles. Hence, if there are no free particles,
i.e. when n = 4, we have

H2(D4(K4)) = Z3 ⊕ Z6.

If n > 4, we have to take into account the distribution of free particles in Γ− (Y ∪Y ′).
For a sufficiently subdivided graph one always ends up with two connected components
(Fig. 5.16). A Y ×Y -cycle involves 4 particles, hence one has to calculate the number of
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Figure 5.15: Graph K4 subdivided for n = 4. Differences cuAB − cvAB and cuAB − cwAB are
homologically equivalent to combinations of Y × Y -cycles. cY1 ⊗ cYh − cY1 ⊗ cY2 and
cY1 ⊗ cYh − cY1 ⊗ cY3 respectively.

Figure 5.16: Graph K4 after removing two Y -subgraphs.

all possible distributions of n−4 particles on those two components times the number of
possible choices of the two Y -subgraphs. The number of all choices of the Y -subgraphs
is
(

4
2

)
, while the number of possible distributions of n− 4 particles on 2 components is(

n−4+2−1
2−1

)
= n− 3. Hence, the contribution from Y × Y cycles reads(

4

2

)
(n− 3) = 6(n− 3), n ≥ 4.

Adding the contribution from O× Y -cycles, the rank of the second homology group is
then given by

β2(Cn(K4)) = 3 + 6(n− 3) = 6n− 15, n ≥ 3.

Higher homology groups

The product generators of higher homologies are even simpler than in the case of the
second homology. There are only basis cycles of Y ×Y × · · ·×Y -type. After removing
three and four Y -graphs, K4 graph always disintegrates into 4 and 6 parts respectively.
Taking into account the distributions of free particles, we get the following formulae
for the Betti numbers.

β3(Cn(K4)) =

(
4

3

)(
n− 6 + 4− 1

4− 1

)
= 4

(
n− 3

3

)
, n ≥ 6

β4(Cn(K4)) =

(
4

4

)(
n− 8 + 6− 1

6− 1

)
=

(
n− 3

5

)
, n ≥ 8.

Because there are maximally four Y -graphs, group H5(Cn(K4),Z) is zero.
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5.4.2. Other wheel graphs

In Table 5.3 we list Betti numbers of configuration spaces of wheel graphs of order
5, 6 and 7 that were calculated using the discrete Morse theory.

Γ n β2(Dn(Γ)) β3(Dn(Γ)) β4(Dn(Γ))

W5

3 8 0 -
4 22 0 0
5 34 4 0
6 46 30 0
7 58 90 0
8 70 196 13

W6

3 15 0 -
4 40 0 0
5 60 15 0
6 80 90 0
7 100 250 5

W7

3 24 0 -
4 63 0 0
5 93 36 0
6 123 197 0
7 153 527 24

Table 5.3: Betti numbers of configuration spaces for chosen wheel graphs computed
using the discrete Morse theory. In all cases the calculated groups were torsion-free.

Second homology

Since there are no pairs of disjoint O-cycles in wheel graphs, we have

β2(D2(Wm)) = 0.

When n = 3, all product cycles are the O×Y -cycles. Their number is (m− 1)(m− 3),
because there are m−1 choices of Y -subgraphs and m−3 cycles that are disjoint with
a fixed Y -subgraph. Hence,

β2(D3(Wm)) = (m− 1)(m− 3).

When n = 4, we have to count the Y × Y cycles in. Let us divide the Y × Y cycles
into two groups: i) cycles, where one of the subgraphs is Yh and ii) cycles, where
both subgraphs lie on the perimeter. There are no relations between the cycles within
group i) and no relations between the cycles within group ii). However, there are some
relations between the cycles of type i) and type ii). The relations occur between cycles
Yh×Y and Y ′×Y , when subgraphs Yh and Y do not share any edges of the graph (like
on Fig. 5.17b)). Then, as on Fig. 4.6, cycles cYh and cY ′ are in the same homology
class in D2(Wm − Y ), because they share the same O-cycle and they are connected by
a path that is disjoint with Y . Therefore, by multiplying the relation by cY we get that

cYh × cY ∼ cY ′ × cY .

Ifm > 4, then for every pair Y ×Yh that does not share an edge, one can find subgraph
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Figure 5.17: Relations between different pairs of Yh × Y -cycles in a wheel graph. a)
Cycles, where Yh and Y share an edge of the graph are independent. b) Cycle, where
Yh and Y do not share any edges is in the same homology class as cycle Y ′ × Y .

Y ′ on the perimeter which gives rise to such a relation. There are
(
m−1

2

)
tori coming

from Y -subgraphs from the perimeter. For a fixed Y -subgraph, the contribution from
Y × Yh-cycles turns out to be equal to the number of independent cycles in the fan
graph, which is formed by removing subgraph Y from the wheel graph [20]. This
number is equal to m− 3. Hence,

β2(D4(Wm)) = 2(m− 1)(m− 3) +

(
m− 1

2

)
=

(m− 1)(5m− 14)

2
.

For numbers of particles greater than 4, we have to take into account the distribution
of free particles. Removing two Y -subgraphs from the perimeter may result with
the decomposition of the wheel graph into at most two components. This happens
iff two neighbouring Y -subgraphs have been removed. The number of nonequivalent
ways of distributing the particles is n − 3. The number of ways one can choose two
neighbouring Y -subgraphs from the perimeter ism−1. This gives us the contribution of
(n−3)(m−1). Furthermore, removing a Y -subgraph from the hub and a subgraph from
the perimeter always yields two nonequivalent ways of distributing the free particles.
The first one being the edge e joining the hub and the central vertex of Y , the second
one being the remaining part of the graph, i.e. Wm − (Y t Yh t e). The contribution
is (n − 3)(m − 1)(m − 3). Adding the contribution from O × Y -cycles and from non-
neighbouring Yp× Yp-cycles, we get that the final formula for the second Betti number
reads

β2(Dn(Wm)) = (n− 2)(m− 1)(m− 3) + (m− 1)(n− 4) +

(
m− 1

2

)
, n ≥ 4.

Higher homologies

In computing the higher homology groups, we proceed in a similar fashion as in
the previous section. However, the combinatorics becomes more complicated and in
most cases it is difficult to write a single formula that works for all wheel graphs. Let
us start with an example of H3(Dn(W5)). The possible types of product cycles are
O × Y × Y ′ and Y × Y ′ × Y ′′. Cycles of the first type arise in W5 only when graphs
Y and Y ′ are neighbouring subgraphs from the perimeter. There are four possibilities
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for such a choice of Y -subgraphs, hence

β3(D5(W5)) = 4.

When n > 5, the free particles can be placed either on the edge joining the Y -subgraphs
or on the connected part of W5 that is created by removing subgraphs Y and Y ′.
By arguments analogous to the ones presented in section 5.4.1, the distribution of
free particles on the connected component containing cycle O does not play a role.
Hence, the contribution to β3 is equal to the number of different distributions of free
particles on the edge connecting Y and Y ′ and on the connected component. In other
words, there are two bins and n− 5 free particles. Hence, the total contribution from
O× Y × Y ′-cycles is 4(n− 4). We split the contribution from Y × Y ′ × Y ′′-cycles into
two groups. The first group consists of cycles only from perimeter (Yp × Y ′p × Y ′′p ),
for whom the combinatorial description is straightforward. The number of possible
choices of Y -subgraphs is

(
4
3

)
and it always results with the decomposition of W5 into 3

components. Hence, with n− 6 free particles the number of independent Yp×Y ′p ×Y ′′p -
cycles is 4

(
n−4

2

)
. In order to determine the number of independent cycles Yp × Y ′p × Yh

(two subgraphs from the perimeter and one from the hub), one has to consider different
graphs that arise after removing two Y -subgraphs from the perimeter of W5. The
number of independent Yh-cycles for a fixed choice of Yp and Y ′p is the same as in a
certain fan graph, which is determined by the choice of the Yp-subgraphs. Choosing
Yp and Y ′p to lie on the opposite sides of the diagonal of W5, the resulting fan graph
is the star graph S4. The free particles outside Yp and Y ′p can always be moved to
the S4-subgraph. Hence, the contribution from such cycles is given by the number of
independent Y -cycles in S4 for n− 4 particles. We denote this number by β(n−4)

1 (S4).
The last group of cycles that we have to take into account are Yp × Y ′p × Yh, where Yp
and Y ′p are neighbouring subgraphs. The resulting fan graph is shown on Fig. 5.18.
The n − 4 particles that do not exchange on the perimeter subgraphs are distributed
between the fan graph and the edge joining Yp and Y ′p . There have to be at least 2
particles exchanging on a Yh-subgraph of the fan graph. The number of independent
Yh-cycles for k + 2 particles on the fan graph is given in the caption under Fig. 5.18.
After summing all the above contributions, the final formula for the third Betti number
reads

β3(Dn(W5)) = 4(n−4)+4

(
n− 4

2

)
+2β

(n−4)
1 (S4)+4

n−6∑
k=0

(
β

(k+2)
1 (S3) +

(
k + 3

k + 1

)
− 1

)
.

The fourth Betti number is easier to compute, because removing three Yp-subgraphs
always results with the same type of fan graph. This fan graph has no cycles, hence
there are no O × Y × Y × Y -cycles. Moreover, there is only one possible choice of
four Y -subgraphs from the perimeter. This always results with the decomposition of
W5 into 5 components. Choosing three Y -subgraphs from perimeter results with the
decomposition of W5 into 3 components: a fan graph and 2 edges. The number of
independent Yh cycles in the fan graph is the same as in S4. Taking into account the
distribution of n− 6 particles between the two edges and the fan graph, we have

β4(Dn(W5)) =

(
n− 4

4

)
+ 4

n−8∑
k=0

(n− k − 7)β
(k+2)
1 (S4), n ≥ 8.
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Figure 5.18: The fan graph that is created after removing two neighbouring Y -
subgraphs from the perimeter of W5. It has µ = 3 leaves. There are two types of
Y -cycles at the hub: a) cycles, where the Y -graph is spanned in three different leaves -
the number of such cycles for k+2 particles is β(k+2)

1 (S3), b) cycles, where the Y -graph
is spanned in two different leaves - the number of such cycles for k + 2 particles is(
k+3
k+1

)
− 1, see [20].

The top homology for Dn(W5) is H5. Distributing k + 2 particles on the central S4

graph and the remaining particles on four free edges joining Yp-subgraphs, we get

β5(Dn(W5)) =
n−10∑
k=0

(
n− k − 7

3

)
β

(k+2)
1 (S4), n ≥ 10.

Let us next generalise the above procedure to an arbitrary wheel graphWm. The dth
Betti number is zero whenever the number of particles is less than 2(d−1)+1 = 2d−1.
If n = 2d− 1 the only possible tori come from the products of d− 1 Y -cycles and one
O-cycle. The graph also cannot be too small, i.e. the condition m− 3 ≥ d− 1 must be
satisfied. Otherwise, there is no cycle that is disjoint with d− 1 Y -subgraphs. Hence,

βd(Dn(Wm)) = 0 if n < 2d− 1 and βd(D2d−1(Wm)) = 0 if m < d+ 2. (5.23)

Otherwise, for n = 2d − 1, if the graph is large enough, one has to look at all the
possibilities of removing Y -subgraphs from the perimeter and what fan graphs are
created. We are interested in the number of leaves (µ) of the resulting fan graph. The
number of cycles in such a fan graph with µ leaves is m− 1−µ. It is a difficult task to
list all possible fan graphs for any Wm in a single formula. The results for graphs up
to W7 are shown in Table 5.4. Using the notation from Table 5.4, the general formula
for βd reads

βd(D2d−1(Wm)) =
∑

n:|n|=d−1

Nn(m− 1− µn), (5.24)

where |n| := ∑l
i=1 ni.
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Γ
Groups of Number of Number of

Y -subgraphs - n possible choices - Nn leaves - µn

W5

(1) 4 1
(1,1) 2 4
(2) 4 3
(3) 4 4
(4) 1 4

W6

(1) 5 2
(1,1) 5 4
(2) 5 3
(2,1) 5 5
(3) 5 4
(4) 5 5
(5) 1 5

W7

(1) 6 2
(1,1) 9 4
(2) 6 3

(1,1,1) 2 6
(2,1) 12 5
(3) 6 4
(2,2) 3 6
(3,1) 6 6
(4) 6 5
(5) 6 6
(6) 1 6

Table 5.4: The possibilities of choosing a number of Y -subgraphs from the perimeter of
a wheel graph. The groups of Y -subgraphs are denoted by sequences (n1, n2, . . . , nl),
where l+

∑l
i=1 ni ≤ m− 1. A group ni means that ni neighbouring Y -subgraphs were

chosen. The groups have to be separated by at least one spoke. For a fixed set of groups
there are many possibilities for distributing the remaining Y -subgraphs. The number
of possibilities is written in the third column. The number of leaves of the resulting
fan graph is written in the fourth column. It is independent on the distribution of the
remaining Y -subgraphs and is given by µn = min

(
m− 1, l +

∑l
i=1 ni

)
.

eq:wheel-zeroeq:wheel-lowwheel-2dwheel-full For higher numbers of particles, one
has to take into account the Y × Y × · · · × Y cycles and distribution of free particles.
If n = 2d, the free particles are only in O × Y × Y × · · · × Y -cycles, where they
are distributed between the edges that come from removing a group of Y -subgraphs.
Group ni gives ni − 1 edges. Hence, groups (n1, . . . , nl) give |n| − l edges. The final
formula reads

βd(D2d(Wm)) =

(
m− 1

d

)
+ (5.25)

+
∑

n:|n|=d−1

Nn

(
(m− 1− µn)(d− 1−#n) + β

(2)
1 (Sµn) + (µn − 1)(m− 1− µn)

)
,

where #n is the number of groups in n (the length of vector n). The contribution
β

(2)
1 (Sµn) + (µn − 1)(m− 1− µn) comes from the number of independent Yh-cycles in
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the relevant fan graph. The general formula when n > 2d reads as follows.

βd(Dn(Wm)) =
∑

n:|n|=d−1

Nn(m− 1− µn)

(
n− d−#n

d−#n− 1

)
+ (5.26)

+
∑

n:|n|=d

Nn

(
n− d−#n

d−#n

)
+

+
∑

n:|n|=d−1

Nn

n−2d∑
l=0

(
β

(l+2)
1 (Sµn) +

((
l + µn

l + 1

)
− 1

)
(m− 1− µn)

)
×

×
(
n− d−#n− l − 2

d−#n− 2

)
.

The first sum describes the O × Y × Y × · · · × Y -cycles and the distribution of the
free n− 2d+ 1 particles. Second sum is the number of Y × Y × · · · × Y -cycles, where
all Y -subgraphs lie on the perimeter - there are n − 2d free particles. The last sum
describes the number of independent Yh×Yp×· · ·×Yp-cycles. Here we used the formula
for the number of Yh-cycles for n particles on a fan graph with µ leaves and m − 1
spokes [20]

n
(n)
Y (µ,m− 1) = β

(n)
1 (Sµn) +

((
n+ µ− 2

n− 1

)
− 1

)
(m− 1− µ).

Sometimes, in formula (5.26), we get to evaluate
(

0
0

)
= 1,

(
0
−1

)
= 0,

(−1
−1

)
= 1.

The highest non-vanishing Betti number is βm and its value is the number of the
possible distributions of n − 2m free particles between the central Sm graph and the
free m− 2 edges on the perimeter.

βm(Dn(Wm)) =
n−2m∑
k=0

(
n−m− k − 2

m− 2

)
β

(k+2)
1 (Sm−1), n ≥ 2m.

5.4.3. Wheel graphs via Świątkowski discrete model

In this chapter we show, that the homology of configuration spaces of wheel graphs
is generated by product cycles. The strategy is to consider two consecutive vertex cuts
that bring any wheel graph to the form of a linear tree.

Figure 5.19: Vertex blowup at the hub of wheel Wm+1 resulting with net graph Nm.
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Figure 5.20: Blowup of a vertex in net graph Nm resulting with linear tree graph Tm.

Throughout, we use the knowledge of generators of the homology groups for tree
graphs to construct a set of generators for net graphs and wheel graphs. Translating
the results of section 5.3 to the Świątkowski complex, we have, that the generators of
Hd(S(Tm)) are of the form

cd = cY1 . . . cYdv1 . . . vke
n1
1 . . . enll ,

subject to relations
cde ∼ cdv, if e ∩ v 6= ∅. (5.27)

This means that computing the rank od Hd(S(Tm)) boils down to considering all
possible distributions of n − 2d free particles among the connected components of
Tm − (vh(Y1) ∪ · · · ∪ vh(Yd)). By vh(Y1) we denote the hub vertex of the Y -subgraph
Yi. Hence, Hd(S(Tm)) is freely generated by generators of the form

[Y1, . . . , Yd, n1, . . . , n2d+1], n1 + · · ·+ n2d+1 = n− 2d, (5.28)

where ni is the number of particles on ith connected component of Tm− (vh(Y1)∪ · · ·∪
vh(Yd)). In the first step, we connect two endpoints of Tm to obtain net graph Nm (Fig.
5.20).

Lemma 5.12. The homology groups of Cn(Nm) are freely generated by the product Y -
cycles and the distributions of free particles on the connected components Nm−(vh(Y1)∪
· · · ∪ vh(Yd)), which we denote by

[Y1, . . . , Yd, n1, . . . , n2d], n1 + · · ·+ n2d = n− 2d. (5.29)

The Betti numbers read

βd(Cn(Nm)) =

(
m

d

)(
n− 1

2d− 1

)
.

Proof. Long exact sequence corresponding to vertex blow-up from figure 5.20 reads

. . .
Ψn,d+1−−−−→ Hd (Sn−1(Tm))

δn,d−−→ Hd (Sn(Tm))
Φn,d−−→ Hd

(
S̃vn(Nm)

)
Ψn,d−−→

Ψn,d−−→ Hd−1 (Sn−1(Tm))
δn,d−1−−−→ Hd−1 (Sn(Tm))

Φn,d−1−−−−→ . . . ,

Let us next show that the connecting homomorphism δ is in this case injective. Map
δn,d acts on generators (5.28) as

δn,d([Y1, . . . , Yd, n1, . . . , n2d+1]) = [Y1, . . . , Yd, n1 + 1, . . . , n2d+1]+

−[Y1, . . . , Yd, n1, . . . , n2d+1 + 1],
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where n1 and nd+1 are respectively the numbers of particles on the leftmost and on the
rightmost connected component of Tm − (vh(Y1) ∪ · · · ∪ vh(Yd)). One can check, that
vectors {[Y1, . . . , Yd, n1 +1, . . . , n2d+1]− [Y1, . . . , Yd, n1, . . . , n2d+1 +1]} corresponding to
different choices of Y -subgraphs of Tm are linearly independent. Hence, any vector from
imδn,d can be uniquely decomposed in this basis and its preimage can be unambiguously
determined by subtracting the particles from n1 and nd+1. By injectivity of δ,

Hd

(
S̃vn(Nm)

)
∼= coker(δn,d).

Hence, the rank of Hd(Sn(Nm)) is equal to rk(cokern,d) = βd (Sn(Tm))−βd (Sn−1(Tm)).
The Betti numbers of Sn(Tm) can be computed by counting the distributions of n− 2d
particles on 2d + 1 connected components multiplied by the number of d-subsets of
Y -subgraphs of Tm. The result is

βd (Sn(Tm)) =

(
m

d

)(
n

2d

)
.

The claim of the lemma follows directly from the above formula. The result is the
same as the number of distributions of n − 2d particles on 2d connected components
of Nm − (vh(Y1) ∪ · · · ∪ vh(Yd)).

Let us next consider the homology sequence associated with the vertex blow-up
from Wm+1 to Nm (fig. 5.19).

. . .
Ψn,d+1−−−−→

⊕
h∈H(v)−{h0}

Hd (Sn−1(Nm))
δn,d−−→ Hd (Sn(Nm))

Φn,d−−→ Hd

(
S̃vn(Wm+1)

)
Ψn,d−−→

Ψn,d−−→
⊕

h∈H(v)−{h0}

Hd−1 (Sn−1(Nm))
δn,d−1−−−→ Hd−1 (Sn(Nm))

Φn,d−1−−−−→ . . . ,

We next describe the kernel of map δ. Our aim is to show that it is free abelian,
which in turn gives us that the short exact sequences for Hd(Sn(Wm+1)) split and yield
Hd(Sn(Wm+1)) ∼= coker(δn,d) ⊕ ker(δn−1,d). Map δn,d assigns to generators (5.29) of
Hd(Sn(Wm+1)) the differences of generators derived from a given generator by adding
one particle to a connected component of Nm − (vh(Y1) ∪ · · · ∪ vh(Yd)). In order to
write down the action of map δ, let us first establish some notation. The connected
components ofNm−(vh(Y1)∪· · ·∪vh(Yd)) are either isomorphic to edges or to linear tree
graphs. The number of connected components that are edges, which have one vertex
of degree one in Nm is equal to d. The number of the remaining connected components
is always equal to d, but their type depends on the distribution of subgraphs Y1, . . . , Yd
in Nm. The situations, that are relevant for the description of ker δ are those, where
a particle is added by map δ to two connected components, which contain an edge,
which before the blow-up was adjacent to the hub of Wm+1. There are at most 2d
such components, as removing the hub-vertices of two neighbouring Y -subgraphs of
Nm yields a connected component of the edge type, which is not adjacent to the hub
of Wm+1. We label these components by numbers 1, . . . , l (we always have d ≤ l ≤ 2d)
and the occupation numbers of these components are n1, . . . , nl. We choose component
1 to be the component adjacent to edge e(h0) and increase the labels in the clockwise
direction from the component with label 1. The remaining components are labelled by
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numbers l+ 1, . . . , 2d. Map δ acts on basis elements of
⊕

h∈H(v)−{h0}Hd (Sn−1(Nm)) as
follows.

δn,d ([Y1, . . . , Yd, n1, . . . , npi , . . . , n2d]i) =

= [Y1, . . . , Yd, n1 + 1, . . . , npi , . . . , n2d]− [Y1, . . . , Yd, n1, . . . , npi + 1, . . . , n2d],

where [Y1, . . . , Yd, n1, . . . , npi , . . . , n2d]i is a generator corresponding to the hi-component
of
⊕

h∈H(v)−{h0}Hd (Sn−1(Nm)) and pi is the label of the connected component, which
contains edge e(hi). One easily observes, that if pi = 1, i.e. edges e(h0) and e(hi)
belong to the same connected component of Nm − (vh(Y1) ∪ · · · ∪ vh(Yd)), generator
[Y1, . . . , Yd, n1, . . . , npi , . . . , n2d]i ∈ ker δn,d. Such an element is represented in Sn(Wm+1)
as cycle cY1 . . . cYdcO, where O is the cycle in Wm+1, which contains edges e(h0), e(hi)
and the hub of Wm+1. Similarly, element

[Y1, . . . , Yd, n1, . . . , npi , . . . , n2d]i − [Y1, . . . , Yd, n1, . . . , npj , . . . , n2d]j

is in the kernel of δn,d, whenever edges e(hi) and e(hj) belong to the same connected
component of Nm − (vh(Y1) ∪ · · · ∪ vh(Yd)). The last type of elements of ker δn,d are
combinations of generators, that when acted upon by δn,d, compose to the boundary
of a Y -cycle centred at the hub of Wm+1. Such kernel elements correspond to cycles
cY1 . . . cYdcYh in Sn(Wm+1), where Yh is a Y -cycle, whose hub-vertex is the hub-vertex
of Wm+1. The precise form of such kernel elements is the following.

[Y1, . . . , Yd, n1, . . . , npi , . . . , npj + 1, . . . ]i − [Y1, . . . , Yd, n1 + 1, . . . , npi , . . . , npj , . . . ]i+

+[Y1, . . . , Yd, n1 + 1, . . . , npi , . . . , npj , . . . ]j − [Y1, . . . , Yd, n1, . . . , npi + 1, . . . , npj , . . . ]j,

where i < j. In order to manage the relations between the above kernel elements,
we use the already mentioned fact, that they are in a one-to-one correspondence with
1-cycles (O-cycles and Y -cycles) in a configuration space of the disconnected graph
Wm+1 − (vh(Y1) ∪ · · · ∪ vh(Yd)). More specifically, the disconnected graph Wm+1 −
(vh(Y1)∪· · ·∪vh(Yd))2 is a disjoint sum of a number of edges and of one fan graph. We
regard the 1-cycles (O-cycles or Y -cycles) at the hub as generators of the first homology
group of the configuration space of the fan graph multiplied by different distributions of
particles on the disjoint edge-components ofWm+1−(vh(Y1)∪· · ·∪vh(Yd)). Fan graphs
are planar, hence by theorem 4.4 there is no torsion in ker δn,d. Hence, Hd(Sn(Wm+1))
is torsion-free and short exact sequence for Hd(Sn(Wm+1)) gives in this case

βd(Sn(Wm+1)) ∼= βd(Sn(Nm))−mβd(Sn−1(Nm)) + rk(ker δn,d) + rk(ker δn,d−1).

The computation of ranks of kernels of maps δn,d is a combinatorial task, which has
been accomplished using the correspondence with cycles in configuration spaces of fan
graphs in subsection 5.4.2.

5.5. Graph K3,3

Graph K3,3 is shown on Fig. 5.21. We will draw graph K3,3 in two ways: 1)
immersion in R2, Fig. 5.21a), ii) embedding in R3, Fig. 5.21b).

2Wm+1−(vh(Y1)∪· · ·∪vh(Yd)) is a disconnected topological space. We give this space the structure
of a graph by adding a vertex to the open end of each open edge.
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Figure 5.21: Graph K3,3.

GraphK3,3 has the property, that all its vertices are of degree three. High homology
groups of graphs with such a property have been studied in [61]. In particular, we have
the following result.

Theorem 5.13. Let Γ be a simple graph, whose all vertices have degree 3. Denote by
N the number of vertices of graph Γ and label the vertices by labels 1, . . . , N . Moreover,
denote by Y = {Y1, . . . YN} the set of Y -subgraphs of Γ such, that the hub of Yk is vertex
k. Group HN(Sn(Γ)) is freely generated by product cycles

en1
1 . . . enKK

⊗
Y ∈Y

cY , n1 + · · ·+ eK = n− 2N.

Group HN−1(Sn(Γ)) is generated by product cycles of the form

en1
1 . . . enKK v

⊗
Y ∈Ỹ

cY , n1 + · · ·+ eK = n− 2(N − 1),

where Ỹ ⊂ Y is such, that |Ỹ| = N−1, and v ∈ V (Γ) is the unique vertex, that satisfies
v ∩ (∪Y ∈ỸY ) = ∅. The above generators are subject to relations

en1
1 . . . e

nj
j . . . enKK v

⊗
Y ∈Ỹ

cY ∼ en1
1 . . . e

nj+1
j . . . enKK

⊗
Y ∈Ỹ

cY ,

whenever ej ∩ v 6= ∅.
As we show in section 5.7, the second homology group of configuration spaces of

such graphs is also generated by product cycles. Later in this section, by comparing
the ranks of homology groups computed via the discrete Morse theory, we argue, that
H4(Cn(K3,3)) is also generated by product cycles. Interestingly, in H3(Cn(K3,3)) there
is a new non-product generator. Using this knowledge, we explain the relations between
the product and non-product cycles that give the correct rank of H3(Cn(K3,3)).

Second homology group

There are no pairs of disjoint cycles in K3,3, hence the product part for n = 2 is
empty. When n = 3, there are 12 O × Y -cycles. This can be seen by choosing the
Y -graph centered at vertex 1 on Fig. 5.21b) - there are 2 cycles disjoint with such a Y -
subgraph. There are 6 Y -subgraphs in K3,3, hence we get the number of O×Y -cycles.
One checks by a straightforward calculation, that 8 of them are independent. Hence,

β2(D3(K3,3)) = 8.
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When n = 4, there are new product cycles of the Y × Y -type. There are
(

6
2

)
= 15

cycles of this type, however there are relations between them. Such relations between
the Y × Y -cycles arise, when one of the cycles is in relation with a different Y -cycle.
This happens only when we have a situation as on Fig. 4.6. Therefore, cycles of
the Y × Y -type, where the hubs of the Y -subgraphs, are connected by an edge, are
all independent (Fig. 5.22a)). The number of such cycles is 9. The relations occur
between Y × Y -cycles, where the hubs of the subgraphs are not connected by an edge
(Fig. 5.22b)). There are 6 such cycles. The number of relations is 4. To see this,
consider Y -subgraph, whose hub is vertex 1 (Fig. 5.21). Denote this subgraph by Y1.
It is straightforward to see that in graph K3,3 − Y1 we have cY3 ∼ cY6 . Hence,

(cY1 ⊗ cY3) ∼ (cY1 ⊗ cY6).

Analogous relations for Y -subgrphs that lie on the same side of the K3,3 graph as Y1

(see Fig. 5.21a)) read

(cY3 ⊗ cY1) ∼ (cY3 ⊗ cY6), (cY6 ⊗ cY3) ∼ (cY6 ⊗ cY1).

From the above equations only two are independent. Similar situation happens for
relations between pairs of graphs from the other side. The complete set of relations
reads

(cY1 ⊗ cY3) ∼ (cY1 ⊗ cY6) ∼ (cY3 ⊗ cY6), (cY2 ⊗ cY4) ∼ (cY2 ⊗ cY5) ∼ (cY4 ⊗ cY5).

Therefore,
β2(D4(K3,3)) = 8 + 9 + 2 = 19.

For n > 4, we have to take into account the distribution of free particles. Whenever
two non-neighbouring Y -subgraphs are considered, all distributions of free particles
are equivalent (Fig. 5.22b)). When the subgraphs are adjacent, there are two different
parts of K3,3, where the particles can be distributed, see Fig. 5.22a). This gives the
formula

β2(Dn(K3,3)) = 8 + 2 + 9(n− 3) = 9n− 17, n ≥ 4.

Figure 5.22: Graph K3,3 after removing two Y -subgraphs.

Higher homology groups

Let us first look at the third homology group. The are no product cycles for n = 4
however, from the Morse theory for the subdivided graph from Fig. 5.23 we have

β3(D4(K3,3)) = 1.
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Figure 5.23: Graph K3,3 sufficiently subdivided for n = 4. The deleted edges are
marked with dashed lines.

The Morse complex has dimension 3. The generator of H3(D4(K3,3)) is isomorphic
to a closed 3-manifold with Euler characteristic χ = 11. The cycle on the level of the
Morse complex has the form

c =
{
e12

1 , e
24
4 , e

22
10, 2

}
−
{
e17

1 , e
24
4 , e

22
10, 2

}
−
{
e12

1 , e
22
10, e

18
15, 16

}
+
{
e17

1 , e
24
4 , e

22
10, 11

}
+{

e17
1 , e

13
7 , e

22
10, 8

}
+
{
e12

1 , e
24
4 , e

18
15, 16

}
−
{
e24

4 , e
13
7 , e

22
10, 8

}
−
{
e12

1 , e
24
4 , e

22
10, 5

}
.

For n = 5, we have the Y ×Y ×O-cycles. These are the cycles, where the Y -subgraphs
are adjacent. For every pair of adjacent Y subgraphs there is an unique O-cycle. An
example of such a cycle is

cY1 × cY2 ×
(
{e4

3}+ {e6
4} − {e6

5} − {e5
3}
)
.

The number of all such cycles is equal to the number of pairs of adjacent Y -subgraphs,
which is 9. Adding the properly embedded generator of H3(D4(K3,3)), we get

β3(D5(K3,3)) = 10.

For n ≥ 6, all Y × Y × Y -cycles are independent. Consider two ways of choosing three
Y -subgraphs. The first way is to remove two Y -graphs from the same side and one
from the opposite side. This results with the partition of K3,3 into three components
(Fig. 5.24a)). Removing three Y -graphs from the same side splits K3,3 into three parts
(Fig. 5.24b)). Therefore,

β3(Dn(K3,3)) = 1 + 9(n− 4) +

(
6

3

)(
n− 4

2

)
, n ≥ 6.

Figure 5.24: Graph K3,3 after removing three Y -subgraphs.
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The product contribution to higher homology groups requires considering different
choices of Y -subraphs. There are no Y × Y × · · · × Y × O-cycles in Hp(Dn(K3,3)) for
p ≥ 4. As direct computations using discrete Morse theory show, there are also no non-
product generators (see table 5.1). Therefore, only Y × Y × · · · × Y -cycles contribute
to Hp(Dn(K3,3)) for p ≥ 4. Removing four Y -graphs from K3,3 always results with
the splitting into 5 parts, removing five Y -graphs gives 7 parts and removing all six
Y -graphs gives 9 parts. Summing up,

β4(Dn(K3,3)) =

(
6

4

)(
n− 4

4

)
, β5(Cn(K3,3)) =

(
6

5

)(
n− 4

6

)
,

β6(Cn(K3,3)) =

(
n− 4

8

)
.

All homology groups higher than H6 are zero for any number of particles.

5.6. Triple tori in Cn(K2,p)

In this chapter we study a family of graphs, where some cycles generating the
homology groups of the n-particle configuration space are not product. This is the
family of complete bipartite graphs K2,p (see figure 5.25a). The first interesting graph
from this family is K2,4. As we show below, its 3-particle configuration space gives rise
to a 2-cycle, which is a triple torus. It turns out, that such triple tori together with
products of Y cycles generate the homology groups of Cn(K2,p). The most convenient
discrete model for studying Cn(K2,p) is the Świątkowski model. In fact, we study

Figure 5.25: a) Graph K2,p. b) Graph Θp.

the Świątkowski configuration space of graph Θp (see 5.25b), which is topologically
equivalent to K2,p, but it has the advantage, that its discrete configuration space is of
the optimal dimension. Because there are no 3-cells in Sn(Θp), hence automatically we
get, that

Hi(Cn(K2,p)) = 0 for i ≥ 3.

This in turn means, that H2(Cn(K2,p)) as the top homology group is a free group. The
first homology group can be computed using the methods that we reviewed in section
4.4.

Lemma 5.14. The first homology group of Cn(K2,p) is equal to Zp(p−1) for n ≥ 2 and
p− 1 for n = 1.
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Proof. Graph K2,p is 2-connected, hence H1(Cn(K2,p)) stabilises. There is one 2-cut
at vertices {v, v′}, which results with the decomposition of K2,p into p disconnected
components. Hence, applying theorem 4.4 for N2 = 1

2
(p− 1)(p− 2) and β1(Γ) = p− 1,

we get the desired result.

By counting the number of 0-, 1- and 2-cells in Sn(K2,p), we compute the Euler
characteristic.

Lemma 5.15. The Euler characteristic of Sn(K2,p) for n ≥ 3 and p ≥ 3 is

χ = (p− 1)2

(
n− 3 + p

p− 1

)
− 2(p− 1)

(
n− 2 + p

p− 1

)
+

(
n− 1 + p

p− 1

)
.

On the other hand, χ(Sn(K2,p)) = 1 − β1(Sn(K2,p)) + β2(Sn(K2,p)). Therefore, we
compute the second Betti number of Cn(K2,p) as

β2(Cn(K2,p)) = (p− 1)2

(
n− 3 + p

p− 1

)
− 2(p− 1)

(
n− 2 + p

p− 1

)
+ (5.30)

+

(
n− 1 + p

p− 1

)
+
p(p− 1)

2
− 1 for n ≥ 3 and p ≥ 3.

In the remaining part of this section we describe the generators of H2(Cn(K2,p)) and
the relations that lead to the above formula. We represent them in terms of 2-cycles
in Sn(Θp).

Example 5.16. Generators of H2(Sn(Θ3)). Group H2(Sn(Θ3)) is generated by
products of Y -cycles at vertices v and v′. More precisely, consider the following two
Y -cycles

c123 = e1(h2 − h3) + e2(h3 − h1) + e3(h1 − h2),

c′123 = e1(h′2 − h′3) + e2(h′3 − h′1) + e3(h′1 − h′2).

Group H2(Sn(Θ3)) is freely generated by cycles

c123c
′
123e

n1
1 e

n2
2 e

n3
3 .

This can be seen by comparing the number of cycles of the above form with β2(Sn(Θ3))
from formula 5.30. In both cases the answer is the number of distributions of n − 2
particles among edges e1, e2, e3 (the problem of distributing n − 2 indistinguishable
balls into 3 distinguishable bins), which is

(
n−2

2

)
= 1

2
(n− 2)(n− 3).

From now on, we denote the Y -cycles as

cijk = ei(hj − hk) + ej(hk − hi) + ek(hi − hj), i < j < k, (5.31)
c′ijk = ei(h

′
j − h′k) + ej(h

′
k − h′i) + ek(h

′
i − h′j), i < j < k.

Cycle cijk is the Y -cycle of the Y -subgraph, whose hub vertex is v and which is spanned
on edges ei, ej, ek. Cycle c′ijk corresponds to an analogous Y -subgraph, whose hub is
v′.
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Example 5.17. The generator of H2(S3(Θ4)). Formula (5.30) tells us, that β2(C3(K2,4)) =
1. The corresponding generator in S3(Θ4) has the following form.

cΘ = −(h1 − h2)c′134 + (h1 − h3)c′124 − (h1 − h4)c′123.

By expanding the Y -cycles, one can see, that the above chain is a combination of
all 2-cells of S3(Θ4), hence, Cn(K2,4) has the homotopy type of a closed 2-dimensional
surface. Its Euler characteristic is equal to −4, hence this is a surface of genus 3. By the
classification theorem of surfaces [74, 75], we identify Cn(K2,4) to have the homotopy
type of a triple torus (fig. 5.26).

Figure 5.26: A triple torus.

From now on, we denote the Θ-cycles as

cijkl = −(hi − hj)c′ikl + (hi − hk)c′ijl − (hi − hl)c′ijk, i < j < k < l. (5.32)

Cycle cijkl involves cells from S3(Θ4) for Θ4 being the subgraph of Θp spanned on
edges ei, ej, ek, el. Using the notation set in equations (5.32) and (5.31), we propose
the following generators of H2(Sn(Θp)).

cijkc
′
rste

n1
1 . . . enpp , i < j < k, r < s < t, n1 + · · ·+ np = n− 4,

cijkle
n1
1 . . . enpp , i < j < k < l, n1 + · · ·+ np = n− 3.

Let us start with n = 3. The key to describe the relations between the Θ-cycles spanned
on different Θ4 subgraphs is to consider graph Θ5.

Proposition 5.18. The Θ-cycles in graph Θ5 satisfy the following relation

c1234 − c1235 + c1245 − c1345 + c2345 = 0. (5.33)

In graph Θp, many relations of the form (5.33) can be written down by choosing different
Θ5 subgraphs. The linearly independent ones are picked by choosing the corresponding
Θ5-subgraphs that are spanned on edge e1 and some other four edges of Θp. Such a
choice can be made in

(
p−1

4

)
ways. Subtracting the number of linearly independent

relations from the number of all Θ4 subgraphs, we get

β2(C3(K2,p)) =

(
p

4

)
−
(
p− 1

4

)
=

(
p− 1

3

)
.

Increasing the number of particles to n = 4 introduces products of Y -cycles and new
relations. First of all, by proposition 5.19 different distributions of additional particles
in the Θ-cycle can be realised are combinations of different products of Y -cycles.
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Proposition 5.19. In graph Θ4, we have the following relations

(e1 − e2)c1234 = c124c
′
123′ − c123c

′
124,

(e1 − e3)c1234 = c123c
′
134′ − c134c

′
123,

(e1 − e4)c1234 = c124c
′
134′ − c134c

′
124.

Hence, all Θ-cycles generate a subgroup of H2(Sn(Θp)), which is isomorphic to Z(p−1
3 ).

The last type of relations we have to account for3 are the new relations between products
of Y -cycles.

Proposition 5.20. In graph Θ5, products of Y -cycles satisfy

c123c
′
145 + c145c

′
123 + c125c

′
134 + c134c

′
125 − (c124c

′
135 + c135c

′
124) = 0.

Again, many relations of type 5.20 can be written by picking different Θ5 subgraphs.
Similarly as in the case of relations 5.33, the linearly independent ones are chosen by
fixing e1 to be the common edge of the Θ5 subgraphs. Hence, the number of linearly
independent relations is

(
p−1

4

)
. In particular, we have

β2(C4(K2,p)) =

(
p− 1

3

)
+ (β1(C2(Sp)))

2 −
(
p− 1

4

)
,

where (β1(C2(Sp)))
2 is the number of independent product cycles after taking into the

account the relations within the two opposite star subgraphs. All the above relations
are inherited by the cycles in Sn(Θp) after multiplying them by a suitable polynomial
in the edges of Θp. In this way, they yield equation (5.30).

5.7. When is H2(Cn(Γ)) generated only by product cy-
cles?

In this section we prove the following theorem.

Theorem 5.21. Let Γ be a simple graph, for which |{v ∈ V (Γ) : d(v) > 3}| = 1.
Then group H2(Cn(Γ)) is generated by product cycles.

In the proof we use the Świątkowski discrete model. The strategy of the proof is to
first consider the blowup of the vertex of degree greater than 3 and prove theorem 5.21
for graphs, whose all vertices have degree at most 3. For such a graph, we choose a
spanning tree T ⊂ Γ. Next, we subdivide once each edge from E(Γ)−E(T ). We prove
the theorem inductively by showing in lemma 5.22, that the blowup at an extra vertex
of degree 2 does not create any non-product generators. The base case of induction
is obtained by doing the blowup at every vertex of degree 2 in Γ − T . This way, we
obtain graph, which is isomorphic to tree T and we use the fact, that for tree graphs
the homology groups of Sn(T ) are generated by products of Y -cycles.

3We do not mention here the typical relations between different Y -cycles on Y -subgraphs of the Sp
graphs, which are met while computing the first homology group of the configuration spaces of star
graphs (see [20]). Such relations are also inherited by the products of Y -cycles.
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Lemma 5.22. Let Γ be a simple graph, whose all vertices have degree at most 3. Let T
be a spanning tree of Γ. Let v ∈ V (Γ) be a vertex of degree 2 and Γv the graph obtained
from Γ by the vertex blowup at v. If H2(Sn(Γv)) is generated by product cycles, then
H2(Sn(Γ)) is also generated by product cycles.

Proof. Long exact sequence corresponding to the vertex blow-up reads

. . .
Ψn,3−−→ H2 (Sn−1(Γv))

δn,2−−→ H2 (Sn(Γv))
Φn,2−−→ H2

(
S̃vn(Γ)

)
Ψn,2−−→

Ψn,2−−→ H1 (Sn−1(Γv))
δn,1−−→ H1 (Sn(Γv))

Φn,1−−→ . . . .

We aim to show, that the corresponding long exact sequence

0→ coker (δn,2) −→ H2

(
S̃vn(Γ)

)
−→ ker (δn,1)→ 0

splits. To this end, we construct a homomorphism f : ker (δn,1) → H2

(
S̃vn(Γ)

)
such, that Ψn,2 ◦ f = idker(δn,1). In the construction we use the explicit knowledge
of elements of ker (δn,1). Such a knowledge is accessible, as we know the generating
set of H1 (Sn−1(Γv)) - because all vertices of Γv have degree at most 3, it consists of
Y -cycles and O-cycles, subject to the Θ-relations (equations (4.7) and (4.6)) and the
distribution of free particles, which say, that [ce] = [cv] whenever v is a vertex of e.
Recall, that cycle c represents element of ker (δn,1), whenever [ce] = [ce′], where e and
e′ are the edges incident to vertex v. This happens if and only if cycles ce and ce′ are
related by a Θ-relation or a particle-distribution relation. However, it is not possible
to write the Θ relations in the form ce − ce′ = ∂(b) for any c. Hence, cycles ce and
ce′ must be related by the particle distribution, i.e. there exists a path in Γv, which
is disjoint with Supp(c) and which joins edges e and e′. The desired homomorphism
f is constructed as follows. For a generator c of H1 (Sn−1(Γv)), find path p(c), which
joins e and e′ and is disjoint with Supp(c). Having found such a path, we complete it
to a cycle Op(c) in a unique way by adding to p vertex v and edges e, e′. From cycle
Op(c) we form the O-cycle cOp(c) (see definition 4.10). Homomorphism f is established
after choosing the set of independent generating cycles and paths, that are disjoint
with them. It acts as f : [c] 7→ [c⊗ cOp(c) ]. Clearly, we have Ψn,2([c⊗ cOp(c) ]) = [c] by
extracting from cOp(c) the part, which contains half-edges incident to v.

This way, we obtained, that H2

(
S̃vn(Γ)

)
∼= ker (δn,1)⊕coker (δn,2) and that elements

of ker (δn,1) are represented by product cO ⊗ cY cycles. By the inductive hypothesis,
elements of coker (δn,2) are the product cycles that generate H2 (Sn−1(Γv)) subject to
relations ce ∼ ce′.

The last step needed for the proof of theorem 5.21 is showing, that the blowup
of Γ at the unique vertex of degree greater than 3 does not create any non-product
cycles. Here we only sketch the proof of this fact, which is analogous to the proof
of lemma 5.22. Namely, using the knowledge of relations between the generators of
H1 (Sn−1(Γv)), one can show, that the elements of ker (δn,1) are of two types: i) the
ones, that are of the form ∂(c⊗ bp(c)), where [c] ∈ H1 (Sn−1(Γv)) and bp(c) is the 1-cycle
corresponding to path p(c) ⊂ Γv, which is disjoint with Supp(c) and whose boundary
are edges incident to v, ii) pairs of cycles of the form (c(ej − e0), c(e0 − ej)), where
e0, ei, ej are edges incident to v and [c] ∈ H1 (Sn−2(Γv)). Such pairs are mapped by δn,1
to c⊗ ((ej − e0)(e0 − ei) + (e0 − ei)(e0 − ej)), which is equal to ∂(c⊗ c0ij), where c0ij
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is the Y -cycle corresponding to the Y -graph in Γ centred at v and spanned by edges
e0, ei, ej. Next, in order to show splitting of the homological short exact sequences, we
consider a homomorphism f : ker (δn,1)→ H2

(
S̃vn(Γ)

)
, for which Ψn,2 ◦ f = idker(δn,1).

Such a homomorphism maps [c] to [c⊗ cOp(c) ], where Op(c) is the cycle, which contains
path p(c) and vertex v. Pairs ([c(ej − e0)], [c(e0 − ej)]) are mapped by f to cycles
c ⊗ c0ij. We obtain, that H2

(
S̃vn(Γ)

)
∼= ker (δn,1) ⊕ coker (δn,2), where the generators

of ker (δn,1) are in a one-to-one correspondence with the product homology classes of
H2

(
S̃vn(Γ)

)
described above. Elements of coker (δn,2) are also represented by product

cycles. These cycles are the generators of H2 (Sn(Γv)) subject to relations ce0 ∼ cei,
i = 1, . . . , d(v), where e0, e1, . . . , ed(v) are edges incident to v.

The task of characterising all graphs, for which H2(Sn(Γ)) is generated by product
cycles requires taking into account the existence of non-product generators from section
5.6. As we show in section 5.6 the existence of pairs of vertices of degree greater than
3 in the graph implies that there may appear some multiple tori in the generating set
of H2(Cn(Γ)) stemming from subgraphs isomorphic to graph K2,4. Furthermore, the
class of graphs, for which higher homologies of Cn(Γ) are generated by product cycles
is even smaller. Recall graph K3,3 whose all vertices have degree 3, but H3(Cn(K3,3))
has one generator, which is not a product of 1-cycles (see section 5.5).
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Chapter 6

Summary

We summarise this thesis by outlining some possible paths of the future work that
follow from the presented material and state some conjectural results concerning the
behaviour of the homology groups of graph configuration spaces.

In the first part of this thesis, we explained, that the quantum statistics on a
topological space X are classified by the conjugacy classes of unitary representations
of the fundamental group of the configuration space Cn(X). On the other hand, every
such a unitary representation gives rise to a flat complex vector bundle over space
Cn(X). We interpret different isomorphism classes of flat complex vector bundles over
Cn(X) as fundamentally different families of particles. Among these families we find
for example bosons and anyons (corresponding to the trivial flat bundle) and fermions,
that correspond to a non-trivial flat bundle. We argue, that, the existence of more than
only these two isomorphism classes is possible. However, the construction of non trivial
flat bundles for X = R2 or X = R3 is difficult, hence some simplified mathematical
models are needed. This motivates the study of configuration spaces of particles on
graphs, which are computationally more tractable. Topological invariants, that give
some information about the structure of the set of complex vector bundles over Cn(X)
are the homology groups of configuration spaces. In particular, Chern characteristic
classes map the flat vector bundles to torsion components of the homology groups with
coefficients in Z. In the second part of this thesis, we compute homology groups of
configuration spaces of certain families of graphs. We summarise the computational
results as follows.

• This thesis contains first computation of the Betti numbers together with the ex-
plicit description of generators of the homology groups of the configuration spaces
of i) tree graphs (subsection 5.3.3, equation (5.17)), ii) wheel graphs (subsection
5.4, equations (5.23, 5.24, 5.25, 5.26)), iii) graphs K2,p (section 5.6, equation
(5.30)), iv) graph K3,3 (subsection 5.5). Moreover, we provided a large family of
simple graphs, for which the second homology group of Cn(Γ) has a simplified
structure, i.e. is generated by product cycles. These results were obtained by
using the latest tools that were introduced to the mathematical community (dis-
crete Morse theory [24] and the vertex blowup method [61]) and developing some
original mathematical tools (product cycles, decomposition of the configuration
spaces for graphs of connectivity one). In particular, we obtained, that config-
uration spaces of tree graphs, wheel graphs and complete bipartite graphs K2,p

have no torsion in their homology. This means, that the set of flat bundles over
configuration spaces of such graphs has a simplified structure, namely every flat
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vector bundle is stably equivalent to a trivial vector bundle. Hence, these fami-
lies of graphs are good first candidates for studying the properties of non-abelian
statistics on graphs.

• Computation of the homology groups of configuration spaces of some small canon-
ical graphs via the discrete Morse theory shows, that in some cases there is a
Z2-torsion in the homology. However, we were not able to provide an example of
a graph, which has a torsion component different than Z2 in the homology of its
configuration space.

• All results that we have obtained support the regularity conjecture of Betti num-
bers of graph configuration spaces.

Conjecture 6.1. Let Γ be a graph. For n ≥ 2p, the behaviour of βp(Dn(Γ))
becomes regular, i.e. βp(Dn(Γ)) grows polynomially with n.

• It is a difficult task to accomplish a full description of the homology groups of
graph configuration spaces using methods presented in this work. One fundamen-
tal obstacle is that such a task requires the knowledge of possible embeddings
of d-dimensional surfaces in Cn(Γ), which generate the homology. Surfaces are
fully classified up to dimension three. However, the asphericality of graph con-
figuration spaces reduces the possible surfaces to the aspherical ones. This in
particular means, that cycles generating the homology in dimension 2 have the
homotopy type of tori or multiple tori. This allowed us to find all generators of
the second homology group of configuration spaces of a large family of graphs in
section 5.7.

In what follows, we give an exposition of some of the open problems related to quantum
statistics on graphs, that are a natural continuation of the work presented in this thesis.

Problem 1. – K-theory for graph configuration spaces. With the knowledge of
the homology groups of graph configuration spaces, one can compute the Grothendieck
group via the Atiyah-Hirzebruch spectral sequence [11]. By computing torsion in the
reduced Grothendieck group K̃(Cn(Γ)), one could extract some more information about
the characteristic classes of flat complex vector bundles over Cn(Γ). More precisely, we
would like to know, whether torsion inH∗(Cn(Γ),Z) is in the image of the characteristic
map of some nontrivial flat bundles. In particular, if there is no torsion in K̃(Cn(Γ)),
then we again have, that every flat bundle is stably equivalent to a trivial bundle.

Problem 2. – Unitary representations of graph braid groups - quantum
computing perspective. Anyonic quantum computation is a dynamically devel-
oping field. It relies on constructing physical systems, where the excited states have
anyonic statistics. Examples of such states are the excitations in the Kitayev toric
model [77] or the quantum Hall states [76]. Quantum computation using anyons is
appealing due to its intrinsic fault-tolerance [76]. Any quantum computation scheme
that uses anyons, involves a set of unitary operators, which are assigned to generators
of a braid group (the fundamental group of a configuration space of some manifold).
Mathematically, they form a unitary representation of a braid group. The relevant rep-
resentations are those, that are universal for quantum computation [80]. The problem
of classification of unitary representations of braid groups is difficult and only sporadic
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results have been obtained [78, 79]. Perhaps tackling an analogous problem for graph
braid groups [25] (fundamental groups of graph configuration spaces) could shed some
new light on the non-abelian anyonic quantum computation. In particular, one can
look for points in the moduli space of flat bundles over Cn(Γ), that can be represented
as universal quantum gates. Good candidates for such studies would be the graphs Γ,
that do not have torsion inH∗(Cn(Γ),Z), as in this case the moduli space of flat bundles
has a simpler structure. However, one has to keep in mind, that we still lack a physical
model of particles constrained to move on a graph, which has anyonic excitations.

Problem 3. – Inheritance of torsion from H∗(Cn(R2),Z) by H∗(Cn(Γ),Z). One
possible way to construct examples of graphs, whose configuration space has torsion
components different than Z2 in its homology, is to use the knowledge of generators of
H∗(Cn(R2),Z) [41, 42, 43] and the embedding Γ ↪−→ R2. More precisely, one would like
to find a homomorphism H∗(Cn(R2),Z) → H∗(Cn(Γ),Z), which does not map some
of the torsion components of H∗(Cn(R2),Z) to zero. This might be accomplished by
embedding a (necessarily planar) graph Γ in R2, which induces embedding Cn(Γ) ↪−→
Cn(R2), and considering for example the corresponding Mayer-Vietoris homological
sequence. However, to accomplish this, one has to do an intermediate step, where the
edges of Γ are thickened (are given a finite thickness), so that the resulting configuration
space is a subset of Cn(R2) of the full dimension. Denote the thickened graph by Γthick.
By considering the continuous map, which changes the thickness of Γthick from ε to 0,
we get a push-forward of homology H∗(Cn(Γthick),Z) → H∗(Cn(Γ),Z). On the other
hand, we have a proper embedding Cn(Γthick) ↪−→ Cn(R2). Assume now, that Γ is
a crate. Using the fact, that H∗(Cn(R2),Z) ∼= H∗(Cn([0, 1] × [0, 1]),Z), we have a
decomposition of configuration spaces similar to the one we considered in section 5.3.1
while computing homology groups of graphs of connectivity one. This decomposition
is induced by decomposing

[0, 1]× [0, 1] = Γthick ∪
(
tα∈AD2

α

)
, (6.1)

where tα∈AD2 is a disjoint union of disks indexed by A (see figure 6.1). Note, that
Γthick∩(tα∈AD2

α) is a disjoint union of thick circles. To decomposition (6.1) we associate
a decomposition of Cn([0, 1]× [0, 1]) according to distributions of different numbers of
particles on Γthick and (tα∈AD2). Then, by considering Mayer-Vietoris sequences we
get homomorphisms that relate the homology of Cn([0, 1] × [0, 1]) with the homology
of Cn(Γthick) and Cn((tα∈AD2

α)). Note, that homology of Cn((tα∈AD2
α)) is a direct

sum of homologies of configuration spaces of disks, which are the same as homology of
Cn([0, 1]× [0, 1]).
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Figure 6.1: Decomposition of square [0, 1]× [0, 1] into a thick crate (yellow color) and
a number of disjoint disks {D2

α}α∈A (bounded by dashed lines).
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