GFLOW: A Supercritical Wellbore Simulator Simulation of Ultra hot IDDP Wells in Iceland

THE CONCEPT OF SUPERCRITICAL WELLBORE MODELLING

Supercritical Reservoir Conceptual Model (from Fridleifsson and Elders, 2017)

Let's give **GFLOW** a GO!

WHO WE ARE: THE AUTHORS

Julius Rivera – Geothermal Reservoir Engineer (GNS Science)

- Experienced Reservoir Engineer
- More than 10 years of work in the geothermal industry (Philippines)
- Wellbore modelling and evaluation
- Resource management and sustainability
- Well Integrity Management Lead and Subsurface Risk Officer

John Burnell - Senior Reservoir Modeller (GNS Science)

- Experienced reservoir modeller
- Have worked on reservoir models around the world for > 35 years
 - New Zealand, Philippines, Japan, Papua New Guinea, South America
- Developed reservoir simulation and wellbore modelling software

What's with the GFLOW Wellbore Simulator

Developed by GERD (Japan) and GNS Science (NZ)

Conservation of energy and momentum

$$\frac{dP}{dL} = g\rho_m \cos \alpha - \frac{f_m v_m^2 \rho_m}{2d} - \rho_m v_m \frac{dv_m}{dL}$$

$$\frac{dH}{dL} = g\cos\alpha - v_m \frac{dv_m}{dL} - Q/w$$

$$w = PI \left(\frac{k_{rl}\rho_l}{\mu_l} + \frac{k_{rv}\rho_v}{\mu_v} \right) (P - P_{reservoir})$$

- Correlations for friction factor and pressure drop (Orkiszewski, Duns and Ros, Hagedorn, etc.)
- Several fluid flow calculation options (Top down, bottom up, output curve)

What's so special about the GFLOW?

Water + NaCl + CO₂

Drift Flux Correlation (Kato et al., 2015)

Supercritical Capability

- Pure water: IAPWS-IF97 (2007)
- NaCl Solutions: Driesner et al. (2007)
- CO₂ Mixtures: Mao et al. (2010)

- Pressure drop calculation for highly deviated wells
- Temperature up to 800°C and pressure up to 1000 bar
- Temperature up to 1000°C and pressure up to 500 bar

But is it really working?

Calibration of IDDP-1 Discharge Test Data

Calibration of Well IDDP-2 Injection Temperature Data

Well Output Forecast of Well IDDP-2

Supercritical Wellbore Model and Simulation

Wellbore Modelling Details

- Fluid assumed as pure water
- Heat transfer to formation at $t = 1x10^7$ s (~115 days)
- Casing roughness value = 0.5 mm

Formation Properties	Values
Density (kg/m³)	2700
Thermal conductivity (W/m-K)	2.56
Specific heat (J/kg-K)	800

Case 1: Calibration of Well IDDP-1 Discharge Test Data

- First IDDP well drilled in Iceland (2009)
- Target 4500m; TD at 2096m
- Did not reach supercritical reservoir.
- Heat-up for seven months

Five stages of discharge testing were done, which created a bore output curve.

Max MF = 50 kg/s; H = 3000 kJ/kg

IDDP-1 well casing profile drawing (as built) (Friðleifsson et al. 2015).

Case 1: Calibration of Well IDDP-1 Discharge Test Data

Case 2: Calibration of Well IDDP-2 Injection Temperature Data

IDDP-2 well casing profile drawing (as built) (Stefansson et al., 2017).

- Deepest well in Iceland (2017)
- Deepened RN-15 (2500m) to 4569mMD.
- Reached the supercritical reservoir
- Good permeability found from the well.

Injection temperature log on Jan 2017 used for calibration.

Case 2: Calibration of Well IDDP-2 Injection Temperature Data

Feedzone depth m	Injectivity Index L/s/bar	Productivity Index m ³	
2300	0.013	1.36x10 ⁻¹³	
3400	0.356	3.27x10 ⁻¹²	
4400	0.017	2.85x10 ⁻¹⁴	

Case 3: Well Output Forecast of Well IDDP-2

Feedzone Parameters

FZ Depth m	Temperature °C	Pressure bar	PI <i>m</i> ³
2300	282	145	1.36x10 ⁻¹³
3400	370	227	3.27x10 ⁻¹²
4400	508	305	2.85x10 ⁻¹⁴

Temperature profile from Hokstad and Tanavsuu-Milkevicienne (2017). Hydrostatic pressure from water level of 540 m (Saether, 2020) Productivity Index from Calibration

Case 3: Well Output Forecast of Well IDDP-2

Output Estimate Result

- WHP of 50 bar
 - MF = \sim 60 kg/s
 - $H = \sim 1800 \text{ kJ/kg}$
- WHP of 10 bar (assumed FO)
 - MF = 75 kg/s
 - H = 1780 kJ/kg

Where else did we use GFLOW?

- TVZ Supercritical Wellbore Modelling and Simulation
 - by Rivera, Carey, and Chambefort (2023)
 - Presented in 2023 Geothermal Rising Conference (GRC) 1-4 Oct
- Comparative Geothermal Well Performance Report
 - GNS Science Report 2023/01 (Rivera and Carey)
 - https://www.geothermalnextgeneration.com

Are we going with GFLOW?

Yields Good Calibration Results

Estimates Output Potential

Supercritical Capability

We GO with GFLOW

SCIENCE TE PŪ AO

Thank you very much Ngā mihi nui

Julius Rivera j.rivera@gns.cri.nz