

Supercritical Geothermal

Brian Carey
IAPWS Symposium Rotorua
30 November 2022

b.carey@gns.cri.nz

Kia ora koutou katoa Greetings and welcome

Assisting Today at the Symposium

- Bruce Mountain
- Peter Rendel
- John Burnell
- Warwick Kissling
- Julius Rivera
- Others have sent video presentations

Some of the places we are talking about today

Where and What is this

- Geothermal deeper down in the Taupō Volcanic Zone
 - 4 to 10 km
- Looking for Temperatures > 400 C
 - Where the rocks are becoming more ductile
 - Closer to where they are mushy
- Are these opportunities for:
 - Expansion of existing geothermal operations
 - Accessing entirely new resources
 - More efficient heat to work transformation

And other locations

- 30 plus volcanoes on the Kermadec Arc
- Ngawha

In situ fluid in the supercritical / ultra hot state

- Scientific Research
- MBIE Endeavour Funded research
 - Contract C05X1904
- 5 year Programme
 - Completion October 2024
- Published outputs along the way
 - <u>www.geothermalnextgeneration.com</u>
 - Updates tab
 - Knowledge tab

- Programme lead
- Isabelle Chambefort
- i.chambefort@gns.cri.nz

Meet dur Science Team

INCLUDES STUDENT THESIS WORK AT MASTERS AND PHD LEVEL

EXPLORE

Geophysics and geology

Understanding the role of buried structures

Defining targets for exploratory drilling

Explore Craig Miller

Rocks loose magnetic properties at ~580 °C

Magnetotellurics

Ted Bertrand

Magnetotellurics

Uses natural magnetic and electric signals

Seismic Attenuation

Stephen Bannister

Seismic Attenuation

Solid

UNDERSTAND

Geochemistry

Understanding the interactions between fluids and rock at high temperature and pressure

Develop fundamental species relationships

Model geochemical reactions

Effect of reinjection into supercritical conditions

Bruce Mountain

- After lunch presentation
- Along with Peter Rendel

Geochemists will cover

- GNS Science experimental equipment for Supercritical conditions
- Fluid rock interaction experiments at Supercritical conditions
 - Basalt
 - Water, brine and seawater
- Quartz solubility experiments
 - 375 600 °C and 200 300 bar

INTEGRATE

Integrate

- Integration of Activities
- Developing a strategic approach to NZ's ultra-hot geothermal
- Communication
 - Stakeholder Engagement
 - International Engagement
- Regulatory Planning Aspects
 - Participating in NZ Resource Management Reform
 - Consenting requirements for exploratory drilling
- National Supercritical Inventory and some modelling talks this afternoon
 - Chris Bromley, John Burnell, Warwick Kissling and Julius Rivera.
- Preparatory and pre-planning work for drilling a deep exploratory well
 - Well prognoses for two wells
 - Some Preliminary Well design

Communication

• GNG Web site

- Social Media Connections
 - Facebook

• LinkedIn

International

GNG International Advisory Group

- Strong connections with IEA Geothermal
- Deep Roots of Geothermal Systems Working Group 12
 - Chris Bromley will introduce more on this after the afternoon break.

NZ Regulatory Planning

- Focus is
 - Seeking to ensure NZ's SC opportunity can be accessed at the right time
- Reports
 - Overview
 - Consents required for a 6 km exploratory well (in prep)
- Papers
 - NZGW 2020, 2022
 - WGC 2023

GNS Preparatory - 6 km Exploratory Well

- GNS has prepared two 6 km well prognoses
 - One temperature profile shown
- Access the report and a 2021 presentation video

6 km Deep Well - accessing > 400 C

- Taupō Volcanic Zone Geology
 - 2000 3000 m of volcanic sequence
 - Metasedimentary beneath
- Fluid Geochemistry
 - Likely less mineralised than currently encountered at lower temperatures (<340C)
 - Species solubility changes with Phase change
 - Chemistry and phase change issues important to understand for plant longevity and process reliability
- Reservoir Engineering
 - A range of challenges
 - Temperatures and pressures require tool development

Surface Technology

- Higher temperatures open the opportunity to have more efficient processes
 - What fluid state is likely at the surface?
 - Presentation later in the day Julius Rivera
- How to make use of the fluids once produced?
 - Fluid chemistry will be instrumental in process choices
 - Oxygen is not expected to be present in the native fluids
 - And what species are will be better understood from the exploratory / testing activity.
 - Higher operating temperature binary plant?
 - What sort of pre-processing might be required?
 - Talk later today

Next steps - Exploratory Drilling

- A 6km well to be drilled by 2032?
- Research and studies
 - Geoscience
 - What might be useful ahead of actually accessing ultrahot geothermal fluids?
 - More engineering is needed
 - Location identification
 - Land Access
 - Consents to facilitate drilling
- How to finance
 - Consortium ?

But what is the real driver

. . .

- Tectonic and Volcanic Activity
- Geoff Kilgour GNS Volcanologist
- Presentation on Drivers of geothermal systems in New Zealand

EXPLORE

Geophysics and geology

Understanding the role of buried structures

Defining targets for exploratory drilling

Explore Craig Miller

Presentation Pdf

Magnetotellurics

Ted Bertrand

Seismic Attenuation

Stephen Bannister

Concludes – Session 1

