What might an NZ TVZ Supercritical Well Produce

Julius Rivera – Geothermal Reservoir Engineer

- 8 years as Reservoir Engineer in the Philippines
- Specialist Wellbore Modelling, Reservoir Evaluation, and Resource Management
- Geothermal Engineering and Production Analysis
- Lead the Well Integrity and Risk Management of Geothermal Fields

Supercritical Fluid Production for NZ - Taupo Volcanic Zone

Conventional Wells

- 2-3 km deep
- ~280°C temperature
 - NZ hottest well 337 °C
- Liquid / steam reservoirs

Supercritical Wells

- More than 5 km deep
- Temperature of more than 400°C
- Reservoir pressure of more than 221 bar
- Supercritical fluid in the reservoir

Exergy and Thermal Power

Exergetic Power (MW_{ex}) – open geothermal system (DiPippo, 2016)

$$\widehat{W} = \dot{m} \times [h - h_o - T_o \times (s - s_o)]$$

- Maximum available work output independent of any power cycle
- Use to identify wellhead conditions for optimum theoretical work output

Thermal power (MW_{th}) – mass flow * specific enthalpy

$$q = \dot{m} \times h$$

Icelandic Supercritical Outputs - 2003

- 2003 Icelandic Modelling
 - Conventional steam well: 5 MWe
 - Exergetic Power of 10 MW_{ex}
 - Well producing from supercritical conditions: 48 MWe
 - Exergetic Power of 80 MW_{ex}
- This captured interest that SC well is
 - producing 10 times output of a conventional geothermal well
 - providing 8 times exergetic power
- But what is relevant here in the TVZ

Icelandic Well Model and NZ Sub-Critical Well Comparison

Icelandic modelled SC well equivalent potential to a larger NZ conventional well or about 2.5x the "average" or 4x the median.

TVZ Wellbore Modelling

Wellbore Modelling is done to

- Estimate potential output
- Characterise Fluid Flow

Wellbore Simulation Details

- TVZ Bulk Formation Properties
- Heat Transfer to Formation at $t = 1x10^7$ s
- Casing roughness value = 0.5mm
- Simulator is Gflow
 - Assumed as pure water

TVZ Wellbore Modelling

Feed Parameters

- Hydrostatic pressure at the feed zone
- Temperature (°C): 450, 500, 600
- Depth (m): 4500, 5000, 6000
- Productivity (m³): 1x10⁻¹¹, 1x10⁻¹², 1x10⁻¹³

Well Model – Results and Discussion

- Temperature = 500°C
- Depth = 6000m
- Productivity at different order of magnitude
 - PI-1 = $1x10^{-11}$; PI-2 = $1x10^{-12}$; PI-3 = $1x10^{-13}$

Optimum Operating Wellhead Pressure from Exergetic Power

Wellhead Pressure

- Optimum: 50-120 bar
- Maximum: ~200-260 bar

Well output for 500°C reservoir temperature at 6000m depth

Optimum Operating Wellhead Pressure from Thermal Power

Wellhead Pressure

- Optimum at low WHP
- Maximum: ~ 200-260 bar

Well output for 500°C reservoir temperature at 6000m depth

Wellbore Fluid Velocity Concerns

Well output for 500°C reservoir temperature at 6000m depth

Fluid Velocity

- Exponential increase at low wellhead pressures
- Issue on material erosion and uncontrolled vibration
- Likely to be an operational constraint

Mass flows and temperatures at the surface

Mass Flows

10-70 kg/s at optimum WHP

Temperature

275-375°C at optimum WHP

In summary, what do we get from a 500°C well at 6000m?

- The optimum well operating conditions are
 - Pressures 50 to 120 bar
 - Temperatures 275 to 375 °C
- Supercritical fluid unlikely to produce at the surface
 - Would require very high wellhead pressures
 - Off the optimum exergetic or thermal power
 - Steep part of the well curve unstable operation
- Transition from supercritical to superheated occurs in the well.
- Likely TVZ will be producing ultra-hot geothermal at the surface.

And to round it out...

Report in Preparation

- Comparative Geothermal Well Performance Supercritical and Sub-Critical
- Published early 2023 GNS Science Report 2023/01

GNS SCIENCE TE PŪ AO

Thank you

Questions for now