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REVIEWS
Edited by Darren Glass

Department of Mathematics, Gettysburg College, Gettysburg, PA 17325

Visual Differential Geometry and Forms: A Mathematical Drama in Five Acts. By Tristan
Needham, Princeton University Press, Princeton, NJ, 2021. 584 pp., ISBN 978-0691203706,
$45.00.

Reviewed by Clayton Shonkwiler

A reductionist and incomplete summary of Visual Differential Geometry and
Forms. Tristan Needham’s goal is to give a natural and intuitive proof of Gauss’s The-
orema Egregium. The usual proof of this result is infamously inscrutable and depends
on apparently miraculous cancellations, making this a noble and ambitious goal, in
which Needham largely succeeds. As the title suggests, the book is structured in five
Acts, each comprised of a number of (mostly pretty short) Chapters: the first four Acts
are devoted to the Differential Geometry part of the title, and the fifth to Forms.

To give a bit more background, the Theorema Egregium says that the Gauss cur-
vature of a surface is an intrinsic quantity; that is, it depends only on the intrinsic
geometry of the surface, and not on the particulars of how the surface is placed into
3-dimensional space (or, indeed, if it is placed in space at all). The distinction between
intrinsic and extrinsic geometry is subtle and can appear somewhat artificial upon first
encounter.

In short, intrinsic geometry is that which is detectable by hypothetical two-
dimensional beings living within the surface and able to measure distances, angles, etc.
within it, but with no knowledge of anything which might or might not exist outside
the surface itself. Though we are not quite two-dimensional, this is very close to most
of our lived experience with the geometry of the Earth. Think about sailing straight
across a stretch of ocean or walking straight across a large salt flat: if you follow a path
in which you turn neither left nor right, you’re traversing an arc of a great circle, not a
straight line in space. This is a consequence of the curvature of the Earth, which is easy
to see extrinsically (most obviously from satellite photographs, but also from obser-
vation of the sun and stars), but actually is detectable from a purely two-dimensional
perspective. For example, if you staked out all the points at some distance r from a
central point and then measured the circumference of the resulting circle, you would
get1 2πR sin

(
r

R

)
, where R ≈ 6371 km is the radius of the Earth. This is less than the

expected 2πr you would get in a plane, though the Taylor expansion of sine shows
they agree to second order:

2πR sin
( r

R

)
= 2πr

(
1 − r2

6R2
+ O(r4)

)
.

Alternatively, if you form a triangle on the surface of the Earth with straight (i.e.,
arcs of great circles) sides, the sum of the interior angles of the triangle will turn out
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1Assuming a perfectly spherical Earth.
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to be π + A

R2 , where A is the area of the triangle. In both cases, the correction 1
R2

that comes up is precisely the Gauss curvature of the sphere. Indeed, after taking the
limit as small triangles shrink down to a point, this quantity is essentially Needham’s
preferred definition of Gauss curvature.

When defined in this way, Gauss curvature is manifestly intrinsic. It doesn’t matter
whether we are actually forming circles and triangles on the western hemisphere of
Earth or on the western hemisphere of a gigantic table tennis ball that someone has cut
in half and then squeezed along the prime meridian, causing the ball to flex in space:
flexing the ball does not change distances within the ball (though it certainly does
change extrinsic distances in 3-space). In one sense, then, the Theorema Egregium has
become a triviality.

Of course, this really just shifts the burden: Gauss curvature is usually defined
extrinsically, so the challenge becomes to show that the intrinsic definition is equiva-
lent to the usual one, which is the average curvature of curves formed by slicing the
surface in space with planes containing the surface normal.

The standard proof that the intrinsic and extrinsic curvatures are the same is essen-
tially that given by Gauss, which Needham argues was not how Gauss arrived at the
result, but rather the argument which he thought would be most incontrovertible, since
it is just a long calculation. But “convincing to the leading mathematicians of 1827”
and “good for modern learners” are rather different categories,2 and Needham has done
quite a remarkable job of proving Gauss’s theorem in a way that provides intuition and
geometric insight rather than mere logical rigor. He also manages to more broadly con-
textualize the result and connect it to other fundamental results and ideas, including
the Gauss–Bonnet theorem, index theory, Morse theory, and parallel transport.

At this point let me stop and be explicit about what I think is particularly valuable
about this book: the main story is about a very classical subject (surfaces in space) and
pitched to an undergraduate audience, but presented in a way that broadly reflects
how modern differential geometers think about these ideas. Of course, one can
make elementary material completely inscrutable using sufficiently advanced machin-
ery,3 so equally important is Needham’s remarkable ability to refine these ideas to their
simple, intuitive cores and to visualize anything and everything, be it with his painstak-
ingly clear diagrams or his demonstrations with bananas, summer squash, durians, and
many other fruits and vegetables.

An aside on the fruit and vegetable constructions. Even apart from their clear
utility in giving the reader hands-on experience with the material, well beyond the
inflatable sphere and plastic donut demonstrations that many of us use when teaching
differential geometry classes, they are often quite brilliant in their own right. I would
point in particular to Section 22.3, entitled “Potato-Peeler Transport,” which demon-
strates how to parallel transport a vector along a curve on a surface. See Figure 1 for
a demonstration; in words, draw the curve on your fruit or vegetable (Needham uses a
pomelo, I’m using a grapefruit) and tape a toothpick to the starting point to indicate the
initial vector, then use a potato peeler to remove a narrow strip of rind along the curve
(including the toothpick), lay it flat on the table (where it won’t be straight unless the
initial curve was a geodesic), tape toothpicks along the curve that are parallel (in the
plane) to the original one, and then lay the strip back on the surface: the toothpicks
exactly indicate the parallel transport of the vector along the curve! While Needham

2As I write these words, I am looking at a copy of do Carmo’s Differential Geometry of Curves and Sur-
faces [4] with a broken spine—the result of my throwing it across the room almost two decades ago in sheer
frustration at the section in which the Theorema Egregium is proved.

3I will gesture here in the direction of Linderholm’s Mathematics Made Difficult [12], though with the
warning that some of the fictional vignettes are regrettable.
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found an analogous explanation in Levi-Civita’s treatise [11, p. 102], the demonstra-
tion with fruit, potato peeler, and toothpicks is rather more effective than Levi-Civita’s
un-illustrated “We can now take for our definition of surface parallelism on σ along T

the parallelism which we have associated with the developable σT .”

Figure 1. Potato-peeler parallel transport.

So what is the big deal about intrinsic versus extrinsic geometry? Broadly speaking,
there are many spaces of interest, both mathematically and as configuration spaces for
physical systems, in which we are interested in geometric features like curvature but
do not have access to extrinsic measurements. Two examples which Needham explores
in some detail are hyperbolic geometry and general relativity.

The hyperbolic plane was the first generally accepted model of a non-Euclidean
geometry, meaning it satisfies the first four of Euclid’s axioms but not the parallel pos-
tulate. Since Euclidean geometry is complete and self-contained, any proposed alterna-
tive also needs to be, and so cannot depend on its relationship to some larger space that
contains it.4 Chapter 5 (“The Pseudosphere and the Hyperbolic Plane”) is wonderful,
building up from hand-built models of the pseudosphere to Beltrami’s construction of
the upper half plane model (including, rather delightfully, using Snell’s Law to deter-
mine its geodesics) to the disk model and Escher’s Circle Limit I.

4Indeed, spherical geometry is now recognized as a classic non-Euclidean geometry, but seems not to have
been seriously considered as such prior to the 19th century because the sphere’s geometry was apparently
induced by the Euclidean 3-space in which it sat. It was only the Theorema Egregium and related results which
showed that spherical geometry can be self-contained.
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General relativity explains gravity as curvature of spacetime. Because we live
inside the universe, we can’t understand or quantify any extrinsic geometry it might
have. Therefore, in order to have any predictive value this curvature must be something
we can measure intrinsically. As a student of Penrose and a disciple of Misner, Thorne,
and Wheeler’s Gravitation [13], relativity understandably looms large for Needham,
and indeed the statement and explanation of Einstein’s field equation serves as the cli-
max of Act IV of the book. To get there requires forays into general n-dimensional
manifolds, the Riemann curvature tensor, and much else that would typically appear
nowhere in an undergraduate differential geometry book, but certainly builds upon the
foundations established in studying the geometry of surfaces. While this inevitably
involves some compromises, every step along the way is grounded in physical intu-
ition5 and visual examples, so the broad narrative arc is compelling and convincing
(though certainly quite challenging!).

There are many possible directions one could go in pursuing more advanced topics
in differential geometry, but I applaud Needham’s choice to focus on what he’s pas-
sionate about rather than trying for an impossible completeness. And his insistence on
actually trying to explain relativity, rather than merely hand-waving in its direction as
a motivation for studying curvature, parallel transport, and all the rest, seems inextri-
cably tied to his boundless enthusiasm and expositional confidence, both of which are
evident throughout. His enthusiasm, in particular, is quite infectious, and I would hope
it would be effective in drawing in new learners.

That being said, I do think Needham’s passion and confidence led him a bit astray
in Act V, which develops the theory of differential forms, including Maxwell’s equa-
tions, Cartan’s moving frames, and curvature forms, concluding with the curvature of
the Schwarzschild black hole. While ending with black holes connects this Act with
what precedes it, overall it feels somewhat disconnected, especially since it is much
less visual than the first four Acts. The move away from visual explanations reflects
the fact that the expository demands of this material are somewhat different than in the
rest of the book. One example where the seams show: Needham’s intuitive and basi-
cally implicit definition of tangent vectors works for the discussion of the Theorema
Egregium, general relativity, etc., but struggles to support the cognitive load of dif-
ferential forms. Differential forms are quite reasonably defined as (special) functions
with vector inputs, but with no explicitly-stated intrinsic definition of the tangent space
I think new learners would be hard-pressed to articulate what, exactly, the domains of
these functions actually are.

Is this book suitable for use in the classroom? Not having taught from it, I can’t say
for sure, and I am mindful of Needham’s words from the Prologue:

I have made no attempt to write this book as a classroom textbook. While I hope that some
brave souls may nevertheless choose to use it for that purpose—as some previously did with
[Visual Complex Analysis]—my primary goal has been to communicate a majestic and pow-
erful subject to the reader as honestly and as lucidly as I am able, regardless of whether that
reader is a tender neophyte, or a hardened expert.

Nonetheless, I think this book could form a good foundation for either a course on
non-Euclidean geometry or an undergraduate differential geometry course. For non-
Euclidean geometry, I would focus mostly on Acts I & II, maybe also with some
selections (or at least inspiration) from Chapters 14 (polyhedral Gauss–Bonnet) and
22 (parallel transport). For undergraduate differential geometry, I think it would be
just about possible to cover Chapters 1–17, 21–25, and 27 in a (busy) semester. In both

5I never expected to see an explanation of neap tides in a differential geometry book, but now I have.
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cases, there is much else for students to explore (including alternative proofs of the
Gauss–Bonnet theorem, relativity, and differential forms) either in final projects or on
their own. The fact that there is so much more to explore in the book is, to my taste, a
virtue. As Needham so eloquently puts it, “Great mathematical ideas not only put past
mysteries to rest, they also reveal new ones: tunnels at the end of the light!” [p. 65].

In case it wasn’t clear from the title, this book is very definitely a sibling to Need-
ham’s previous book, Visual Complex Analysis [14] (VCA). As in VCA, many argu-
ments are based on a “Newtonian form of geometric reasoning” [p. 33] making liberal
use of ultimate equality: two quantities A and B depending on a parameter ε are said
to be ultimately equal, denoted A � B, if limε↘0

A

B
= 1. For those familiar with VCA,

this is presumably either appealing or off-putting. I found this style to be quite effec-
tive, developing much better intuition than other approaches to this material, but the
arguments do depend on the reader having a very good handle on Euclidean and spher-
ical geometry, which may pose a teaching challenge for those looking to use this book
in the classroom.

I recently re-read Frank Farris’ review of VCA [5], and many of his comments apply
equally well here.6 For example, he lauds VCA as a book in which “we have not only
the clarity of the facts but the helpful voice of the author. [. . .] This is a book in which
the author has been willing to make himself available as our teacher. His own voice
enters in a rather charming way.” Farris concludes with the hope that VCA will “inspire
other books in which the voice of the author is vividly present to teach and explain.”

The present book obviously falls into this tradition, but I think we have actually
seen a flourishing of mathematical writing with a strong authorial voice in the 25 years
since VCA was published. The near-infinite capacity of web servers and Amazon
warehouses, coupled with the ease of self-publishing and publishers’ perpetual pursuit
of the long tail of demand, probably has a lot to do with that, but VCA deserves credit
as well. Standout examples at the undergraduate level include: Nathan Carter’s Visual
Group Theory [3], which is primarily focused on visualization and is much more inter-
ested in helping the reader to get to know groups very concretely than in developing
an abstract, formal theory; Benedict Gross, Joe Harris, and Emily Riehl’s Fat Chance:
Probability from 0 to 1 [9], framed more as an introduction to a foreign language
than a traditional math book and filled with asides that expose the artifices inherent in
mathematical writing; and Robert Ghrist’s calculus books and videos [7, 8], which are
absolutely packed with distinctive, detailed illustrations (including lots of visual gags)
and exude a practitioner’s enthusiasm for material sometimes considered standard and
boring. I would also briefly point to graduate texts by Bradley, Bryson, and Terilla [2]
(a categorical approach to point-set topology!), Gallier and Quaintance [6] (a compu-
tational perspective on differential and Riemannian geometry!), and Vakil [15] (and
its companion picture book(!) on spectral sequences [16]). The Ph.D. dissertations of
Tai-Danae Bradley [1] and Piper H [10] also deserve to be mentioned here for telling
compelling and engaging (but also mathematically rigorous!) stories.

As previously mentioned, what seems particularly special to me about Needham’s
book is not just the author’s unique voice or the visual presentation of the material, but
the fact that it conveys a faithful sense of how (many) research mathematicians actu-
ally think about differential geometry. So, while I echo Farris’ call for more books with
a “vividly present” (rather than omniscient and disembodied) authorial voice, I also
hope that this book will inspire others at all levels that embrace modern practitioners’
modes of thinking about their subject.

6This review is also notable because it seems to be where domain coloring of complex functions was first
introduced.
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