
 1 

 
  

 
 

Configuring automation solutions 
with Knowledge graphs 

 
Context 

Adopting IOT and industrial automation requires in most cases designing and assembling specialised 
products and processes from scratch tailored for the specific use case and meeting the constraints of 
the industry. 

Festo, a worldwide leader in automation and a world market leader in technical training and 
development, with a turnover greater than 3 billion euros, has a catalogue of over 30,000 products in 
thousands of variants. Festo’s customer use these products as components to realize their pneumatic 
and electric automation solutions. 

Festo might be tasked to “deliver the right components which can be assembled into an assembly 
solution which has a velocity of 1.2 m/s and a max payload of 2 kg” and will solve the problem by 
searching through its catalogue for components which are compatible with each other and can be 
composed together to build the assembly solution.  

The number of options to choose from explodes combinatorically with the number of components 
which means for example, that a hypothetical solution involving 5 components, each available in 10 
versions, would result in 100,000 possible configurations to choose from. 

This case study will show how Festo was able to completely transform the related internal data 
processes to reduce the time to provide satisfactory specifications from hours to seconds using 
RDFox. Oxford Semantic Technologies' partner Derivo implemented RDFox in Festo’s Semantic 
Platform. 

Configuring automation solutions 
The problem 
Identifying components products which can be configured into a automation solution such as a drive 
train, requires that they: 

• Physically fit together  
• Have consistent electrical characteristics 

Secondly, a customer might provide additional constraints related to their budgets, environment 
specifications or protection classes of their industry. 

Each component has an interface code to characterise these compatibilities. The process of testing 
for compatible components previously involved joining and looping through interface codes managed 



 2 

by multiple relational databases. This process was extremely time and compute intensive because the 
diversity of the components meant that there was no universal schema. 

The solution 
Derivo proposed an ontological approach by creating a knowledge graph of the solution’s components 
using RDFox.  

A knowledge graph is composed of a graph database to store the data and a reasoning layer to 
interpret and manipulate it. Relational databases store data in structured records whereas graph 
databases store data points as nodes which are connected with edges if they share some form of 
relationship. Data stored in a graph can be accessed with a query which will “hop” along the edges to 
find the requested nodes. 

Reasoning is the process of materialising rules which apply to the data. Materialising a rule means 
adding new nodes and edges to the graph when it is satisfied. For example, if a compatibility rule is 
successful between prudcts, a “compatible with” edge will be established between them. Rules can 
also encode component families and hierarchies which enables RDFox to “know” how to build a 
rotation solution and with which components. 

A simplified illustration of the types of hierarchies which were encoded is provided in the following 
graphic. 

 
Compatibility edges are then materialised in the graph by the rules when components are compatible 
with each other. The result is a compatibility graph that links components which can be assembled 
together to form specific assembly solutions. A simplified illustration of a compatibility graph for a 
rotation solution is provided bellow. 

 



 3 

When a query is formulated to find the compatible components which can be assembled into a 
rotation solution it will only have to search for the rotation components form the knowledge graph 
with materialised compatibility edges in between. 

Without rules, the compatibility constraints would have been formulated in the query. This would 
mean that the query would have to find each rotation solution path and then test for compatibility 
which is significantly slower and less efficient than going straight to the compatible paths.  

Apart from the obvious speed, simplicity and maintainability benefits of RDFox, Festo and Derivo 
particularly appreciated its flexibility because their customers’ requirements are constantly evolving 
and it is possible to effortlessly add new rules to define the new budget, environmental and domain 
specific constraints imposed by the customers. 

Conclusion 
RDFox was able to bring Festo’s querying time from hours to seconds by leveraging its powerful 
reasoning engine. Not only did the rules make it easier to model the problem’s constraints, but they 
materialised the compatibilities before query time which helped deliver significant performance 
improvements. This approach and RDFox’s flexibility also mean that it is easier for Derivo and Festo 
to maintain and add new rules to reflect their customers’ constantly changing requirements. 

This case study has highlighted RDFox’s capabilities for configuration type problems. It has also 
been successfully been applied to unlock performance breakthroughs in other applications including 
fraud detection, risk and compliance, chatbots and recommender engines. For more information, 
please contact info@oxfordsemantic.tech 

 


