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1 Introduction 

FAO in partnership with hydrosolutions GmbH have developed a web-based solution for country-scale 

crop monitoring using earth observations to support National Statistics Offices (NSO’s) in the 

production of official statistics using alternative data sources. The tool is called EOSTAT CropMapper, 

and has been first deployed and tested in Afghanistan in collaboration with the National Statistic and 

Information Authority (NSIA). The present document provides an overview of its functionalities, 

relevant workflows and technical background. 

The aim of developing the EOSTAT CropMapper is to facilitate the use of the Earth Observations (EO) 

data and  geospatial technology for improved agriculture monitoring and production of official 

agricultural statistics.   

The unprecedented availability of free and open EO data stemming from the Sentinel fleet and the 

Landsat 8 and the long-term archives, and accessibility to free and low cost cloud computing provide 

the ideal conditions implementing scalable solutions that can be used in operational contexts. 

However, the uptake of EO data in NSO’s is still limited, especially in developing countries. Only few 

NSO’s globally are using such solution (e.g., Canada, Poland). The main reason for this is the common 

lack in countries of sufficient and high quality of in-situ data which is required to provide ground truth 

information for the training of the classification algorithms and for validation of crop maps. 

In this context FAO is providing a solution to solve the issue by developing a system that is capable to 

map the main crop types in a given country or region, with a minimum mapping Unit of 0,01 ha. The 

main crop types are considered per region, which are defined by the NSO and in general are covering 

each a minimum area of 5 % of the annual cropland in the region and are representing a cumulated 

area higher than 75 % of the latter. 

The solution provided by FAO can cope with the different availability of in-situ data according to three 

different scenarios (Figure 1), as listed below: 

• Scenario 1: a large and accurate in-situ data is available. 

The system relies on a traditional Random Forest classifier. 

 

• Scenario 2: a limited amount of in-situ data is available. 

The system relies on the use of a Dynamic Time Warping (DTW) algorithm to classify pixels 

into crop types based on only a few reference samples per crop type that represent the 

characteristic phenologies . 

 

• Scenario 3: no in-situ data is available. 

The system relies on K-means clustering to map clusters of crop pixels. Subsequently the user 

is requested to associate each cluster to a crop label based on his expert knowledge. 

 

The EOSTAT CropMapper allows to produce crop type maps bi-annually (summer harvest and/or 

autumn harvest crops). The tool has been implemented as a Google Earth Engine (GEE) app and relies 

on free Sentinel-1 and Sentinel-2 satellite imagery, that enable the generation of crop maps at a spatial 

resolution of 10 meters.   
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The tool assists the operator through a graphical user interface, offering access to spectral signatures 

and high-resolution images to steer his decisions. The tool is currently configured to operate in 

Afghanistan and can be re-configured to serve any other geographic areas. 

 

Figure 1. Sequence diagram of the three scenarios for crop map generation. The scenarios depend on the availability of crop 
type samples from the crop signature library. 

 

2 EOSTAT CropMapper 

The EOSTAT CropMapper suite is composed of two tools and one Crop Library 

• the Administrator tool for trusted users to perform back-end tasks  

• the End-user tool  for viewing, analyzing, and downloading the maps.  

• the crop signatures library 

2.1 Administrator Tool 

https://ocsgeospatial.users.earthengine.app/view/eostat-afghanistan-admin 

The main purpose of the EOSTAT CropMapper administrator tool is the management of the built-in 

library of crop signatures. Trusted users can access the tool with their GEE login. New in-situ samples 

can be uploaded as point shapefiles to a dedicated cloud asset folder in GEE. The tool can then be 

used for the following main tasks: 

1. Integration of new in-situ samples into the built-in library of crop signatures.  

2. Validation of new in-situ samples: verification based on comparison with typical NDVI 

signatures of a given crop and based on up-to-date Sentinel-2 and Sentinel-1 imagery. 

3. Definition and addition of new samples directly in the tool. 

4. Modification of existing sample attributes and their coordinates. 

https://ocsgeospatial.users.earthengine.app/view/eostat-afghanistan-admin
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5. Export of new crop maps with the selected library for selected spatial units (defined based on 

political boundaries and/or agro-ecological zones). Exported crop maps then become 

available for analysis in the front-end application. 

The administrator tool is available as a GEE-App for demonstration purposes (Figure 2. The link to the 

app is provided above). Note that no administrator tasks can be carried out with the GEE-App version 

of the tool. For the modification of assets in GEE or on GCS, login into the GEE console is required 

(https://code.earthengine.google.com/) and a dedicated GEE script needs to be shared with the 

administrator. However, no programming skills are required from administrators. The interface of the 

tool in the GEE console is identical to the interface in the demonstration app. 

 

Figure 2. Screenshot of the EOSTAT CropMapper Administrator Tool. 

2.2 Front-end Application 

https://ocsgeospatial.users.earthengine.app/view/eostat-afghanistan 

The front-end application is available to all users with access to the dedicated URL of the tool (the link 

to the demonstration version for Afghanistan is provided above). The main tasks that can be carried 

out with the tool are the following: 

• Visualization of crop maps, generated from different combinations of sensors (currently 

Sentinel-1 & Sentinel-2) and with two available methods (DTW and Random Forest).  

• Visualization of optical satellite imagery (Sentinel-2) 

• Calculation of crop statistics per selected area of interest 

• Downloading of crop maps to local drives 

• Classification accuracy assessment 

The front-end application has reading access to the library of crop signatures that was used for the 

generation of each crop map. This offers great flexibility with respect to the types of crops and the 

https://code.earthengine.google.com/
https://ocsgeospatial.users.earthengine.app/view/eostat-afghanistan
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total number of crop classes that can be displayed and analyzed. It will be automatically noted if the 

administrator uses samples of an additional crop for the generation of a crop map. An additional label 

will be added to the interface (lower-left corner, see Figure 3) and the corresponding cropping areas 

will be calculated (bar-plot and table under OUTPUTS, Figure 3). Moreover, the producers and Users 

classification accuracy are calculated for each individual crop for which validation data points are 

available. For this purpose, the administrator can modify the maximum number of samples per crop 

class that are used by the supervised classification algorithms. Any additional samples will then be 

automatically available for validation in the end-user tool. 

 

Figure 3. Screenshot of the EOSTAT CropMapper Front-end Application. 

2.3 Crop Library 

The core element of the EOSTAT CropMapper is the crop library. This contains the pheno-spectral 

characteristics of crops and is used as a reference by the Random Forest and DTW classifiers in 

Scenario 1 and 2 (Figure 1). Such characteristics are provided by the multitemporal optical and SAR EO 

data provided by various satellites (see Table 3). 

To generate labelled crop maps, it is recommended to gather at least five georeferenced samples per 

crop type, year, and agro-ecological zone available. Such a collection of spatial data points and their 

attributes (Table 1) needs to be provided by the user. To achieve high accuracy in crop type 

classification, it is of paramount importance that the in-situ data are gathered with very high 

geospatial accuracy and correct identification in the field.  

All management tasks related to this library of crop signatures can then be carried out within the 

administrator tool. Administrators are required to verify all uploaded in-situ samples in this tool by 

visually inspecting their location on optical satellite images and by comparing their NDVI signature to 

the average signature of a given class (see workflow depicted in Figure 4). Finally, the administrator 

tool is also used to trigger the generation of new crop maps when the crop library is ready. 

Administrators can choose among options to decide which EO data sources should be considered for 

crop map generation and can modify the time window used for the analysis. 



10 

 

In the context of the pilot project deployed in Afghanistan, the crop library has been built using the 

in-situ data provided by NSIA for wheat, maize and cotton.   

Table 1. Summary of attributes required for each in-situ sample. More details are provided in the EOSTAT CropMapper User 
Guide (FAO and Hydrosolutions Ltd., 2022). 

Attribute Description Attribute Type 

Crop Name Crop type class attribute String 

Year Year of observation Number 

Period Validity period of observation  Pre-defined string 

 

 

Figure 4. Sequence diagram for the constitution of a crop library. 

 

3 Technical Background 

3.1 App Architecture 

The tool is has been developed using a Google cloud technology stack as shown in the architecture 

diagram (Figure 5). Image processing and geo-spatial analysis tasks are carried out in Google Earth 

Engine (Gorelick et al., 2017). The two browser applications (front-end application and administrator 

tool) have been developed as Google Earth Engine Apps. They are connected to each other (and to 

the GEE remote sensing archive) via the GEE Javascript API. A Google Cloud Storage (GCS) account 

guarantees sufficient file storage capacity. The export of the crop maps to GCS is triggered via the 

administrator tool, while the front-end application accesses the stored maps for the purpose of 

visualization and further processing. The file size of individual crop maps can be larger than 100 MB, 

but GCS offers practically unlimited storage capacity. The crop library is directly saved as an asset on 

the FAO EOSTAT account on GEE. Both applications are connected with the crop library, but only the 

administrator tool has permission to execute modifications.  

Public access can be allowed to the front-end application because the app does not have permission 

to make changes to any assets saved on GEE or GCS. Full access to the administrator tool, however, 

should be restricted to trusted logged-in users. It is therefore necessary to run this browser application 

via the GEE Code Editor. 
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If commercial images (i.e., PlanetScope) are used for crop map generation (as it is the case for the Afghanistan example), 
these images are also saved on GCS. We use Google Compute Engine for the automated download of weekly PlanetScope 
mosaics (Figure 5). The purpose of each component of the app’s architecture is further summarized in  

 

Table 2. 

 

Figure 5. Architecture diagram of the EOSTAT CropMapper Afghanistan Application 
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Table 2. Description of each component of the app’s architecture. 

Component Type Purpose(s) 

Front-end 
Application 

Browser application - Visualizing crop maps based on user queries 

- Crop area calculations 

- Crop map download 

- Crop map classification accuracy assessment. 

Administrator 
Tool 

Browser application 
run via the GEE Code 
Editor 

- Crop library management 

- Generation of new crop maps 

Crop Library Database Storing information on in-situ samples that are 
required for the training of supervised classification 
algorithms (DTW and Random Forest) 

GEE Javascript 
API 

Application 
Programming 
Interface 

Software interface connecting the browser 
applications with Google Cloud Storage 

Google Cloud 
Storage 

Online file storage web 
service 

Storing and accessing data on Google Cloud Platform 
infrastructure 

Google Compute 
Engine 

Service component of 
Google Cloud Platform 

Run computationally expensive tasks on the Google 
infrastructure 

3.2 Sensors 

EOSTAT Cropmapper allows the user to use a combination of open and free EO data (optical and SAR) 

and of commercial products. The following (combination of) sensors are currently available for 

selection in the EOSTAT CropMapper Afghanistan tool:  

1. Sentinel-1 and Sentinel-2 

2. Sentinel-2 

3. Sentinel-1 and Planet 

The choice of sensors affects the resulting crop map spatial resolution (4.7 m if Planet data are used, 

10 m otherwise). Using only visible and near infrared remote sensing observations (Sentinel-2) instead 

of combining them with radar remote sensing data (Sentinel-1) decreases the processing time 

required for the generation of crop maps. Option 2 is therefore a suitable choice for running a 

relatively quick analysis. However, the fusion of optical and radar data remarkably improve the results 

of classification, according to most sources (Orynbaikyzy et al., 2019). The option that leads to the 

longest processing times is option 3 above (Sentinel-1 and Planet), but produces maps with the highest 

level of detail. Up to 24 hours are required to export a crop map for an area of approximately 30,000 

km2 in 4.7 meters resolution. This means that after triggering the export of the map in the 

administrator tool it takes up to 24 hours until the map becomes available in the end-user tool.  

Option 3 is currently only available for mapping summer harvest crops of the year 2021. PlanetScope 

data (optical images with a 4.7 m resolution) are partially available for Afghanistan due to an 

arrangement between Planet Labs and the Afghan National Statistic and Information Authority (NSIA). 

With Planet data crop maps of 4.7-meter spatial resolution can be generated. However, the 

file:///D:/Dropbox%20(hydrosolutions)/FAO%20AG%20STATS%20EO%20AFG/Manual/code.earthengine.google.com/
file:///D:/Dropbox%20(hydrosolutions)/FAO%20AG%20STATS%20EO%20AFG/Manual/code.earthengine.google.com/


13 

 

agreement with NSIA has ended with the Taliban take-over. For any time before January 2021 and 

after August 2021 no Planet imagery is available through the EOSTAT CropMapper Afghanistan.  

A multi-band approach is used for the crop type classification, which means that several bands and 

layers from each sensor are considered for training (‘Used Bands’ in Table 3)(Csillik et al., 2019)(Csillik 

et al., 2019)(Csillik et al., 2019) (Csillik et al., 2019). The normalized difference vegetation index (NDVI) 

expresses the differential reflection of green vegetation in the visible and near-infrared portions of 

the spectrum. NDVI is therefore calculated from the Red and NIR bands. It is used because of its well-

known power in identifying crop classes. 

Table 3. Summary of satellite sensors used by the EOSTAT CropMapper Afghanistan 

Sensor Type Bands 
(total) 

Used Bands Temporal 
Resolution 

Spatial Resolution 
(used bands) 

Sentinel-1 Radar VV and VH VV and VH One image 
every 6 days 

10 m 

Sentinel-2 Optical 13 spectral 
bands 

Green, Blue, SWIR1, 
SWIR2, NDVI 

One image 
every 5 days 

10 m 

Planet Optical 4 spectral 
bands 

Green, Blue, NDVI One image 
every 8 days 

4.7 m 

3.3 Agricultural Seasons and Image Preprocessing 

Fundamental for the use of EO data for crop type mapping is the knowledge of the crop calendar, as 

it is necessary to ensure that the satellite images used for the assessment are acquired during the 

appropriate time window.  

The period of assessment can be adjusted according to user needs. It is possible to either only map 

summer or autumn harvest crops, respectively, or to map both at the same time. The choice depends 

on the validity period of the available in-situ data (Table 1). For Afghanistan, the following validity 

periods are currently allowed: 

1. Summer harvest crop season 

2. Autumn harvest crop season 

3. Summer & Autumn harvest crop seasons 

In the administrator tool, the user can specify the validity period of the desired crop map and trigger 

the generation of the map if the corresponding in-situ samples are available. The agricultural season 

is then stored as an attribute of the map and can be queried in the front-end application. 

In Afghanistan, harvesting of the winter wheat and barley starts in May in the eastern part of the 

country and is completed as late as August in the mountainous areas1. The harvesting dates may shift 

from year to year due to meteorological factors. Users can therefore specify the main harvest month 

of summer or autumn harvest crops, respectively, prior to the generation of crop maps in the 

administrator tool. The algorithm will then automatically consider a time period of four months for 

 

1 https://www.fao.org/giews/countrybrief/country.jsp?code=AFG 

https://www.fao.org/giews/countrybrief/country.jsp?code=AFG
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training, whereas the main harvest month is the last month of this period. If summer and autumn 

harvest crops are mapped at the same time, the algorithm will automatically consider all months 

March to October, independently of the main harvest months. 

The remote sensing images are aggregated to temporal mosaics to reduce the computational burden 

of the crop map generation, and to generate a harmonized time series of temporal composites. Cloud 

coverage areas may still exist in mosaics. Missing data in mosaics are therefore filled by interpolating 

the values in time. All available imagery is aggregated into 8 time-steps (15-day intervals for mapping 

summer harvest or autumn harvest crops, respectively, and 30-day intervals for mapping both 

summer and autumn harvest at the same time). Aggregation is limited to 8 time-steps because further 

increasing the number of time-steps may lead to the exceedance of the user memory limits in GEE. 

3.4 Classification Algorithms 

The following three crop type classification algorithms are available in the tool: 

1. Time-constrained Dynamic Time Warping (DTW; Csillik et al., 2019). 

2. Random Forest supervised classification (Gorelick et al., 2017). 

3. Unsupervised classification based on harmonic regression (Wang et al., 2019). 

 

TIME-CONSTRAINED DYNAMIC TIME WARPING 

In Scenario 2, where sparse in-situ data is available, it is advisable to use DTW for a supervised 

classification. The DTW algorithm classifies every pixel with one of the available crop labels available 

in the crop signature library. The selection of the label is based on the highest similarity (or lowest 

dissimilarity) between a query pattern and available reference patterns (Figure 6). For each pixel, the 

time series of pheno-spectral characteristics from the EO pre-processed data (temporal mosaics) are 

compared to the time series at the locations of the labelled reference data. Computing the alignment 

between two sequences is done recursively using the DTW matrix (Figure 6). The algorithm then picks 

the smallest DTW dissimilarity value between the query pattern and the available reference patterns 

and attributes the corresponding reference crop label to the pixel. 

DTW classification has the main advantage that only a small number of training samples are required, 

as little as 3 samples per crop type according to Belgiu and Csillik (2018). This is a big advantage for 

regional and national crop type mapping, especially in countries which lack input training samples. A 

few clean reference samples that represent the characteristic temporal pattern of the crop type are 

already sufficient (Csillik et al., 2019). Of course, the positional accuracy and correctness of crop label 

of the training data is of paramount importance for DTW, as the algorithm is in fact very sensitive to 

errors in the training data. 

DTW is a time-flexible method for comparing two temporal patterns by considering their temporal 

distortions in their alignment (Figure 7). DTW was proven to achieve better results than the Euclidean 

distance measure for NDVI time series clustering  (Csillik et al., 2019; Zhang et al., 2014). This flexibility 

is desirable for crop mapping, to deal with the intra-class phenological discrepancies caused by 

different agricultural practices, environmental conditions, or by different weather conditions. This is 

beneficial also for regionally more distant comparisons, which may exhibit temporal shifts in growing 

patterns, while still belonging to the same crop type. 
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It is necessary to use time constraints for computing DTW in order to take into account the specific 

seasonality of different crops. For example, comparing an element of a sequence with all other 

elements of another sequence leads to erroneous results when aligning a winter crop with a summer 

crop. Applying time constraints on time warping increases the speed of processing, while providing 

meaningful results. A so-called time-constrained DTW implementation is therefore used in the EOSTAT 

CropMapper (Figure 8). The elements of two time series will be compared only if the date difference 

is smaller or equal to ω. We use a constraint period ω equal to 30 days, following the 

recommendations of Csillik et al. (2019). 

 

Figure 6. Computing the alignment between two sequences at hypothetical test areas (TA) TA1 andTA2. The vertical and 
horizontal values of the DTW matrix represent the date of an image. The alignment between two sequences is computed 
only for the yellow cells of the matrix, reducing the number of computations necessary (a maximum time delay, w, of 45 
days is used in this example). After computing the matrix from upper left to lower right, the last element of the matrix, 
m[S,T], is returned, as a measure of DTW dissimilarity between the two compared sequences. Image Copyright: Csillik et al., 
2019. 

 

Figure 7. An illustration of two approaches for comparing two time series from Csillik et al. (2019). While Euclidean distance 
is time-rigid (a), the dynamic time warping (DTW) is time-flexible (b) in dealing with possible time distortion between the 
sequences. 
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Figure 8. Workflow of time-constrained dynamic time warping (DTW) classifications (adapted from Csillik et al., 2019). 

RANDOM FOREST 

Random forest is an ensemble learning method for classification, that operates by constructing a 

multitude of decision trees based on available training data (Figure 9). In multi-band RF, the number 

of variables available for tree construction is n times i, where n is the number of bands used (Table 3) 

and i is the number of time seps. For classification, the output of the random forest is the class selected 

by most trees (majority voting). Using multiple deep decision trees, trained on different parts of the 

same training set, generates a classification model with a reduced risk of overfitting the training set. 

This generally increases the performance of the model, especially if a large training data set is 

available. The RF classifier has been extensively used to map land cover mapping and crop type 

mapping from Landsat images(Tatsumi et al., 2015), Sentinel 1 and 2 (Defourny et al., 2019; 

Orynbaikyzy et al., 2020), Sentinel -2 and the Gaofen-1 (GF-1, Chinese satellite data, (Fan et al., 2021). 

The main strength of the RF is that it copes well with collinearity, and is not affected by outliers, high 

dimensionality, and noisy features. Wang et al. (2019) confirm that random forests generalize well 

within regions where crop compositions and phenologies remain similar.  

  

Figure 9. Workflow of the Random Forest classification. 

The RF implementation in GEE is computationally very efficient and may be a better choice than DTW 

if the latter exceeds the user memory limits in GEE, but usually requires a larger number of training 

samples to reach the same classification accuracy (see Section 4 below). The most important 

parameter of the RF implementation in GEE is the number of decision trees to create, for which we 

use a value of 50 trees.  

UNSUPERVISED CLASSIFICATION 

Unsupervised classification can be an alternative if no in-situ samples are available at all. The approach 

uses harmonic regression for the pixel-wise approximation of optical remote sensing time series 

(Wang et al., 2019). The algorithm that is used for unsupervised classification is the k-means cluster 

analysis algorithm [48,49]. The algorithm is trained with 1000 pixels sampled randomly from within 
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the area of interest.  The harmonic regression coefficients of the randomly sampled points are used 

to cluster the pixels, i.e., to group pixels with similar coefficients into different clusters (Figure 10). 

Finally, all image pixels are partitioned into one of the resulting clusters. Crop labels are not provided 

automatically. The user is therefore requested to label the automatically identified clusters, which 

requires expert knowledge in interpreting characteristic NDVI signatures or familiarity with the 

situation on the ground. The major disadvantage of unsupervised classification is that crops are 

classified less consistently than by the supervised classification algorithms. The meteorological 

conditions, variable crop combinations or variable cropping calendars may affect the automatic 

clustering of pixels and therefore the classification accuracy. The applicability of unsupervised crop 

classification is therefore somewhat restricted to places with low crop diversity and uniform cropping 

calendars. 

 

Figure 10. Workflow of unsupervised classification based on X-means Clustering. 

 It should be noted that unsupervised classification is currently not available as a choice for exporting 

crop maps via the administrator tool. Instead, crop maps based on the unsupervised classification of 

pixels are generated on-the-fly in the front-end application. The display of the crop maps and the 

generation of crop statistics will therefore take more time than the pre-computed image visualization 

and processing. The processing time is reduced by only considering pixels for classification with a peak-

NDVI value greater or equal to 0.4. 

3.5 Upload, QA/QC and Selection of Training Data 

In-situ data are required to train the Random Forest and the Dynamic Time Warping algorithms to 

perform the supervised crop classification. The in-situ samples and their attributes (see Table 1) can 

be uploaded as point shapefiles to a dedicated cloud asset folder in GEE. Alternatively, it is also 

possible to geo-locate the samples and specify their attributes directly in the administrator tool. 

To achieve high accuracy in crop type classification, it is of paramount importance that the in-situ data 

are gathered with very high geospatial accuracy and correct identification in the field. The quality 

assurance and quality control (QA/QC) of in-situ samples is therefore an important task. QA/QC is 

required to assure that no attributes are missing and that the crop library does not contain errors. For 

example, errors may occur if the coordinates of the in-situ samples are uncertain. Such positional 

uncertainty may result in crop samples that in fact represent the spectral signature of a road next to 

the field where the in-situ sample was collected. Unfortunately, such errors happen relatively 

frequently, and it is therefore necessary that the user verifies each in-situ sample that is used for 

training in the administrator tool. The administrator tool plots the points on top of high-resolution 

satellite imagery, which allows for visual verification. Furthermore, the spectral signature of each point 
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can be displayed. It is therefore advised to train administrators how to interpret NDVI signatures prior 

to the verification of in-situ samples. 

In the administrator tool, users can select the number of samples per class that will be used for 

training. Training points are then sampled randomly within the available verified samples. For DTW 

classification it is recommended to not use more than 10 samples per class. The careful verification of 

only few samples will lead to better classification results than choosing more but less carefully checked 

training samples. Random forest classification, on the other hand, benefits from using as many 

samples as possible. For preventing the exceedance of the user memory limits in GEE, the maximum 

number of training samples per class is limited to 99 samples in the case of random forest. It is 

recommended to use a balanced number of samples per crop class for training. For example, if only 

20 samples of wheat are available, but 80 samples of cotton, the number of samples per class for 

training should be set to a value of 20 or lower. All verified samples that have not been used for 

training will be automatically available for validation once the corresponding crop map has been 

generated. 

CROP TYPE DISSIMILARITY SCORES 

The EOSTAT CropMapper Administrator Tool allows an automatic pre-screening of samples from 

individual crop classes based on Crop Type Dissimilarity Scores (CTDS). This option facilitates the 

identification of in-situ samples with wrong labels and/or wrong geo-tags. The pre-screening makes 

use of the DTW dissimilarity scores calculated between the signatures of individual samples and a 

reference signature. The reference pattern (Figure 6) is provided by the mean signature of all samples 

from a given crop type and area of interest (considering all Sentinel-2 bands and VIs listed in Table 3). 

Automatic pre-screening is therefore only a valid option for crop classes that are relatively 

homogeneous in their expected signature (unlike a class ‘Other crops’ for example). If this is the case, 

high dissimilarity scores between the reference pattern and individual samples indicate possible 

misclassifications.  

Figure 11 shows an example where a high CTDS value allows identifying an in-situ Maize sample that 

mistakenly points to built-up area next to the actual cropping area. A 10 m GPS horizontal positioning 

error results in in erroneously pinpointing a Maize sample into a built-up area. Consequently, if such 

a sample was used for training of the DTW, all built-up area pixels might end up being labelled as 

Maize. Figure 12 pinpoints to the location of the in-situ Maize sample with the lowest CTDS value in 

comparison to all other Maize samples in the same area of interest. Such samples with low CTDS values 

can be marked as ‘verified’ in the administrator tool and will thereafter be considered as a candidate 

for the training of the supervised classification algorithms. The user of the administrator tool has also 

the option to automatically mark as ‘verified’ all samples with a CTDS that is lower than the CTDS of 

50% of all samples from a given crop type and area of interest (Q50). 
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Figure 11. In-situ sample with the highest dissimilarity score for Maize in the AEZ Eastern Mountains and Foothills (red circle). 
The inset figure shows the NDVI signature of this location (black points and line) and the mean NDVI signature of all Maize 
samples in the AEZ (blue line). Print screens from the EOSTAT CropMapper Administrator Tool Afghanistan. 

  

Figure 12. In-situ sample with the lowest dissimilarity score for Maize in the AEZ Eastern Mountains and Foothills (green 
circle). The inset figure shows the NDVI signature of this location (black points and line) and the mean NDVI signature of all 
Maize samples in the AEZ (blue line). Print screens from the EOSTAT CropMapper Administrator Tool Afghanistan. 

3.6 Use of Masks 

In the current version of the EOSTAT CropMapper Afghanistan, all pixels within a given area of interest 

are attributed a class label, except for pixels at elevations above 3600m or slopes steeper than 30°. 
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Furthermore, we use the Copernicus Global Land Cover Layers2 to mask out built-up areas ('urban-

coverfraction' greater than 20%) or permanent water ('water-permanent-coverfraction' greater than 

20%). An explicit crop mask is not used, because up-to-date crop masks are difficult to obtain. This 

means that the training data must also include samples of fallow and barren land. If natural vegetation 

(e.g., in wetlands) is present within an area of interest, this should also be reflected in the training 

data set. 

3.7 Stratification 

The territory of Afghanistan has been divided into strata, by intersecting the administrative 

boundaries (Provinces) with the agro-ecological zones (AEZ). Users can either select whole agro-

ecological zones (AEZ), or the units resulting from the intersection of the AEZ with the province 

boundaries (hereafter called ‘sub-units’, Figure 13).   

The purpose of stratification using agroecological zones, and more in general of stratification, is to 

reduce the variability in the training dataset. The variability of available in-situ data in one area will 

more likely reflect the variability of the phenological spectral characteristics of the pixels in the same 

area. Using such representative training data increases the predictive power of the model. Another 

advantage of working with smaller units is that the processing time for the generation of crop maps is 

shorter. In Afghanistan, the reference library is built per AEZ. Therefore, if users are generating crop 

maps for sub-units of AEZs, they have the possibility to use in-situ data located outside a given sub-

unit for training, if such samples are located within the same AEZ. 

 

Figure 13. Provinces and agro-ecological zones (AEZ) of Afghanistan. The AEZ are shown as colored units and are labelled. 
The province boundaries are shown as thick black lines. The smallest spatial units available for selection in the EOSTAT 
CropMapper Afghanistan are the units resulting from the intersection of the AEZ with the province boundaries. 

 

2 CGLS-LC100 collection 3 

https://zenodo.org/record/4723924#.YKS0dS8RpB0
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4 Accuracy Assessment 

This section presents an accuracy assessment of the crop type classification based on a dataset of in-

situ data available for Kashkadarya Region in Uzbekistan (Figure 14). Located less than 150 km north 

of the Afghan border, Kashkadarya Region is climatologically and topographically similar to 

Afghanistan. The reference dataset (Remelgado et al., 2020) has been published in Scientific Data, 

which is a peer-reviewed, open-access journal for descriptions of scientifically valuable datasets. 

These ground-truth data were collected in the scope of the project Central Asia Waters (CAWa)3 to 

provide consistent land cover information on crop types for efficient water management in Central 

Asia. The full dataset consists of 8’196 samples collected between 2015 and 2018 in several regions of 

Uzbekistan and Tajikistan. 2’172 samples are available for Kashkadarya, whereas they all have been 

collected in the year 2018. 

in Kashkadarya as in the north of Afghanistan, wheat is the main staple crop. Wheat is harvested in 

June, allowing farmers to plant a second crop before the end of the agricultural year in October if 

water is available (‘Double cropping’). Cotton is an important agricultural produce in Kashkadarya, and 

the second most frequent crop in the reference dataset. The cotton growing season extends from May 

to October. Furthermore, other existing crops are orchards, vineyards, and forage crops (alfalfa).  

Classification maps and validation results are presented below and can also be viewed and 

downloaded in the sample EOSTAT CropMapper front-end application for Kashkadarya via this 

weblink. 

 

 

Figure 14. Map of the Kashkardarya region in Uzbekistan with the crop type ground-truth data points shown as red dots, and 
the main water courses and water bodies in blue colour. 

 

3 www.cawa-project.net 

https://hydrosolutions.users.earthengine.app/view/eostat-uzb
http://www.cawa-project.net/
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4.1 Methodology 
 

4.1.1 In-situ data QA/QC 

The in-situ data are available in shapefile  format as objects (polygons) drawn around the fields that 

were visited during the field survey in June 2018 (Remelgado et al., 2020). To each polygon, a single 

crop class is assigned. Training and validation data points were generated by randomly plotting points 

inside the polygons ensuring that  they are distant at least 30 m from the border of the polygons and 

to each other, For crop classes where more than 50 polygons were available, only one point per 

polygon was generated (Figure 15). We then randomly selected 50 data points for training of the crop 

type classifiers. The remaining data points were used for validation (Table 4). 

 

4.1.2 Classification 

The in-situ data was used to train and test the DTW and the RF, using respectively 5 to 10 training 

points, and 50. The scope of this was to assess the accuracy of the two algorithms with respect to the 

volume of training data.  

The main advantage of DTW as a supervised classification technique is that only a small number of 

well-chosen training samples are required (Belgiu and Csillik, 2018) to train the algorithm and obtain 

high accuracy in the crop classification (above 80%). On the other hand, Random Forest classifiers 

need large amount of training data. In essence, for the DTW, a small set of 5 to 10 training samples 

are sufficient to  represent the temporal characteristic of the crop type (Csillik et al., 2019).  

To evaluate the performance of the DTW algorithm, we randomly selected  5-10 points per crop class 

from the training data points, simulating the common case of a lack of input training samples. To 

assure the highest quality of the training data points for DTW, those points were carefully checked in 

the EOSTAT CropMapper administrator tool for consistency with the mean NDVI signature of a given 

crop category. If the NDVI signature of a given point was not consistent with the mean signal of a given 

crop class, then the point was removed from the dataset. RF classifiers have the advantage that they 

are not sensitive to outliers in the training data set. Additional training data points used only for the 

training of the RF algorithm were therefore not individually checked but it was assumed that the 

quality of the original dataset was sufficient for this classifier. 

 

Table 4. Available Crop classes for Kashkadarya region, year 2018, and the respective number of geo-referenced polygons, 
and generated training and validation data points, respectively. The training samples for the class ‘no-crop (natural 
vegetation)’ were added to the dataset manually based on satellite image interpretation. 

CROP CLASS Available 
Polygons [N°] 

Training data points 
generated [N°] 

Validation data points 
generated [N°] 

Cotton 945 50 892 

Wheat 992 50 942 

Wheat – other (double cropping) 18 50 30 

Alfalfa 13 50 30 

Vineyards 11 50 30 

Orchards 85 50 33 

No-crop (fallow) 100 50 47 
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No-crop (natural vegetation) - 10 - 

Other 7 - - 

Total 2172 360 2004 

 

We trained both classifiers with monthly composites of Sentinel-1 and Sentinel-2 satellite images 

(sensor selection option 1, see Section 3.2) available from the period March to October 2018 (period 

selection option 3, see Section 3.3). We performed several rounds of training using different numbers 

of randomly sampled training data points (5-10 points for DTW, 10-50 points for RF). We then applied 

the trained algorithms to classify all pixels of Kashkadarya region at a spatial resolution of 10m, except 

urban areas or pixels above a certain elevation (2500 m asl) or with steep slopes (>5°). For validation 

we look at the classification accuracy with respect to all available validation points, as well as with 

respect to a subset of 30 random validation points per crop class. The subset was generated to account 

for the class imbalance in the validation data set (Table 4). 

 

 

Figure 15. Detail of the CAWa ground-truth reference data available for Kashkadarya. The map shows the polygons as 
provided by the CAWa dataset, as well as one point per polygon generated inside each shape. 

4.2 Results 

Considering all 2004 available validation data points per crop class (Test A), DTW reaches an overall 

classification accuracy of about 84.4%. The accuracy difference resulting from using 5 or 10 training 

samples per crop class, respectively, is not statistically significant (Figure 16a). For the case where only 

30 samples per crop class were used for validation (Test B), 10 training samples lead to a slightly higher 

overall accuracy (72.4%) than if only 5 training samples were used (69.1%, Figure 16b). In both tests 

the DTW classification accuracy is higher than the RF classification accuracy considering the same 

number of training samples (Test A: 1.1%-1.7% higher, Test B: 8.1%-10% higher, see Figure 16). 

However, the classification accuracy of the RF classifier significantly increases with the number of 

training samples used. With 50 training samples per crop class, the overall accuracy is 86.1% (Test A) 

and 76.2% (Test B), respectively (Figure 16). 
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Figure 16. Overall accuracy of the DTW and RF classifiers as a function of the number of training samples used.  
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Table 5. Confusion matrix of the DTW classification (10 training points per crop class, Test A: all available validation points). 

Predicted 
Actual wheat cotton alfalfa orchard vineyard 

wheat-
other no-crop 

Producer 
Accuracy 

wheat 787 7 12 23 30 48 35 83.5% 
cotton 1 812 1 3 0 2 73 91.0% 
alfalfa 1 0 16 2 4 1 6 53.3% 
orchard 2 2 1 9 9 0 10 27.3% 
vineyard 0 0 2 2 22 2 2 73.3% 
wheat-other 2 0 0 0 0 28 0 93.3% 
no-crop 2 3 0 4 1 0 37 78.7% 

User 
Accuracy 

99.0% 98.5% 50.0% 20.9% 33.3% 34.6% 22.7% 
Overall 

Accuracy 
85.4% 

Table 6. Confusion matrix of the DTW classifier (10 training points per crop class, Test B: 30 validation points per crop class). 

Predicted 
Actual wheat cotton alfalfa orchard vineyard 

wheat-
other no-crop 

Producer 
Accuracy 

wheat 27 0 1 0 1 1 0 90.0% 
cotton 0 25 0 0 0 0 5 83.3% 
alfalfa 1 0 16 2 4 1 6 53.3% 
orchard 1 2 1 8 9 0 9 26.7% 
vineyard 0 0 2 2 22 2 2 73.3% 
wheat-other 2 0 0 0 0 28 0 93.3% 
no-crop 1 2 0 1 0 0 26 86.7% 

User 
Accuracy 

84.4% 86.2% 80.0% 61.5% 61.1% 87.5% 54.2% 
Overall 

Accuracy 
72.4% 

Table 7. Confusion matrix of the RF classifier (50 training points per crop class, Test A: all available validation points). 

Predicted 
Actual wheat cotton alfalfa orchard vineyard 

wheat-
other no-crop 

Producer 
Accuracy 

wheat 782 7 35 22 23 59 14 83.0% 

cotton 1 824 3 6 0 0 58 92.4% 

alfalfa 1 1 21 2 2 1 2 70.0% 

orchard 2 2 2 17 9 0 1 51.5% 

vineyard 0 0 0 4 24 2 0 80.0% 

wheat-other 1 0 0 0 0 29 0 96.7% 

no-crop 2 5 6 3 3 0 28 59.6% 

User 
Accuracy 

99.1% 98.2% 31.3% 31.5% 39.3% 31.9% 27.2% 
Overall 

Accuracy 
86.1% 

Table 8. Confusion matrix of the RF classifier (50 training points per crop class, Test B: 30 validation points per crop class). 

Predicted 
Actual wheat cotton alfalfa orchard vineyard 

wheat-
other no-crop 

Producer 
Accuracy 

wheat 27 0 1 0 0 2 0 90.0% 

cotton 0 27 0 0 0 0 3 90.0% 

alfalfa 1 1 21 2 2 1 2 70.0% 

orchard 1 2 2 15 9 0 1 50.0% 

vineyard 0 0 0 4 24 2 0 80.0% 

wheat-other 1 0 0 0 0 29 0 96.7% 

no-crop 1 4 5 2 1 0 17 56.7% 

User 
Accuracy 

87.1% 79.4% 72.4% 65.2% 66.7% 85.3% 73.9% 

Overall 
Accuracy 

76.2% 
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The producer and User accuracies of individual crop classes for the tests with 10 (DTW) and 50 (RF) 

training samples per crop class, respectively, are presented in Tables 2-5. Test A leads to very high 

User accuracies for wheat and cotton (98.2%-99.1%, Table 5, Table 7). However, the other classes are 

much less common (Table 4), which is the main reason why the fraction of false-positive classifications 

for wheat and cotton is small. Test B (equal number of validation points per crop class) provides thus 

a more representative assessment of the User accuracies. Here the User accuracies of the DTW 

classification varies between 54.2% (no-crop) and 86.2% (cotton), and for the RF classification 

between 65.2% (orchard) and 87.1% (wheat). We obtain higher User accuracies with DTW than with 

RF for three out of seven classes (cotton, alfalfa and wheat-other). 

The producer accuracies of Test A and DTW vary between 27.3% (orchard) and 93.3% (wheat-other). 

The same results for RF vary between 51.5% (orchard) and 96.7% (wheat-other). RF performs equal 

or better than DTW in all crop categories except no-crop (59.6% and 78.7%, respectively). However, 

this last class is the most important category for estimating the total crop areas because it is the most 

common land cover category (Table 9). According to DTW, 34.2% of the classified areas are used for 

crop cultivation and 48.6% according to RF. With RF we obtain a total crop area that is 28.3% larger 

than with DTW. About half of the difference stems from the difference in alfalfa acreages, which are 

almost three times larger based on the RF classifier (Table 9). Alfalfa represents only 0.6% of the 

reference data polygons, but 15.6% of the classified crop areas with RF (DTW: 5.1%). It is likely that 

both classifiers thus overestimate the total alfalfa acreages. 

 

Table 9. Classified areas per crop category in km2 (DTW: 10 training samples per crop category; RF: 50 training samples per 
crop category). 

 Area [km2] Area [km2] Difference 

Crop Class DTW RF [km2] [%] 

wheat 1’446.7 1’480.1 +33.4 +2.3% 

cotton 1’421.1 1’626.2 +205.1 +14.4% 

alfalfa 221.2 867.8 +646.5 +292.3% 

orchard 606.2 883.0 +276.8 +45.7% 

vineyard 461.5 502.4 +40.9 +8.9% 

wheat-other 173.9 197.1 +23.2 +13.3% 

Total Crops 4’330.6 5’556.5 +1’226.0 +28.3% 

No-crop 12’659.7 11’433.8 -1’226.0 -9.7% 

4.3 Discussion 

This accuracy assessment has demonstrated that the crop classification with DTW based on few 

carefully checked training samples can outperform conventional RF classification with at least two 

times more samples. With five times more training samples, RF outperforms DTW in terms of overall 

accuracy. However, also with five times more training samples RF yields low producer accuracies for 

the land cover category ‘no-crop’. This category is underrepresented in the ground-truth dataset used 

for validation but is generally the most important category for estimating the total crop acreages, 
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because it is the most common land cover in Kashkadarya region. A low producer accuracy is the 

consequence of frequent false-negative classifications, and therefore usually indicates a general 

underestimation of a given class frequency. Indeed, the total crop area according to the RF 

classification is almost 30% larger than according to the DTW classification. 

It is concluded from these results that DTW can lead to more accurate and more robust results than 

RF. The main condition for obtaining good results with DTW is a comprehensive quality assurance and 

quality control of the training data points. Even in a published crop type datasets such as used for this 

assessment we found several obvious misclassifications that could be explained with timing of the 

field campaign (June 2018), which was likely too early for accurate sampling of late crops, or with 

incorrect delineations of the field boundaries. While the full ground-truth dataset consists of 2’172 

samples, we needed only 40-80 samples to train the DTW algorithm. It is understood that the quality 

assurance and control of such small samples sizes requires less time, and can therefore be done more 

thoroughly. RF is less sensitive to noise in the training data, and a large training data set can therefore 

compensate the mistakes in the labeling of the ground-truth data. However, large input training 

samples are difficult to obtain. DTW, as implemented in the EOSTAT CropMapper, is therefore a 

valuable alternative to RF classification. 

 

5 Conclusions 

One of the main challenges for a successful application of the tool is to find a compromise between 

classification accuracy, computational burden and efforts required for in-situ sample collection. 

Random Forest is computationally more efficient than the DTW implementation in GEE. However, 

DTW allegedly performs better than Random Forest when only few geotagged in-situ samples are 

available. To make an optimal selection of samples, algorithms, sensors, and spatial units is therefore 

a major task for the user. The possibility to use the EOSTAT CropMapper for assessing the classification 

accuracies facilitates this task. Different settings can be tested, and the crop maps associated with the 

highest accuracies can be retained. The validation option in the front-end application allows to display 

all misclassified points with respect to the training data, which offers the user the possibility to identify 

the locations where more training data are required or to detect wrong labels in the training data set. 

The EOSTAT CropMapper therefore offers the flexibility to work with a range of different methods and 

to optimize its performance, in order to find an optimal solution for a given location and the available 

in-situ samples. 
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Appendix 1: EOSTAT CropMapper Application to Afghanistan 

The front-end application of the EOSTAT CropMapper for Afghanistan provides already access to crop 

maps from every AEZ and Province of Afghanistan (Figure 13). These crop maps were generated on 

the basis of training data provided by a dataset of 2047 in-situ samples collected across all 

Agroecological Zones of Afghanistan in November and December 2021 (Figure S1). Given the bad 

security situation in Afghanistan over most of the year 2021 the field survey could not start before the 

end of November, which is after the harvest season. The in-situ samples were therefore collected by 

interviewing the farmers. This resulted in a large fraction of wrongly georeferenced or wrongly 

labelled samples. This Appendix describes how this dataset was curated within the administrator tool 

and applied for crop type mapping. Due to the overall lower quality of the training data, the resulting 

crop maps have a lower accuracy than the maps from Kashkardarya in Uzbekistan (see Section 4). 

Nevertheless, this application provides a first estimation of the total land area of major agricultural 

crops in Afghanistan.  

 

Figure S1. Locations with available in-situ samples from Afghanistan from the year 2021. 

Data and Methodology 

2047 samples were collected in-situ by the NSIA enumerators between the months of November and 

December 2021. 269 samples had to be removed due to missing geo-tags. The crop type labels and 

the distribution of the remaining samples per crop type are presented in Table S1.  

The dataset did not include samples of natural vegetation from every AEZ. Sample points of the classes 

‘Non-crop’, ‘Forest’, ‘Grassland’ or ‘Wetland’ were therefore manually added through visual 

interpretation of very high-resolution satellite images provided by Google Earth Engine. Samples for  

the classes ‘Orchard’ and ‘Vineyard’ were also added. After the removal of erroneous samples (e.g., 

https://ocsgeospatial.users.earthengine.app/view/eostat-afghanistan
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123 in-situ samples from the AEZ ‘Central Mountains’ pointed to only four locations) and the addition 

of samples the from missing categories, we obtained a dataset consisting of 1698 samples (Table S1). 

As shown in Table S1, 21 crop types were sampled. However, some crop types were represented by  

very few in-situ samples (e.g., only one sample of type ‘Sunflower’). Such a small number of samples 

is not sufficient to train the machine learning classifier, and to allow discrimination from other crops. 

On the contrary it would lead to confusion and overall lower accuracy of the final crop type map. For 

this reason it was decided that any crop types having less than 4 samples per AEZ are renamed ‘Other 

crop’. As a final result the training dataset included overall 19 crop type classes. 

Table S1. Number of samples available per class in the original dataset and in the final dataset, respectively. 

Class Original (N°) Final (N°) 

Barley 7 0 
Beans 92 91 

Cassava 1 0 
Chick_peas 1 0 

Cotton 42 41 

Fallow 84 63 

Fodder_crop 69 61 
Forest 0 8 

Grassland 234 193 

Maize 79 74 

Millets 4 0 
Non-crop 4 44 

Oats 22 12 

Orchard 0 37 

Other crop 259 268 
Poppy 21 14 

Potatoes 17 13 

Rice 86 85 

Rye 5 4 
Soya_beans 29 28 

Sunflower 1 0 

Vineyard 0 4 

Wetland 0 28 
Wheat 721 630 

Total 1778 1698 

The field survey to collect the in-situ samples took place in early winter, after the harvest season. The 

enumerators therefore questioned farmers about the last harvested crop at each location. 

Unfortunately, the harvest month was not recorded, and neither the cropping intensity at a given 

location. This further complicates the application of the dataset within the EOSTAT CropMapper, 

because of very heterogeneous crop classes containing both single and double crop samples in the 

same class. The period of assessment had to be defined as March to October 2021, because summer 

and autumn harvest crops could not be distinguished from the labels of the in-situ data.  

The remote sensing analysis was based on Sentinel-1 and Sentinel-2 data (see Section 3.2). We tested 

both supervised classification algorithms (RF and DTW, see Section 3.4). To limit the class imbalance 

in the training data, the maximum number of samples per crop type that are used for training of the 

RF classifier was set to 20. For DTW classification we used up to 10 samples per crop class.  

We used the automatic Q50 CTDS pre-screening option described in Section 3.5 to select the 

candidates for DTW training and validation, except for the classes ‘Other crops’ and ‘Wheat’. The 
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classes ‘Other crops’ and ‘Wheat’ were characterized by a high diversity in their crop signatures, for 

which the automatic pre-screening is not recommended (Section 3.5). Samples used for training from 

these two classes were thus verified manually one by one in the EOSTAT CropMapper Administrator 

Tool. For RF classification the Q50 CTDS pre-screening option was not applied, because it is supposed 

that this classification method is less sensitive to outliers and benefits from larger number of training 

samples. 

To reduce the variability in the training dataset, samples are always chosen from the same AEZ where 

a given area of interest is located. From the AEZ ‘Central Mountains’ no in-situ samples were available, 

and samples from the neighbouring  AEZ ‘Eastern Mountains & Foothills’ were considered instead. 

Results and Discussion 

In total, 447 pre-screened samples were available for validation of the DTW crop maps. For the 

validation of the RF crop maps, 742 samples were available. The number of samples available per AEZ 

and classification method varied between zero and 241 (Table S2). From the AEZ ‘Central Mountains’ 

and 'Helmand Valley - Sistan Basin' no validation samples were available. 

Across all available validation points for Afghanistan the average classification accuracy of DTW is 

61.9% (Table S3), whereas with RF we achieve an average accuracy of 54.7% (Table S4, 7.2% less than 

with DTW classification). In four out of six AEZs DTW overall accuracy exceeds the RF overall accuracy 

(Table S2). In the AEZ ‘North Eastern Mountains’ RF classification is slightly better (+3.8%). The 

substantially higher classification accuracy of RF in the AEZ Southern Mountains & Foothills (+19.3%) 

can be explained by the fact that 49 out of 51 available validation samples (96%) belong to the class 

‘Grassland’, which is a class that is generally easy to classify due to the low in-class variability. The 

largest difference between RF and DTW performance is obtained for the AEZ Eastern Mountains & 

Foothills, where DTW accuracy exceeds RF accuracy by 24.2%.  

Table S2. Classification accuracy per AEZ and classification method. The number of samples available for validation is 
indicated, as well as the crop types corresponding to the available validation samples. 

AEZ Method 
Overall 
Accuracy 

Validation 
Samples (N°) Validation Crop Types 

Central Mountains - - 0 - 
Eastern Mountains & Foothills DTW 51.3% 39 Wheat, Beans, Maize  

RF 27.1% 59 Wheat, Maize 
Helmand Valley - Sistan Basin - - 0 - 
Herat & Farah Lowlands DTW 50.0% 44 Wheat, Grassland  

RF 42.9% 77 Wheat 
North Eastern Mountains DTW 62.5% 56 Wheat, Beans  

RF 66.3% 83 Wheat, Beans 
Northern Mountains & Foothills DTW 60.2% 128 Wheat, Fallow, Grassland, 

Beans, Soya beans  
RF 45.6% 241 Wheat, Fallow, Grassland, 

Beans, Soya beans 
Southern Mountains & Foothills DTW 69.0% 29 Wheat, Grassland  

RF 88.2% 51 Wheat, Grassland 
Turkistan Plains DTW 73.5% 151 Wheat, Grassland, Rice, 

Fodder crop, Cotton  
RF 69.7% 231 Wheat, Grassland, Rice, 

Fodder crop, Cotton 
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Table S3. Confusion matrix of the DTW classification. All validation points for Afghanistan. The class ‘Non-crop’ includes also 
all ‘Grassland’, ‘Fallow’ and ‘Forest’ points. 

Predicted 
Actual Wheat Rice Fodder Maize Soya Cotton Beans Others 

Non-
crop 

Producer 
Accuracy 

Wheat 154 0 5 3 5 10 18 39 47 54.8% 
Rice 2 31 0 0 0 0 0 0 0 93.9% 
Fodder 2 0 3 0 0 0 0 1 2 37.5% 
Maize 3 0 0 14 0 0 2 4 0 60.9% 
Soya 0 0 0 0 2 0 0 0 0 100.0% 
Cotton 2 0 0 0 0 2 0 0 1 40.0% 
Beans 1 0 0 0 0 0 16 3 0 80.0% 

Others 13 1 8 6 7 2 1 44 9 48.4% 
Non-crop 1 0 4 0 0 0 0 3 67 89.3% 

User 
Accuracy 

93.3% 100.0% 25.0% 82.4% 28.6% 16.7% 44.4% 46.8% 53.2% 
Overall 
Accuracy 
61.9% 

Table S4. Confusion matrix of the RF classification. All validation points for Afghanistan. The class ‘Non-crop’ includes also all 
‘Grassland’, ‘Fallow’ and ‘Forest’ points. 

Predicted 
Actual Wheat Rice Fodder Maize Soya Cotton Beans Others 

Non-
crop 

Producer 
Accuracy 

Wheat 215 9 17 5 9 45 9 115 115 45.1% 
Rice 2 57 1 0 0 0 0 0 0 95.0% 
Fodder 0 0 1 0 0 0 0 0 0 100.0% 
Maize 9 0 0 12 0 0 11 3 3 26.1% 
Soya 0 0 0 0 4 0 0 0 0 100.0% 
Cotton 1 0 0 0 0 5 0 0 0 83.3% 
Beans 2 0 0 0 1 0 6 19 19 20.7% 
Others 29 0 5 4 5 3 1 74 11 56.1% 
Non-crop 3 1 1 0 0 1 2 104 104 87.4% 

User 
Accuracy 

92.7% 85.1% 5.0% 70.6% 28.6% 9.8% 21.4% 50.7% 41.3% 
Overall 
Accuracy 
54.7% 

 

Figure S2. Classification accuracy per AEZ based on available validation samples using DTW, DTW without pre-screening of 
training samples (‘wo score’), and RF, respectively. 

DTW classification without the automatic Q50 CTDS pre-screening of in-situ samples leads to an 

average classification accuracy of only 47%, which is 15% less than if the training samples are selected 

based on basic quality criteria. The accuracy improvement which is due to the pre-screening of 

samples varies between 33.4% (Eastern Mountains & Foothills) and 1.3% (North Eastern Mountains), 

depending on the AEZ (Figure S2). 
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Figure S3. Fraction of cropped/non-cropped area (left) and per individual crop types (right) at the country scale. 

With DTW classification (including Q50 CTDS pre-screening) we obtain a total cropped area of 3.2 

million hectares. 61 million hectares (95.02%, see Figure S3a and Table S5) represent non-agricultural 

areas that were masked from the beginning (e.g., areas at elevations above 3600 m or with slopes 

steeper than 30°), or areas that obtained the class label ‘Non-crop’, ‘Grassland’, ‘Fallow’, ‘Wetland’ or 

‘Forest’. With RF classification we obtain a cropped area that is substantially larger (8.2 million 

hectares, 12.75% of the total land area of Afghanistan, Table S5), mainly due to smaller areas classified 

as ‘Grassland’ or ‘Fallow’ (Table S6). 

The two country-scale crop maps obtained by mosaicking the AEZ crop maps per each classification 

method are presented in Figure S4 (DTW) and Figure S5 (RF). The crop maps are also available per AEZ 

and Province at their original spatial resolution (10 m) in the Web App. By zooming in and comparing 

the crop map to the satellite images it becomes clear that RF much overestimates the total cropped 

area, e.g. in Paktika, Logar, or Urozgan provinces (see also the cropland fraction difference between 

DTW and RF in Table S5). 

Wheat is the primary crop of Afghanistan and is grown in every province of the country (Tiwari et al., 

2020). In terms of total area, the crop class ‘Wheat’ is followed by ‘Other crop’ and then by Orchard, 

Beans and Potatoes (Figure S3a, Table S6). The country-scale wheat map obtained from the DTW 

outputs is presented in Figure S6. This wheat map can be compared to a similar map obtained by 

Tiwari et al. (2020) for the year 2017 based on Optical and SAR Time-Series Images (Figure S7). The 

total wheat cultivation area of the year 2017 in Afghanistan mapped by Tiwari et al. (2020) is 1.5 

million hectares. This value is 36% higher than the value that we have obtained for 2021 based on 

DTW classification (1.1 million hectares). However, 2021 was a year characterized by a severe drought 

(FAO, 2021). About 560,000 ha (40%) of the wheat area in 2017 was rainfed (Tiwari et al., 2020), and 

therefore particularly vulnerable to a lack of rainfall in 2021. The value of 1.1 million ha of wheat area 

obtained by DTW classification for 2021 is therefore plausible, while the value of 3 million ha of wheat 

according to RF classification (Table S6) is much above the plausible range. However, official 
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government statistics or other FAO estimates which could be used to validate the total areas of 

individual crops were not available for Afghanistan at the time of writing this report. 

 

Table S5. Total cropland and non cropland area per province (DTW and RF classification). 

 DTW RF 

Province Cropland Non cropland Cropland Non cropland 

 hectares % hectares % hectares % hectares % 

BADAKHSHAN 211,728 4.9% 4,125,027 95.1% 457,474 10.5% 3,879,281 89.5% 

BADGHIS 58,017 3.0% 1,906,983 97.0% 104,196 5.3% 1,860,804 94.7% 

BAGHLAN 177,331 10.4% 1,529,944 89.6% 222,426 13.0% 1,484,849 87.0% 

BALKH 172,720 9.9% 1,576,212 90.1% 173,923 9.9% 1,575,009 90.1% 

BAMYAN 41,342 2.3% 1,761,259 97.7% 216,316 12.0% 1,586,285 88.0% 

DAYKUNDI 71,266 5.2% 1,290,546 94.8% 279,550 20.5% 1,082,262 79.5% 

FARAH 87,854 2.1% 4,002,619 97.9% 146,290 3.6% 3,944,183 96.4% 

FARYAB 82,017 3.9% 1,999,115 96.1% 139,243 6.7% 1,941,889 93.3% 

GHAZNI 91,177 4.2% 2,063,122 95.8% 406,494 18.9% 1,747,805 81.1% 

GHOR 57,713 1.5% 3,792,273 98.5% 380,870 9.9% 3,469,116 90.1% 

HELMAND 361,189 5.9% 5,713,967 94.1% 769,652 12.7% 5,305,504 87.3% 

HERAT 121,387 2.0% 6,029,580 98.0% 363,381 5.9% 5,787,586 94.1% 

JAWZJAN 78,094 7.4% 981,621 92.6% 45,984 4.3% 1,013,731 95.7% 

KABUL 36,223 7.7% 432,493 92.3% 127,880 27.3% 340,836 72.7% 

KANDAHAR 150,246 2.8% 5,287,871 97.2% 566,867 10.4% 4,871,250 89.6% 

KAPISA 23,566 12.5% 164,341 87.5% 46,453 24.7% 141,454 75.3% 

KHOST 112,870 27.5% 297,378 72.5% 269,447 65.7% 140,801 34.3% 

KUNARHA 57,037 13.5% 364,697 86.5% 102,902 24.4% 318,832 75.6% 

KUNDUZ 185,463 23.6% 600,870 76.4% 180,532 23.0% 605,801 77.0% 

LAGHMAN 29,660 7.6% 360,360 92.4% 97,978 25.1% 292,042 74.9% 

LOGAR 47,762 10.9% 390,759 89.1% 201,070 45.9% 237,451 54.1% 
MAYDAN 
WODAKG 

55,757 5.2% 1,024,112 94.8% 277,185 25.7% 802,684 74.3% 

NANGARHAR 89,527 12.1% 647,955 87.9% 215,845 29.3% 521,637 70.7% 

NIMROZ 21,369 0.5% 4,004,854 99.5% 58,865 1.5% 3,967,358 98.5% 

NOORISTAN 32,270 3.4% 925,680 96.6% 73,809 7.7% 884,141 92.3% 

PAKTIKA 72,622 3.8% 1,814,997 96.2% 527,708 28.0% 1,359,911 72.0% 

PAKTYA 116,987 21.3% 431,101 78.7% 246,137 44.9% 301,951 55.1% 

PANJSHER 7,013 1.9% 367,199 98.1% 39,407 10.5% 334,805 89.5% 

PARWAN 34,512 6.2% 523,603 93.8% 112,330 20.1% 445,785 79.9% 

SAMANGAN 76,644 5.7% 1,268,537 94.3% 123,062 9.1% 1,222,119 90.9% 

SAREPUL 94,386 6.3% 1,402,916 93.7% 137,020 9.2% 1,360,282 90.8% 

TAKHAR 203,580 16.4% 1,038,632 83.6% 222,458 17.9% 1,019,754 82.1% 

UROZGAN 104,445 8.0% 1,207,103 92.0% 529,291 40.4% 782,257 59.6% 

ZABUL 34,364 2.0% 1,667,501 98.0% 327,080 19.2% 1,374,785 80.8% 

TOTAL 3,198,139 5.0% 60,995,226 95.0% 8,189,126 12.8% 56,004,239 87.2% 
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The reason why the RF classification overestimates the area under wheat is likely the strong class 

imbalance in the in-situ samples. 37.1% of all the available samples in the crop library represent wheat 

cultivation area, while the total fraction of all non-crop classes (including grassland and fallow area) is 

19.8%. Almost twice as many wheat samples are therefore available than from all non-crop classes 

together (Table S1). Table S4 shows that non-crop samples are frequently misclassified as wheat, 

resulting in a particularly low Producer Accuracy of wheat with RF classification. The distribution of 

training samples does not reflect the true underlying distribution of wheat versus other classes, and 

the obtained crop area is therefore biased towards wheat (Wang et al., 2019). To improve the accuracy 

of the RF crop map, more ‘non-crop’ samples should be added to the library.  

 

Table S6. Total area per class at the scale of the entire country (DTW and RF classification). All non cropland classes (Non-
crop, Grassland, Fallow, Wetland and Forest) are uniformly presented as ‘Non-crop’ in Figure S3, S4 and S5. 

 DTW RF 

 Cropland (hectares) 

Wheat 1,086,285 3,000,637 

Other crop 635,334 2,474,009 

Orchard 405,450 787,069 

Beans 320,677 1,182,138 

Potatoes 265,947 89,825 

Fodder_crop 157,989 198,303 

Maize 111,655 169,593 

Rice 83,387 63,099 

Cotton 81,826 203,745 

Vineyard 16,830 8,272 

Soya_beans 12,620 6,764 

Oats 10,778 5,285 

Rye 9,363 385 

Total 3,198,139 8,189,126 

 Non cropland (hectares) 

Non-crop 34,040,098 34,542,044 

Grassland 16,353,768 13,337,940 

Fallow 9,683,853 7,441,853 

Wetland 815,031 530,590 

Forest 102,476 151,811 

Total 60,995,226 56,004,239 
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Figure S4. Crop type map for Afghanistan 2021 based on DTW classification. Areas with transparent colour represent areas 
that were by default considered as unsuitable for agriculture, such as areas at elevations above 3600 m or with slopes steeper 
than 30°. 

 

Figure S5. Crop type map for Afghanistan 2021 based on RF classification. Areas with transparent colour represent areas that 
were by default considered as unsuitable for agriculture, such as areas at elevations above 3600 m or with slopes steeper 
than 30°. 
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Figure S6. Wheat planting areas of the year 2021 (DTW classification). 

 

Figure S7. Irrigated and Rainfed Wheat area of Afghanistan, according to Tiwari et al., 2020. Image Copyright: Tiwari et al., 
2020. 
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Conclusions 

This application demonstrates the benefit of QA/QC, facilitated through the administrator tool of the 

EOSTAT CropMapper, with regards to resulting classification accuracies. Applying the available option 

for automatic quality checking of in-situ samples improved the overall classification accuracy by on 

average 14.3%. Furthermore, as the application to Kashkardarya region in Uzbekistan has already 

shown, higher classification accuracies can be achieved with DTW than with RF classification, provided 

that the QA/QC is carefully performed. Of course, the resulting overall classification accuracy of 61.9% 

is still low, but can be explained by the difficult political and security situation in Afghanistan in the 

year 2021, which impeded the collection of high quality field data. Note that the actual classification 

accuracy is likely higher than 61%, because non cropland samples are underrepresented in the 

validation data. The producer accuracy for no-crop samples is much higher than for most other classes 

(87%-89%, Table S3 and Table S4), but in relation to its actual frequency only few samples of this class 

are available for validation.  

Overall, this application can be considered as a first attempt to obtain crop statistics for all 34 

provinces of Afghanistan based on a remote sensing data analysis. The feasibility of carrying out this 

task with the EOSTAT CropMapper has been demonstrated. While for most crops the quantity of 

available in-situ samples is sufficient for DTW classification, further efforts are required to improve 

the quality of the samples.  
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