
PPiAI Coding

Survival Guide:

A Manual For

The African Teacher

David Sciacca

Gourav Nayak

Vraj Patel

PPiAl Coding

Survival Guide:

A Manual For The

African Teacher

Recommended for use in

primary and secondary schools

throughout sub-Saharan Africa

David Sciacca

Gourav Nayak, Vraj Patel

mailto:info@publicpolicyafrica.org
http://www.publicpolicyafrica.org/

How to Install Python [Pycharm IDE] ... 1

1.1 How to install a Python IDE on Windows ... 1

1.2 How to Install PyCharm .. 3

1.3 Installing Python and PyCharm on other platforms .. 7

Data Types, Variables and Operators ... 8

2.1 Variables .. 8

2.1.0 Strings ... 8

2.1.1 Numbers .. 9

2.1.2 Boolean .. 9

2.2 Variables .. 10

2.3 Arithmetic Operators ... 10

2.4 Assignment Operators ... 11

2.5 Comparison Operators ... 12

2.6 Logical Operators ... 13

2.7 Identity Operators ... 13

2.8 Bitwise Operators .. 14

Conditionals and Data Structures Part I ... 18

3.1 Conditionals ... 18

3.2 Data Structures .. 20

3.3 Sets .. 20

3.4 Set Methods .. 21

3.5 The in Operator ... 22

Data Structures Part II .. 25

4.1 Arrays .. 25

4.2 Array Methods ... 26

4.3 Dictionaries .. 27

4.4 Dictionary Methods ... 28

Data Structures Part III ... 31

5.1 Lists ... 31

5.2 List Slicing .. 32

5.3 List Methods .. 32

5.4 Lists and Strings – a useful relationship!... 33

5.5 Tuples .. 34

5.6 Tuple indexing and Slicing .. 34

5.7 Tuple Methods... 35

Loops, Iterables and Iterators ... 38

6.1 Loops ... 38

6.2 for Loop ... 38

6.3 while Loop ... 39

6.4 Nested Loop... 40

6.5 Iterable Functions .. 41

6.6 break statement .. 42

6.7 continue statement ... 42

Basic Input and Output, Files and Folders .. 44

7.1 Input And Output (I/O) .. 44

7.2 Input Via user .. 44

7.3 Input Via Files .. 45

7.4 Input Via Files – Syntax .. 46

7.5 Input Via Files – Write and Append mode .. 46

7.6 Files And Folders .. 46

7.7 Files And Folders – os.walk .. 47

7.8 Files And Folders – os... 47

7.9 Files And Folders – replace .. 49

Functions in Python .. 52

8.1 What is Function? .. 52

8.2 Defining a Function .. 52

8.3 Invoking a Function .. 53

8.4 Parameters .. 53

8.5 Return Statement .. 55

8.6 Documentation Strings (Docstrings) ... 56

8.7 Scope ... 57

Classes and Error Handling in Python ... 60

9.1 Object Oriented Programming ... 60

9.2 Classes ... 60

9.3 The __init__() Method ... 61

9.4 Methods .. 62

9.5 The self Parameter .. 62

9.7 Errors and Exceptions .. 63

9.8 Exception Handling .. 64

Modules and Packages in Python ... 67

10.1 Module .. 67

10.2 Module – Import statement .. 67

10.3 Module – from statement .. 68

10.4 Package ... 69

10.5 Package – import ... 69

10.6 Multiple import – package and module.. 70

10.7 Why are packages and modules are needed? .. 70

10.8 Python Packages .. 70

10.9 pip ... 71

Unit Testing in Python .. 73

11.1 Testing in Python ... 73

11.2 assert Keyword .. 73

11.3 unittest Package .. 74

11.4 unittest Methods ... 76

11.4 Testing Custom Functions with unittest ... 76

1

PyCharm is an integrated development environment (IDE) developed by JetBrains that is

used in computer programming, specifically as a productive Python development tool.

Throughout the following chapter, we are going to cover installing Python 3 onto our

workspace.

1.1 How to install a Python IDE on Windows

Below is a step-by-step guide on how to download and install Python on Windows:

Step 1) Visit the official website of Python to download and install the latest version of

Python 3 on Windows: https://www.python.org/downloads/.

Step 2) Once the download has been completed, run the .exe file to install Python.

https://www.python.org/downloads/

2

Disclaimer You may see Python installing at this point as seen below.

Step 3) When the installation is complete, you will be able to see a screen that says the

“Setup was successful”. You may now click on close.

3

1.2 How to Install PyCharm

Next, you will find below a step-by-step guide on how to download and install PyCharm IDE

on Windows:

Step 1) Visit the official website of JetBrains to download and install the latest version of

PyCharm on your workspace.

4

Step 2) Once the download has been completed, run the .exe file to install PyCharm.

Step 3) C lick on “Next” (you may have to change the installation path depending on your

circumstances).

5

Step 4) Create a desktop shortcut and click on “Next”.

Step 5) Keep the selection as JetBrains and continue by clicking “Next”.

6

Disclaimer You may see PyCharm installing at this point as seen below.

Step 6) Once the installation is completed, click on “Run PyCharm Community Edition”

and click on “Finish” to run the application.

7

1.3 Installing Python and PyCharm on other platforms

If you are not a Windows user, u se the following links to learn how to install Python for

MacOS or Linux.

MacOS : https://realpython.com/installing-python/#how-to-install-python-on-macos

Linux : https://realpython.com/installing-python/#how-to-install-python-on-linux

Installation guide for PyCharm: https://www.jetbrains.com/help/pycharm/installation-
guide.html

NOTE: There are minimum criteria your computer must meet to successfully install
PyCharm; see the System Requirements section of the above link.

Assignment 1

Creating your First Python Program

1) Open the PyCharm editor and create a new project.

2) Select where you would like to save your project and give it a meaningful name.

3) Click on “File” from the menu bar and select New Python File.

4) Name your first P ython file.

5) Write a simple program – print(“Hello World from PPiAl!”).

6) Go up to the menu bar and select run to compile your first program.

7) You will be able to see an output of your program at the bottom of the screen.

https://realpython.com/installing-python/#how-to-install-python-on-macos
https://realpython.com/installing-python/#how-to-install-python-on-linux
https://www.jetbrains.com/help/pycharm/installation-guide.html
https://www.jetbrains.com/help/pycharm/installation-guide.html

8

2.1 Variables

2.1.0 Strings

 Strings are one of the fundamental data types in computer programming used to

represent text. In other words, we may say Strings are considered as arrays of bytes

representing Unicode characters.

Creating a string: A string is created by enclosing text in quotes. You may use either single

quotes ', or double quotes ". Here are some examples:

An empty string ' ' is a string with nothing in it.

The Python str() function converts the specified value into a string.

For example:

https://youtu.be/1x0pJoNJFN0

9

The str() method returns a string, which is considered to be a printable version that

represents the given object.

2.1.1 Numbers

Python supports integers, floating-point numbers and complex numbers. They are defined

using the functions int(), float(), and complex() in python. The presence or absence of a

decimal point determines whether or not the input is an integer or floating point. For

example, 2 is an integer whereas 2.0 is considered a floating-point number.

Integers (whole numbers) can be arbitrarily large. Examples of integers are

numbers such as 1, -1337, 2540 and so on.

Floats (d ecimal numbers) are represented by floating-point numbers. Examples of

floats are 1.25, -13.37E2, 1E-3, and so on.

Complex numbers are written in the form “X + Yi” where X is the real part (i.e. a real

number like the integer 8) and Y is the imaginary part (an imaginary number containing an i

after the integer). Examples of complex numbers may include 5i, -2.2i and so on.

2.1.2 Boolean

A Boolean type is one the built-in data types that helps us represent the truth value of an

expression. For example, the expression 2 < 6 is True, while the expression 6 > 9 is False.

The Python Boolean type has two possible values:

1) True

2) False

The function bool() allows us to evaluate a value that gives True or False in return

depending on the situation.

10

2.2 Variables

Variables are containers that are used to store data values. A variable is created when a

value is assigned to it.

Variables in Python do not require themselves to be declared to any particular data type,

and they can even change the data type after it has been set.

The data type of a variable may be specified if required by use of casting.

2.3 Arithmetic Operators

Arithmetic operators are used with numeric values to perform common mathematical

operations.

Operator Meaning Example

+ Addition 1 + 2

11

- Subtraction 1 - 2

* Multiplication 1 * 2

/ Division 1 / 2

% Modulus 1 % 2

** Exponentiation 1 ** 2

// Floor division 1 // 2

2.4 Assignment Operators

Assignment operators are used to assign values to variables.

Operator Example Same As

= x = 5 x = 5

+= x += 6 x = x + 6

-= x -= 3 x = x - 2

*= x *= 2 x = x * 2

/= x /= 2 x = x / 2

%= x %= 2 x = x % 2

12

//= x //= 2 x = x // 2

**= x **= 2 x = x ** 2

&= x &= 2 x = x & 2

|= x |= 2 x = x | 2

^= x ^= 2 x = x ^ 2

>>= x >>= 2 x = x >> 2

<<= x <<= 2 x = x << 2

2.5 Comparison Operators

Comparison operators are used to compare two values.

Operator Description Example

== Equal x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal
to

x >= y

13

<= Less than or equal to x <= y

2.6 Logical Operators

Logical operators are used to combine conditional statements.

Operator Description Example

and Returns True if both statements are true x < 5 and x < 10

or Returns True if one of the statements is
true

x < 5 or x < 4

not Reverse the result, returns False if the
result is true

not(x < 5 and x <
10)

2.7 Identity Operators

Identity operators are used to compare the objects, not if they are equal, but if they are

actually the same object, with the same memory location.

Operator Description Example

is Returns True if both variables are the same
object

x is y

is not Returns True if both variables are not the
same object

x is not y

14

2.8 Bitwise Operators

Bitwise operators are used to compare (binary) numbers.

Operator Name Description

& AND Sets each bit to 1 if both bits are 1

| OR Sets each bit to 1 if one of two bits is 1

 ^ XOR Sets each bit to 1 if only one of two bits is 1

~ NOT Inverts all the bits

<< Zero fill
left shift

Shift left by pushing zeros in from the right and
let the leftmost bits fall off

>> Signed
right shift

Shift right by pushing copies of the leftmost bit
in from the left, and let the rightmost bits fall
off

15

Assignment 2

Creating a Basic Financial State Calculator

Your client wants a program to generate a basic financial report that users can run regularly
to understand their current financial state. This program should be able to store:

● T he user’s name

● C hecking account balance
● S aving’s account balance
● I nvestment account value
● Total utility bills
● T otal credit card debt
● C redit card balance due
● C redit card minimum payment due
● A nnual credit card interest rate
● L oan debt
● L oan payment due
● A nnual loan interest rate
● O ther asset value

When run, this program should generate the following report:

Hello <user’s name>,

The total dollar value of assets you own is $<total value of assets> and the total dollar value
of your debt is currently $<total debt>; therefore, your current net worth is: $<total net
worth>.

Your total bills due are $<total value of bills due>. Once you make these payments, you will
have $<value remaining in the checking account after making payments> left in your
checking account, and $<total remaining money in bank> in your bank accounts overall.
Additionally, your total credit card debt will be down to $<credit card debt remaining after
paying balance due> and your loan debt will be down to $<loan debt after paying amount
due and interest is applied on the remaining balance for the month> (including interest
applied on the remaining balance after your payment). Therefore, your total debt will then
be paid down to $<total debt after making payments> and your net worth will be $<net
worth after making payments as specified>.

EXTRA CREDIT: If you’d like extra credit on your assignment, you can include the following
passage in your output. Successfully including this will give you an extra one quarter worth
of assignment credit:

If you instead choose not to pay off your full credit card balance due ($<credit card
balance due>) and only pay the minimum payment du , ($<credit card minimum
payment due>) you will have $<value remaining in the checking account after making
minimum payments> left in your checking account, and $<total remaining money in bank>

16

in your bank accounts overall. However, you will accrue $<interest accrued on credit card
balance for the month> in interest. Your total credit card debt will then be $<total credit
card debt after paying minimum payment and accruing interest on remaining balance due>.
In this case, your total debt would instead be $<total debt after making payments as
specified> and your net worth will be $<net worth after making payments as specified>.

Formula Sheet

Total value of assets = checking account balance + saving’s account balance +investment
account value + other assets value

Total Debt = total utility bills + total credit card debt + loan debt

Total net worth = total value of assets - total debt

Total Value of Bills Due = total utility bills + credit card balance due + loan payment due

Value remaining in the checking account after making payments = checking account

balance - total value of bills due

Total remaining money in bank = Value remaining in the checking account after making

payments + saving’s account balance

Credit Card Debt After paying balance due = total credit card debt - credit card balance

due

Loan debt after paying amount due and interest is applied on the remaining balance
for the month = loan debt - loan payment due + ((loan debt - loan payment due) X annual

loan interest rate ➗12)

Total debt after making payments = l oan debt after paying amount due and interest is

applied on the remaining balance for the month + c redit c ard d ebt a fter paying
balance due

Net worth after making payments specified = total value of assets - total value of bills due

- c redit c ard d ebt a fter paying balance due - l oan debt after paying amount due
and interest is applied on the remaining balance for the month

Minimum Bills Due = total utility bills + credit card minimum payment due + loan payment
due

Value remaining in checking account after making minimum payments = checking
account balance - minimum bills due

Total remaining money in bank (Paragraph 2) = checking account balance + saving’s
account balance - minimum bills due

Interest accrued on credit card balance for the month = (credit card balance due - credit

card minimum payment due) X (annual credit card interest rate ➗ 12)

17

Total credit card debt after paying minimum payment and accruing interest on
remaining balance due = total credit card debt - credit card minimum payment due + i
nterest accrued on credit card balance for the month

Total debt after making payments as specified (paragraph 2) = t otal credit card debt
after paying minimum payment and accruing interest on remaining balance due + l oan
debt after paying amount due and interest is applied on the remaining balance for the month

Net worth after making payments as specified (paragraph 2) = total value of assets -

total utility bills - loan payment due - credit card minimum payment due - l oan debt after
paying amount due and interest is applied on the remaining balance for the month - t otal
credit card debt after paying minimum payment and accruing interest on remaining balance
due

18

3.1 Conditionals

Python if statement

Many times, we may need our program to do something provided something else is true.

Python’s if statement helps us in this situation.

Let’s start with a simple example to demonstrate how this works.

In the above example, we use two variables, boolean1 and boolean2, which are used as a

part of the if statement to test whether boolean1 is initialized to true in the first case, or

either boolean1 or boolean2 are initialized to true.

Python if … else statement

The if … else statement evaluates the variable and will execute the body below the if only

when the test condition is True.

If the condition is False, the body below the else block will be executed.

Look below for an example: if boolean1 is not initialized to true, the program moves to

the else block for execution.

https://youtu.be/hBw7mc8XUVQ

19

Python if … elif … else statement

The “elif” designation is short for else if. It allows you to check for multiple

expressions.

If the condition for the if block is False, then it checks for the condition of the next elif block

and so on.

If all the conditions are False, the body of the else block is executed.

Only one block among the several if … elif … else blocks is executed based on the

conditions.

The if block can only have one else block. However, it may have several elif blocks.

In the following example, the program checks which if … elif … else blocks returns True

before executing the body of the block. If boolean1 is found to be True, it will not move

further to the rest of the statements. However, if boolean1 is False, then it will move on to

the elif statement. If the elif statement returns True, then the block is executed, otherwise

the else block is executed.

 Notice that Python relies on indentation to define the scope in the code.

If only one statement is to be executed, one for if, and one for else, we may put it all on the

same line.

Shorthand if

Shorthand if … else

20

Conditionals can also be “nested”, meaning we may add a conditional within another

conditional. We just need to be mindful of indentation:

3.2 Data Structures

A data structure is essentially a means for storing and organizing a collection of data values.

● Generally composed of “primitive” data types such as Strings, Booleans, and

Numeric data types, they can also include other data structures “nested” within

them.

● Each has their own set of m ethods, or a defined action that can be performed on

the data structure. Methods are called “on” a data structure using dot notation (i.e.

data_structure.method())

There are m any different kinds, each with their own relative benefits and uses.

● Sets

● Tuples

● Arrays/Lists

● Dictionaries

● Objects

● Etc.

3.3 Sets

Sets are an unordered collection of unique values that are immutable. Here are the different

types of sets:

● Unordered - The elements within a set are not ordered. You can enter them in any order

when creating the set, but the order is not maintained.

21

● Unique - All elements in a set must be unique and duplicates are not allowed.

● Immutable - Once defined, you cannot change the values of the elements in the set,

but you can add and remove elements from the set.

A set may be defined in one of the two ways:

● my_set = set()

● my_set = {}

3.4 Set Methods

There are a few built-in methods that can be used on sets:

Method Description

add() Adds an element to the set

clear() Removes all the elements from the set

copy() Returns a copy of the set

difference() Returns a set containing the difference between two

or more sets

difference_update() Removes the items in this set that are also included in

another specified set

discard() Remove the specified item

intersection() Returns a set that is the intersection of two or more

sets

intersection_update() Removes the items in this set that are not present in

other specified set(s)

isdisjoint() Returns whether or not two sets have a intersection or

not

issubset() Returns whether another set contains this set or not

issuperset() Returns whether this set contains another set or not

pop() Removes an element from the set

remove() Removes the specified element

https://www.w3schools.com/python/ref_set_add.asp
https://www.w3schools.com/python/ref_set_clear.asp
https://www.w3schools.com/python/ref_set_copy.asp
https://www.w3schools.com/python/ref_set_difference.asp
https://www.w3schools.com/python/ref_set_difference_update.asp
https://www.w3schools.com/python/ref_set_discard.asp
https://www.w3schools.com/python/ref_set_intersection.asp
https://www.w3schools.com/python/ref_set_intersection_update.asp
https://www.w3schools.com/python/ref_set_isdisjoint.asp
https://www.w3schools.com/python/ref_set_issubset.asp
https://www.w3schools.com/python/ref_set_issuperset.asp
https://www.w3schools.com/python/ref_set_pop.asp
https://www.w3schools.com/python/ref_set_remove.asp

22

symmetric_difference() Returns a set with the symmetric differences of two

sets

symmetric_difference_update(

)

I nserts the symmetric differences from this set and

another

union() Return a set containing the union of sets

update() Update the set with another set or any other

iterable

3.5 The in Operator

The in operator can help us determine if an element already exists in a set by using it to

form a Boolean expression:

https://www.w3schools.com/python/ref_set_symmetric_difference.asp
https://www.w3schools.com/python/ref_set_symmetric_difference_update.asp
https://www.w3schools.com/python/ref_set_symmetric_difference_update.asp
https://www.w3schools.com/python/ref_set_union.asp
https://www.w3schools.com/python/ref_set_update.asp

23

Assignment 3

Creating an Activity Suggestion App

Your client is extremely indecisive with what to do in their free time and wants you to develop
a simple program to make suggestions as to what they sh ould do based on a few factors.
This program should be able to store:

● A w eekday indicator (whether or not it is a weekday) - This should be a Boolean

value

● The current weather - this should be a String value

● The funds the user has available to spend - this should be a Numeric value

The client lives in a place where the weather is always either nice, raining, or freezing, so the

program should verify that the weather entered matches one of these values.

(HINT: use a set along with the in operator!)

After verifying that the weather entered is valid, the program should do the following:

● In the case that it is a weekday:

o T he program should output a reminder stating: You may have work or
school today, but here are some suggestions if not…

o Then, in the case that the weather is nice:

▪ The program should output: The weather is nice, so let's
do something outside.

▪ Then, in the case that the user’s available funds are at least 100, the

program should output: Let’s go to an amusement park!

Otherwise, the program should output: Let's go for a walk in
the park.

o Otherwise, in the case that the weather is raining:

▪ The program should output: It's raining outside, so let’s
do something indoors.

▪ Then, in the case that the user’s available funds are at least 50, the
program should output: Let’s go to a museum!

Otherwise, the program should output: Let’s stay in and watch
movies.

o Otherwise:

▪ The program should output: It is freezing outside! If you
leave the house, make sure to bundle up!

▪ Then, in the case that the user’s available funds are at least 150, the

program should output: Let’s hit the slopes and go
skiing!

Otherwise, the program should output: Let's stay in and drink
hot chocolate while watching movies.

● Otherwise,

o The program should output: It's the weekend! Wooo! Let’s
decide what to do…

o Then, in the case that the weather is nice:

▪ The program should output: The weather is nice, so let's
do something outside.

▪ Then, in the case that the user’s available funds are at least 100, the
program should output: Let’s go to a concert at an
outdoor venue!

Otherwise, the program should output: Let's go on a hike
somewhere.

24

o Otherwise, in the case that the weather is raining:

▪ The program should output: It's raining outside, so let’s
do something indoors.

▪ Then, in the case that the user’s available funds are at least 50, the

program should output: Let’s go to a comedy show
somewhere.

Otherwise, the program should output: Let’s go on some free
tours of the local places of worship!

o Otherwise:

▪ The program should output: It is freezing outside! If you
leave the house, make sure to bundle up!

Then, in the case that the user’s available funds are at least 150, the program should output:

Let’s check out a local bar and/or arcade and play games!

Otherwise, the program should output: Let's just call some friends and see if

they want to come over and play board games!

25

4.1 Arrays

Arrays are an ordered collection of non-unique values that are all a specified type and are

mutable.

● Ordered - The elements within an array have a defined order; the order in which

you enter them is the order in which they will remain.

● Non-unique - Unlike a set, you can have multiple of the same value in an array.

● Specified type - When creating an array, you must specify the type of the elements

within the array and all elements in the array as they must match that specified type.

● Mutable - You can alter the values of the elements in an array.

● An array is not built into Python, so it needs to be imported using the array module.

● Accessing individual elements:

o Elements of an array can be accessed via their index value.

o Arrays are zero-indexed, meaning that the first element has index value 0, the

second has index value 1, etcetera

https://youtu.be/N7ztCYBi_28

26

o You can use the concept of indexing to replace the value of an element

with another value.

4.2 Array Methods

There are several built-in methods that may be used on arrays:

● append() - appends a specified element to the end of the array

● pop() - removes the last element from an array

● insert(,) - inserts an element into the array at a specified index

● remove() - removes the first occurrence of a specified element from an array

● index() - returns the index of the first occurrence of a value in the array

27

4.3 Dictionaries

Dictionaries are an unordered collection of key-value pairs where values are mutable but

keys are not.

● Unordered - Dictionaries have no particular order to them and thus can’t be indexed

like an array or list.

● Key-value pairs - Items of a dictionary are stored in key-value pairs and each item

must have a key and a value, and these are separated by a colon.

● Dictionaries can be defined using curly brackets or using the dict() constructor

function.

● Unlike in indexing , values in a dictionary can be referenced using their keys.

● But we need to be careful! You’ll get an error if you try to reference a nonexistent

key.

● Dictionaries can be nested such that the value of some key (or keys) in your

dictionary is itself a dictionary.

● You can also add new key value pairs as a dictionary.

28

4.4 Dictionary Methods

There are several built-in methods that may be used on dictionaries:

● get(<key>, <default>) - Returns the value of the entered key if it exists; otherwise

the default value will be returned if present. If no default is given, “none” is

returned.

● keys() - Returns a list of all the keys present in your dictionary

● values() - Returns a list of all the values present in your dictionary.

● items() - Returns a list of Tuples (see chapter 28) representing the key-value pairs of

your dictionary.

29

Assignment 4

Searchable Address Book

Your client wants you to build them a searchable address book program which they can use
to determine if they have contact information for someone and, if so, have the program list
out all of the possible ways in which the person of interest could be contacted. This program
should store:

● An arbitrary collection of contact methods - build this out yourself with fake values
o Each contact should have one or more of the following contact details:

▪ Home phone number

▪ Mobile phone number

▪ Work phone number

▪ Personal Email address

▪ Work Email address

▪ Home address

▪ Work address

● The name of the individual that the user wants to search for

When run, the program should do the following:

1. First, determine if the entered name exists in the collection of contacts

1. In the case that the contact does exist, the program should output: Contact
information found for <name of contact entered>!

1. The program should then output each of the contact details available
for that user in the format: <name of contact entered> can be
reached via their <contact detail name, for example

home phone number> at <contact detail value>

b. In the case that the contact doesn’t exist, the program should output: No
contact information found for <name of contact>! Be sure

to ask them for their contact details next time you see

them.

For example, say my address book contains the following contacts:

● David
o Mobile phone number: 123-456-7890
o Work phone number: 098-765-4321
o Personal email address: david@home-email.com
o Home address: 1234 Somewhere Dr., Denver, CO, 80221 USA

● Zofia
o Work phone number: 456-123-7890
o Work address: 4321 Workplace St., New York, NY, 10001 USA

If the name I enter into the program is David, the program would output:

Contact information found for David!
David can be reached via their mobile phone number at 123-456-7890.
David can be reached via their work phone number at 098-765-4321.
David can be reached via their personal email address at david@home-

email.com.
David can be reached via their home address at 1234 Somewhere Dr.,

Denver, CO, 80221 USA.

Alternatively, if the name I enter into the program is Zofia, the program would output:

mailto:david@home-email.com
mailto:david@home-email.com
mailto:david@home-email.com

30

Contact information found for Zofia!
Zofia can be reached via their work phone number at 456-123-7890.
Zofia can be reached via their work address at 4321 Workplace St.,

New York, NY, 10001 USA.

Finally, if the name I enter into the program is Jonathan, the program would output:

No contact information found for Jonathan! Be sure to ask them for

their contact details next time you see them.

31

5.1 Lists

Lists are an ordered collection of non-unique values that are of any type and are mutable.

● Ordered - The elements within a list have a defined order, so the order in which you

enter them is the order in which they will remain.

● Non-unique - Unlike a set, you can have multiple of the same value in a list.

● Any type - Unlike an array, when creating a list, you do not need to specify the type

of the elements within the list and the elements of the list can be of any type

needed.

● Mutable – You can alter the values of the elements in a list.

● Accessing individual elements:

o Like arrays, elements of a list can be accessed via their index value.

o Lists are zero-indexed, meaning that the first element has index value 0, the

second has index value 1, etcetera.

https://m.youtube.com/watch?v=71IAh6C95jw&pp=sAQA
https://m.youtube.com/watch?v=71IAh6C95jw&pp=sAQA

32

o You can use this concept of indexing to replace the value of an element with

another value.

o Lists can also be negatively indexed. Negative indexing is -1-indexed,

meaning the last element in your list is at index -1.

5.2 List Slicing

List slicing is essentially a means for grabbing a portion, or slice, of a list. This is

accomplished using indexes in combination with bracket notation and a colon.

● From some index onward - negative indexes allowed!

● From some index to another (NOTE: first index is inclusive, second is exclusive!)

● Up to some index (exclusive!)

The slicing operator mylist[i:j] returns a new list containing the characters of mylist starting

at index I (inclusive) up to index j (exclusive).

5.3 List Methods

Most array methods also apply to l ists:

● count() - counts the number of elements with the passed value

33

● extend() - extends the existing list by appending values of the passed list to the end

● reverse() - reverses the elements of the list

● sort(reverse=False) - sorts the list into ascending order. One c an set reverse=True

to sort in a descending fashion. The d efault value ofa reverse is False.

5.4 Lists and Strings – a useful relationship!

Sometimes it can be useful to think of a s tring as a l ist of characters as you can apply

many l ist concepts and even some methods (but not all) to a s tring.

● Slicing

● Indexing

● Methods – only some, not all!

For example, the above two methods work for both lists and strings.

34

Some methods such as sort() do not work the same for strings as they work

for lists.

● For methods that don’t work on a string, simply cast to a list, first, then join back

together.

5.5 Tuples

Tuples are an ordered collection of non-unique values that are of any type and are

immutable.

● Ordered - The elements within a tuple have a defined order, so the order in which

you enter them is the order in which they will remain.

● Non-unique - Unlike a set and more like a list, you can have multiple of the same

value in a tuple.

● Any type - Unlike an array, when creating a tuple, you do not need to specify the

type of the elements within the tuple and the elements can be of different types.

● Immutable - You cannot alter the contents of a tuple once it’s set.

5.6 Tuple indexing and Slicing

● Like lists, tuples can be indexed and sliced.

35

● Tuples are immutable, so unlike lists you cannot modify the elements of a tuple.

5.7 Tuple Methods

There are several built-in methods that may be used on:

● index(<val>) - returns the index of the first element of the tuple that matches the

value passed

● count(<val>) - returns the number of instances of the value passed within the tuple

● Because tuples are immutable, many of the methods that lists and even sets have

aren’t possible on a tuple:

o Can’t add elements

o Can’t remove elements

o Can’t update the value of elements

36

Assignment 5

Complete the exercises below, placing the necessary code in the blanks to achieve the
desired output

1. Given a list, display it in backward order.

my_list = [100, 200, 300, 400, 500]

[500, 400, 300, 200, 100]

1. Insert the value “7000” at the end of the innermost list.
my_list = [10, 20, [300, 400, [5000, 6000], 500], 30, 40]

[10, 20, [300, 400, [5000, 6000, 7000], 500], 30, 40]

1. Insert the elements ‘h’, ‘i’, and ‘j’ into the innermost list.
my_list = ["a", "b", ["c", ["d", "e", ["f", "g"], "k"], "l"], "m",

"n"]

['a', 'b', ['c', ['d', 'e', ['f', 'g', 'h', 'i', 'j'], 'k'], 'l'],

'm', 'n']

1. Given any list, find the value “20” in the list and, if present, replace the first
occurrence with 200. Write your code so that the same lines of code can be used for all use
cases below.
my_list = [5, 10, 15, 20, 25, 50, 20]

[5, 10, 15, 200, 25, 50, 20]

my_list = [6, 11, 16, 21, 26, 51, 21]

[6, 11, 16, 21, 26, 51, 21]

my_list = [5, 10, 15, 21, 25, 50, 20]

[5, 10, 15, 21, 25, 50, 200]

1. Retrieve the 5th through 8th elements of a list.
my_list = [11, 33, 55, 22, 66, 77, 3, 77, 8, 9, 4, 66, 7, 99]

[66, 77, 3, 77]

1. Retrieve the last 6 elements of a list. Write your code so that the same lines will work
for both of the below use cases.
my_list = [5, 10, 15, 20, 25, 50, 20]

[10, 15, 20, 25, 50, 20]

37

my_list = [11, 33, 55, 22, 66, 77, 3, 77, 8, 9, 4, 66, 7, 99]

[8, 9, 4, 66, 7, 99]

38

6.1 Loops

Loops allow certain portions of the code to execute several times. This repeated execution

of a set of statements is called an iteration. Additionally, l oops enable iteration on

python objects that are capable of returning its members one at a time.

Types of Loops: for loop, while loop, nested for loop

Iterable objects in Python: Arrays/Lists, Dictionaries, Tuples, Strings

A common function used in loops is range()

6.2 for Loop

A for loop is used to iterate over a sequence that may be either a list, a tuple, a dictionary, a

set, or a string.

With the for loop, we may execute a set of statements, once of each item in a list, tuple, etc.

For example, this code will print all the items in student_names_list one by one.

The output is:

https://m.youtube.com/watch?v=TVr2_Lu7MGk&feature=youtu.be
https://m.youtube.com/watch?v=TVr2_Lu7MGk&feature=youtu.be

39

Remember: Strings are arrays of bytes.

This code iterates a s tring using Loop.

It will iterate and print every character, including spaces, each on a new line.

6.3 while Loop

A while loop is used to execute a set of statements or iterate an object until the condition in

the while statement is true.

The syntax for a while loop is as follows:

For example:

40

Note: while loops require index to index documentation through the members of an

object while for loops do n’t.

6.4 Nested Loop

It is possible to nest loops.

You can have a for loop inside another for loop or a while loop inside another while loop or

one of each inside another.

Output is:

41

6.5 Iterable Functions

An iterable function in Python is capable of returning its members one at a time, allowing it

to be iterated over in a for-loop.

For example, the function range() returns a set of numbers:

Syntax:

Similarly, there are .keys(), .values(), .iterkeys(), and .items() for iterating through a

dictionary.

The function enumerate() is used to convert a list into an iterable list of tuples.

iter() is used to iterate through lists , arrays, strings, and others .

42

6.6 break statement

A break statement in Python terminates the current loop and resumes execution at the next

statement.

6.7 continue statement

A continue statement in python is used to skip the rest of the code inside a loop only for the

current iteration. The l oop doesn’t terminate but continues with the next iteration.

43

Assignment 6

Q1: Write a program that accepts a number and outputs either “valid” if it is 5-numbers long or

“invalid” if it is not.

Example 1: x = 1234

Ans: Invalid

Example 2: x = 45321

Ans: Valid for processing

Q2: Modify the program in Q1 that adds all the digits of the entered number and display it in the

form of an equation using loops.

For example: x = 56781

Ans: 5+6+7+8+1 = 27

Note: the left-hand side of the answer must be dynamic.

Q3: Modify the program that you have written in Q1 to capture the below scenarios:

1. If there is a number 2 in the entered number, then do not add.

For example: x =73251

Ans: 7+3+5+1= 16

2. If there is a number 9 in the entered number, then multiply it by 2 and add.

For example: x =12949

Ans: 1+2+18+4+18 = 43

See how I multiplied 9 with 2 two times.

44

7.1 Input And Output (I/O)

Inputs are ways to accept information from the user whereas the output is to provide

information back to the user.

The inputs and outputs both could be via command-line, user-interface, or files.

Remember the print function we have been using? G uess what, that's a classic

example of output in the console.

7.2 Input Via user

Inputs can be accepted from users using the input() function in python.

The input() function stops the execution of code and gives the control of the program to

the user . The user is prompted to enter the data (using the k eyboard) and once the

user enters the data, the control returns to the program and the function input() returns the

entered data in the form of a s tring which can be processed further or displayed back to

the user.

https://m.youtube.com/watch?v=bzBjfEB9u9s&feature=youtu.be
https://m.youtube.com/watch?v=bzBjfEB9u9s&feature=youtu.be

45

The input() function always treats the input as a s tring.

The isInstance() is a python function that checks the data type in argument 1 with

argument 2 and returns the boolean result.

Use the type() function to find the arg 2 class type.

7.3 Input Via Files

Input can also be read from files using the open() function.

The open function takes two parameters: filename and mode.

● filename: it is the path of a file in the system along with file name and it’s extension

● mode: it could be

r for reading the file, and returns “error” if it doesn’t exist
(default)

a for appending data into the file and creating a file if does
not already exist

w for writing into a file and creating a file if not already exist

x for creating a file returning error if it already exists

46

7.4 Input Via Files – Syntax

The following functions allow us to read open and read these files;

● open() is generally preceded by with keyword to handle file operations easily.

● readlines(): this function creates a list of each line in the file.

● read() : it will read the entire file and return the text. [Not a good choice if the file is

huge]

7.5 Input Via Files – Write and Append mode

The append mode will add the text into the existing file and won’t overwrite anything. It

can be used on an empty file as well.

The write mode will add the text into the existing file and erase everything which was

there before.

7.6 Files And Folders

47

Sometimes it is required that a user must read and write into multiple files that are

present in a directory or sub-directories.

With our current knowledge, we can write the path of every file and perform

operations for each of them. What should we do in case that there are 100’s of folders

and 1000’s of files inside them?

● Python provides an easy way to iterate the folders and sub-folders in a path using

library os.

● Import the library before using the functions.

>>> import os

7.7 Files And Folders – os.walk

To iterate all the files and folders in a directory including sub-directory and sub-folder, use

os.walk.

7.8 Files And Folders – os

→ To check if a path exists or not with os, use os.path.exists

→ To check if a path is to a file and not a directory, use os.path.isfile

48

→ To check if a file is empty with os, use os.path.getsize()

Below is an example where we first checked if a file is available in the path and then

checked the size to avoid python exceptions.

49

7.9 Files And Folders – replace

What if we need to replace a string with another and create a new file? use replace()

● open() can be used in a single line using ‘with’ loop to read and write at the same
time

50

Assignment 7

Click here to access the folder

Background: There is a folder named “College” provided to you. The folder has

many sub- folders and these folders may or may not have files inside them.

The folders inside College have the names “Stream 1”, “Stream 2’, and

“Stream 3”.

These folders have files named as Student details.txt and faculty details.txt

which has information for students and faculty respectively, given as :

Note: even if the folder has a file inside them, this file may be empty.

Question 1: Write a program that accepts a filename as user input and create a

file inside the College folder if the user writes a valid name. Otherwise print

“Invalid file name” in console and exit out of the program.

Hint: Users can press ‘Enter’ instead of writing file name and that is a

failure condition.

Tip: will terminate the code.

Question 2: Modify the program in question 1 to write a header inside the file

if the user enters a valid name.

id,enroll_year,name,stream,student,faculty,source_file_path

Question 3: Write a program to iterate through all the folders inside the

‘College’ folder and read the data from the files and write them inside the file

created in question 2.

Tip: id, enroll_year and name is given in the file.

Stream is the name of sub folder.

https://drive.google.com/drive/folders/14RX2exgpqxz59hEbV8XMZomzKF4VVMwG?usp=sharing

51

Student: if the data is inside the student details, write ‘yes’ for the student

and ‘no’ for faculty.

Faculty: Similarly, if the file name from where the data is getting read is faculty

details, write ‘no’ for students and ‘yes’ for faculty.

Source file path is the full path of the file from where the data is being read.

Expected format of output:

You may need to learn about split() functions in python.

52

8.1 What is Function?

A function can be thought of as a named and stored code block that runs only when it’s
called.

● Typically this is a block of code that you’d otherwise have to repeat in your program
multiple times:

o Say we didn’t use a function for repeated code. What happens when you
need to change a portion of that code block? You’d have to change it
everywhere the code block appears! Functions help make it easy so that you
only have to make the change in one place.

Functions are defined using the def keyword .

Functions can optionally accept inputs called parameters (or arguments).

Functions return data to the caller.

We’ve actually already been using built-in functions throughout the course:

● print() - Outputs whatever is entered as a parameter to the console.

● str() - Converts whatever is passed as a parameter to a String.

● int() - Converts whatever is passed as a parameter to an Integer if this conversion is
logical; otherwise an error occurs.

8.2 Defining a Function

https://m.youtube.com/watch?v=E8SSABtgYNE&feature=youtu.be
https://m.youtube.com/watch?v=E8SSABtgYNE&feature=youtu.be

53

Functions are declared using the “def” keyword followed by the function’s name, then
parentheses, and a colon.

The code that defines the function, aka the function body, is indented underneath the
function declaration.

Parameters (also called arguments), if present, are defined within the parentheses of the
function declaration:

● These parameters can then be used within the function definition.

8.3 Invoking a Function

Functions are invoked, or called, using their name followed by parentheses.

If the function requires a parameter (or parameters), you must pass the value(s) you want
assigned to the parameter(s) in the parentheses, otherwise an error will occur.

8.4 Parameters

54

Parameters (arguments) are essentially inputs to a function that are used within a function.

Order matters - positional arguments

Parameters are named:

● R epeated names are not allowed

● Instead of invoking with positional arguments, you can use keyword arguments
(i.e. parameter names)

Parameters can have default values

● If a parameter is given a default value, it becomes optional when invoking the

function

● If creating a function with both required and optional (i.e. defaulted) parameters,
you may define required parameters first and optional parameters last

55

8.5 Return Statement

As mentioned earlier, all functions return data to the caller. The return keyword allows us to
specify what that data should be

● Functions without a return statement always return “None”

● Functions with a return statement, returns the value specified after the

return keyword, which can be stored in a variable

● … but only if the return statement is reached, otherwise “None” is returned!

You can return multiple values with a single return by separating return values with a
comma.

56

● Returned in the form of a Tuple

● Can “unpack” by assigning to multiple variables

8.6 Documentation Strings (Docstrings)

Documentation strings, or docstrings for short, are essentially comments used to document
a function’s usage.

● Typically wrapped in triple quotes

● Contains one to four parts:
o Description
o Parameters (if applicable)
o Return value (if applicable)
o Errors/exceptions raised by the function (if applicable)

Functions have a special attribute, __doc__, with the value of the docstring that you
entered when defining the function. Use this attribute to learn about new functions.

57

8.7 Scope

The scope of a variable or function defines the context in which that variable or function is
recognized.

Variables we’ve defined and used in class so far have a global scope, meaning they can be
referenced from anywhere in the code.

If a variable (or function) is defined within a function, it is part of the local scope of that
function and cannot be accessed outside of that scope (i.e. outside of the function).

58

You can have multiple variables with the same name, one in the global scope and others
inside the scope of function(s): this is called shadowing.

You can get a reference to a global variable from within a local scope using the global
keyword.

59

Assignment 8

For each of the below questions, write a function to solve the use case at hand and provide
a few examples of using the function. The questions will get increasingly challenging both
technically and in terms of being less descriptive as to exactly what is required to accomplish
the task as you progress through the assignment. Make sure to document all of your
functions thoroughly with docstrings!

1. Write a function that accepts two arguments: a numeric value as well as a list of

numeric values. This function will be used to multiply each value in the list by the
number passed and return the resulting list after this multiplication has been applied.

For example, if I gave the inputs 2 and [1,2,3,4,5] the result would be
[2,4,6,8,10]

2. Write a function that converts a temperature entered in Fahrenheit to Celsius.
3. Create a function that accepts three arguments corresponding to the current

temperature in degrees Fahrenheit or Celsius, an indicator telling if the temp is in
degrees Fahrenheit or Celsius, and the current weather forecast (must be one of
"cloudy", "raining", or "sunny") and prints out what the caller should wear based on
these values according to the following:

1. First, if the temperature is in Fahrenheit, use the function created for question
2 to convert to Celsius

2. If the temperature is below freezing, output it is probably best to
stay in today

3. Otherwise, output it's warm enough to go outside and…

1. In the case the weather is sunny output and you should bring
sunglasses

2. In the case the weather is raining output but you should bring
an umbrella

3. In the case the weather is cloudy output you do not need an
umbrella, and you may not need sunglasses

4. Additionally, in the case the temperature is below 10 degrees, output
and you should bring a jacket

5. In the case the temperature is above 10 degrees but below 15, output
and you should bring a sweatshirt

6. In the case the temperature is 15 degrees or greater, output and you
don't need any extra layers!!!

EXTRA CREDIT!!!
1. A factorial, denoted by an integer followed by an exclamation point, is the product of
an integer and all the integers below it; e.g. factorial four (4!) is equal to 4x3x2x1 = 24. Note
that 0! = 1. Write a function that calculates and returns the factorial of a number. Do not use

an existing function for this, come up with the logic yourself!
2. Write a function that can convert between U.S. customary units and metric units.
Here is a link to various conversion tables: https://www.mathsisfun.com/metric-imperial-
conversion-charts.html. Include the ability to convert between at least the following:
a. Feet/inches and meters (and vice versa)
b. Miles and kilometers (and vice versa)
c. Fluid ounces and milliliters (and vice versa)
d. Gallons and liters (and vice versa)

https://www.mathsisfun.com/metric-imperial-conversion-charts.html
https://www.mathsisfun.com/metric-imperial-conversion-charts.html

60

9.1 Object Oriented Programming

Just about everything in Python is considered an object. Objects have properties/attributes
as well as methods.

● Properties are like variables that are a part of an object and they are only
referenceable through the object using dot notation.

● Methods are like functions that are defined within and called on an object using dot
notation.

9.2 Classes

A class is essentially a template that is used to define a custom object type, it s
properties/attributes, its methods, and its behaviors.

Classes are defined using the class keyword.

Properties/attributes and methods of a class are indented underneath the class declaration.

https://www.youtube.com/watch?v=5CupjuosLkA

61

We can create instances of a class by calling the class name followed by parentheses.

Similar to methods, we can access an instance of a class's attributes using dot notation.

9.3 The __init__() Method

Every class has an __init__() function, which is called every time you instantiate, or create a
new instance of a class.

We use the __init__() function to dynamically assign the values of a new object
instance’s properties.

62

9.4 Methods

Methods are like functions that are defined within and called on an object using dot
notation.

We define methods just like functions, except they are indented underneath a class.

9.5 The self Parameter

self refers to the current instance of the class and we use it throughout the class
definition to access the classes properties and methods.

self must be the first parameter in every class method and can be optionally followed by
other parameters.

63

9.6 Docstrings

Just like with functions, classes and methods can and should include docstrings.

9.7 Errors and Exceptions

A Syntax Error occurs when the syntax, or structure and composition, of the code written is invalid.

● You’ve likely seen these while attempting assignments and you forget a piece of punctuation
(i.e. create a conditional or loop and you forget a colon), or if you misuse an operator. When
this occurs, a traceback is returned in the output to the console to help point out the error.

● Syntax Errors are detected before execution and are always “fatal” meaning you cannot

successfully run a program that contains such an error, even if that line of code is never
reached.

Exceptions are essentially errors that occur due to flaws in the program logic.

64

● You’ve likely seen an exception when attempting an assignment if you’ve ever tried
to concatenate a number to a string but forget to cast that number to a string first.

● Exceptions are only detected while the program is executing, so you can still run a
program that may raise an Exception and you will only see an error occur if the code
which produces the Exception is executed.

● There are many different built-in Exceptions that can occur, too many to go over in
depth, but common ones include TypeError, IndexError, KeyError, IndentationError
and ValueError.

9.8 Exception Handling

Up to this point, encountering an Exception has meant our program stops execution and
cannot proceed further. We can get around this by integrating exception handling into our
code base where we essentially anticipate potential errors and include the necessary logic
to address these errors so that the program execution can continue.

● try … except is a control structure that allows us to try some lines of code and
catch exceptions that might occur in that code so we can handle them as needed.

Notice we get exit
code 0 meaning the
program ran
successfully, no
exceptions

● We can include as many except blocks as needed in a try … except for handling
different exceptions differently. These are evaluated in order, with Exception being
the broadest possible.

65

Say we want to actually fix the code and continue on in execution, we can do that in our
except blocks:

Alternatively, say we do want the exception to interrupt execution after adding our logging
statement, we can use the raise keyword to continue to raise the exception to the user’s
level.

66

Assignment 9

Your client needs you to create a program that will allow the creation of users in their
backend system. All the work of saving this to their system is already in place, but they need
you to create the customer facing side of the application that will accept input from the user
in order to build a User object that can then be stored in their system. They’ve provided the
following program requirements:

1. The program must elicit input from the user for populating the User object attributes
2. The program must include data validation to ensure that values given by the user are

correct per the property requirements (see properties under 3.a below)
3. User objects must be created using a User class.

1. This class should have the following properties/attributes, each following the
mentioned requirements belows:

1. First name - cannot be an empty string
2. Last name - cannot be an empty string
3. Age - must be a valid number between 18 and 100. If the user is

under 18, stop execution. Stored value must be in integer format
1. Include exception handling for the possibility that the user

enters a non-numeric string for this value. In the case that this

occurs, print Please enter your age in numeric

format to the console and raise the exception so the program

exits
4. Address - Must contain 6 parts: an address number, street name, city,

province/state, ZIP code, and country - HINT: see split() method for

strings
5. Birth date - Optional
6. Phone number - must contain at least 10 digits
7. Email address - must contain at least 5 characters including an “@”

symbol and a “.”
b. This class must have a method for getting the User objects full name based on their
first and last name.
 Once the user object is created, it should print the following to the console:

Hello <users full name>,

Thank you for registering with the following information:
First Name: <first name>
Last Name: <last name>
Age: <age>
Address: <address>
Birthday: <birthdate> if given, otherwise output Not provided
Phone Number: <phone number>
Email Address: <email address>

67

10.1 Module

A module is a file which consists of python code. Eg: hello_world.py

A module allows you to organize your python code logically. It’s a good programming
practice to keep related code together in a file.

10.2 Module – Import statement

You can use any python file as a module using an import statement.

https://www.youtube.com/watch?v=R6p_maOzlxw

68

When the interpreter encounters an import statement, it executes the entire code of the
module.

10.3 Module – from statement

Python's ”from” keyword lets you import specific attributes from a module into the current
namespace.

Use (*) symbol to import all names from a module.

69

10.4 Package

A package consists of multiple python files. Basically, it is an entire folder structure that
consists of modules.

10.5 Package – import

A package consists of multiple python files. Basically, it is an entire folder structure that
consists of modules.

70

10.6 Multiple import – package and module

We can use comma (,) to import multiple modules or package in one line.

Use as keyword to refer to import modules as custom names.

10.7 Why are packages and modules are needed?

The answer is “Modular Programming.”

Modular programming refers to the process of breaking a large, unwieldy programming task
into separate, smaller, more manageable subtasks or modules. Individual modules can then
be combined like building blocks to create a larger application [1].

Advantages:

● Simplicity

● Maintainability

● Reusability

● Scoping

[1] https://realpython.com/python-modules-packages/

10.8 Python Packages

Python is very popular among developers nowadays and one of the reasons for that are
mature pre-written, easily available packages to do the task.

● Pandas - open source data analysis and manipulation tool

● Numpy - library that supports multi-dimensional arrays and matrices and high-
level math functions

● Requests - HTTP library for performing various HTTP actions with ease

71

● Flask - a micro web framework used for web development use cases and many more
applications

Some packages come pre-installed when you install python, so you just need to import them

● io - contains functions for operating system level operations (eg. I/O)

● math - contains various predefined mathematical functions and values

● sys - contains functions and attributes of the python runtime environment

● datetime - contains date and time related functions

● etc...

10.9 pip

pip is a package-management system for python that facilitates installing and managing
python packages

● It’s name is a recursive acronym, pip = pip installs packages

● Comes pre-installed with most python distributions

If you need a package that isn’t pre-installed with your python distribution, we typically use
pip to install it

You can find and read about available packages and how to install and configure them on
pypi.org

72

Assignment 10

A. Create a package in the project named geometry. Inside the package create 2
modules.

Q1. Create a module ‘Areas.py’ that has 3 functions in it.

Function 1: calculate the area of circle based on radius.

Function 2: calculate the area of rectangle based on length and width.

Function 3: calculate the area of square based on side length.

Q2. Create another module ‘Volume.py’ that has 3 functions in it.

Function 1: calculate the volume of cylinder based on radius and height.

Function 2: calculate the volume of cuboid based on length, width, and height.

Function 3: calculate the volume of cube based on side length.

B. Call the functions defined in both the modules from a python file outside the
package.

Note: import math package to get the value of pi for calculating area of circle and
volume of cylinder.

73

11.1 Testing in Python

Manual testing - manually running code w/ various inputs and observing outputs to ensure
they match expectations

● Simple and intuitive - we’re already doing this

● Time consuming - each test requires creating different inputs and digging through
outputs to verify functionality. If you make a change, you need to manually test each
scenario again .

Automated testing - test your code with code

● This takes u pfront work to write functions to exercise your code and
programmatically verify outcomes.

o If you make a change, retesting is as simple as rerunning your testing script.

Integration testing - tests how all component of a program work together (i.e. testing an
entire program)

● If it is not working as expected, it can be difficult to know exactly where the issue is
coming from.

Unit testing - tests individual components (i.e. units) of a program

● We do not test the entire program in a single unit test, but all of the individual parts
that compose that program in distinct unit tests

o Allows us to identify issues in individual aspects of our code so we can
make targeted fixes

o Typically done before integration testing

11.2 assert Keyword

The assert keyword is used to affirm that a boolean expression evaluates to True and
raises an AssertionError with a specified message if it is False.

https://www.youtube.com/watch?v=poCq5gUP4r4

74

This can be used to verify that a function is returning an expected value

11.3 unittest Package

unittest is a unit testing framework inspired by unit testing frameworks from other
languages. It often comes preinstalled with you Python distribution.

This is how you would use a package:

● Import it into your unit testing file as you do other packages (it should be its own
file)

● Once imported, create a class that is a subclass of unittest.TestCase

● Define methods within that class to perform various tests

75

● Run from the command line

● When you run your tests, you’ll get an output to the console indicating the results of
your tests

● If any of your tests fail, the test report will say so

76

11.4 unittest Methods

The unittest package comes with a number of built- in methods to use in your unit tests :

● assertEqual(<actual_value>, <expected_value>, <message>) - asserts two values
are equal

● assertNotEqual((<actual_value>, <unexpected_value>, <message>) - asserts values
are not equal

● assertFalse(<boolean_expression>, <message>) - asserts boolean/boolean
expression is False

● assertTrue(<boolean_expression>, <message>) - asserts boolean/boolean
expression is True

● assertIn(<value>,<container>, <message>) - asserts value is a member of a container
object

● assertLess(<value>, <greater_eq_value>, <message>) - asserts first value is less than
or equal to second value

● assertGreater(<value>, <less_value>, <message>) - asserts first value is greater than
second value

● assertGreaterEqual(<value>, <greater_eq_value>, <message>) - asserts first value is
greater than or equal to second value

● assertIsInstance(<value>, <obj_value>, <message>) - asserts the first parameter is
an instance of the object type passed in the second parameter

The message parameter is used to specify a custom message in the case that an
AssertionError is raised.

11.4 Testing Custom Functions with unittest

You can test your own custom code via the unittest package by creating a testing file and
importing the functions you’d like to test into the testing file.

77

Once you’ve imported your code into your testing file, you can use them within your testing
class to validate their functionality.

78

Assignment 11

For the assignment this week we are going to go back to our assignment from Week 8 on
Functions and create unit tests for the functions created in that assignment. Using your own
submission from week 8, create unit tests to verify the functionality of the code you wrote
making sure to cover the following test scenarios:

1. For the function created as the answer to question 1, verify that:

1. your code works with different multiplier values minimally including 0, 2, and 5
2. Your code works with different lists including lists with varying sizes

1. For the function created as the answer to question 2, verify that:
1. 32F is converted to 0C
2. 77F is converted to 25C
3. At least one other test scenario

2. For the function created as the answer to question 4, verify that:
1. 0! Equals 1
2. 4! Equals 24
3. At least 3 other test scenarios

2. For the function created as the answer to question 5, verify that:
1. Units passed in feet are converted to meters
2. Units passed in inches are converted to meters
3. Units passed in meters are converted to feet
4. Units passed in miles are converted to kilometers
5. Units passed in kilometers are converted to miles
6. Units passed in fluid ounces are converted to milliliters
7. Units passed in milliliters are converted to fluid ounces
8. Units passed in gallons are converted to liters
9. Units passed in liters are converted to gallons
10. Passing 1 foot returns 0.3048 meters
11. Passing 12 inches returns 0.3048 meters
12. Passing 3048 meters returns 10,000 feet
13. Passing 1 mile returns 1.6039 kilometers
14. Passing 1.6039 kilometers returns 1 mile
15. Passing 1 fluid ounce returns 29.574 milliliters
16. Passing 30 milliliters returns over 1 fluid ounce
17. Passing 1 gallon returns 3.7854 liters
18. Passing 4 liters returns over 1 gallon

2. EXTRA CREDIT: Update the function from Q3 to return instead of print
recommendations, then verify that:

1. Both 30F and -1C return “it is probably best to stay in today” - 0.25 pts extra
credit

2. Verify all testing scenarios you can think of (i.e. all combinations of temp and
weather that would produce distinct outcomes) - 0.25 pts extra credit

79

1. Official Python website - https://www.python.org/
2. Python Notes for Professionals – can be downloaded for free from:

https://books.goalkicker.com/PythonBook/PythonNotesForProfessionals.pdf
3. W3 Schools – Python Tutorial - https://www.w3schools.com/python/
4. Learn Python platform - https://www.learnpython.org/
5. Python for Beginners - https://www.pythonforbeginners.com/
6. Google Python Learning Guide - https://developers.google.com/edu/python
7. Python Spot - https://pythonspot.com/
8. Python Guide - https://docs.python-guide.org/
9. Dive Into Python 3 - http://www.diveintopython3.net/

https://www.python.org/
https://books.goalkicker.com/PythonBook/PythonNotesForProfessionals.pdf
https://www.learnpython.org/
https://www.pythonforbeginners.com/
https://developers.google.com/edu/python
https://pythonspot.com/
https://docs.python-guide.org/
http://www.diveintopython3.net/

