Application Note 2013 Snap Freezing Using Dry Ice or Liquid Nitrogen ### INTRODUCTION # DRY ICE (or Liquid Nitrogen) Snap-freezing Snap freezing is the technique in which a sample is rapidly frozen using dry ice, a dry ice/alcohol slurry or liquid nitrogen. Samples frozen in this manner include bacterial and viral stocks, cell lysates, proteins, and tissues. Snap freezing reduces the chance of water present in the sample forming ice crystals during the freezing process, and better maintains the integrity of the sample. In the case of tissue or lysates, snap freezing slows the actions of proteases and nucleases to inhibit degradation of molecules such as RNA or proteins. Typically, snap freezing is performed either directly in dry ice or in a slurry containing dry ice and ethanol or isopropanol. Liquid nitrogen is commonly used for snap freezing tissue pieces. BioCision CoolRack® modules, ThermalTray™ platforms and ice bucket portfolio are easily adapted to all snap freezing techniques. Alcohol is completely eliminated from the process, providing easier handling, sample organization and better reproducibility. Current method: Tubes directly in dry ice or slurry Non-uniform dry ice contact may result in different freezing rates leading to poor reproducibility. Samples are placed randomly which could result in misidentification. CoolRack method: Dry ice CoolRack modules rapidly adapt to the dry ice temperature allowing you to snap freeze your samples without direct contact with the dry ice. Samples stay organized and freeze upright in a very reproducible manner. (Fig. 1) CoolRack method: Liquid nitrogen (LN2) After approximately 15 minutes, a room temperature CoolRack module resting on a ThermalTray SLP or LP will equilibrate to approximately -140°C when placed in LN2. Samples stay organized and freeze upright in a very reproducible manner plus the risk of contamination is reduced. (Fig. 2) ### COOLRACK MODULE IN DRY ICE ### Performance Test: Tests were performed with a 0.5 mL Sarstedt tube (#72.785) containing 0.25 mL water. The interior water temperature was measured using a thermocouple probe inserted through a hole introduced into the cap and held in an axial orientation by a custom cap adaptor. Vials were placed in a dry well in the CoolRack module (green) or directly into dry ice (red) and the temperature recorded. Data shown are from three different vials. # QUICK PROTOCOL - DRY ICE Using a CoolRack module with dry ice in an ice pan or CoolBox™ base. - 1. Place pelleted or crushed dry ice in your ice pan or CoolBox base. - Place CoolRack module on top of the dry ice allowing it to equilibrate to the temperature of dry ice; approximately 5-7 min. - 3. Place your samples in CoolRack module and wait approximately 3-4 minutes until frozen. Fig 1 Automated Storage Systems Cryopreservation & Cold Chain Solutions Informatics & Technical Solutions Sample Storage, Lab Services & Transport Sample Consumables & Instruments Learn more – www.brookslifesciences.com Contact us – www.brookslifesciences.com/contact-us Fig 2 ### Performance Test: A CoolRack CF45 on a ThermalTray LP was placed in a pan containing 5cm of LN2. When the LN2 evaporated to the depth of 0.5cm (52 minutes) it was re-filled to 5cm. The CoolRack CF45 temperature remained between -139.0°C and -140.2°C during the subsequent 115 minute interval for the LN2 to again reach a level of 0.5 cm. ### QUICK PROTOCOL - LN2 Using a CoolRack module and ThermalTray platform with LN2. - 1. Place the ThermalTray platform in the 9L ice pan. Rest the CoolRack module on top. - Pour LN2 around the ThermalTray until the fins are covered. Replenish as necessary. Wait approximately 12-15 min. for module to equilibrate to -140°C. - 3. Place your samples in CoolRack module and wait approximately 3-4 minutes until frozen. Note: It is important to adhere to laboratory safety protocols when handling dry ice or liquid nitrogen. CoolRack and ThermalTray modules may cause skin burns when cooled to ultra-low temperatures. Use extreme caution and appropriate protective clothing and equipment. ### BACTERIA FREEZING IN A COOLRACK MODULE ON DRY ICE Fig. 1 Graph showing the Titer (CFU/ mL) of 2 different bacterial strains (C. diptheriae), C7 and E. coli DH5 using the 2 freezing methodologies ## Performance Test: Corynebacterium diphtheriae strain C7 (Beta) and Escherichia coli strain DH5 alpha were grown in heart infusion broth (HI) in Luria broth (LB) respectively, at 37°C overnight. 80% glycerol was added to obtain a final concentration of 15%. Aliquots of each strain were frozen on dry ice and ethanol (ETOH) slurry and in a CoolRack equilibrated to dry ice temperature (10 min). The frozen vials were stored in a -80°C freezer and were thawed on ice at the sixth day. 10-fold dilutions were made in HI or LB from 10-1 to 10-8 and 100 uL of each dilution was plated on HI or LB agar. Colonies were counted after 24 h incubation at 37°C. Results represent average of three samples. ### Conclusion: Bacteria titers recovered from freezing with BioCision's CoolRack module on dry ice are equivalent to conventional freezing in ETOH/dry ice, as shown in Figure 1. The CoolRack method provides reproducible, ethanol-free freezing of bacterial samples while minimizing risk of contamination and keeping cryogenic vials organized and dry. Samples can also be safely transferred to storage areas while still seated in CoolRack module. ### VIRUS FREEZING IN A COOLRACK MODULE ON DRY ICE Fig. 2 Graph showing the Titer (TCID50/mL) of 2 different virus (influenza A and VEE) using the 2 freezing methodologies compared to the original titer value. # Performance Test: 2.5 x 105 TCID50 of influenza virus A/PuertoRico/8/34 (H1N1) and 1.3x109 TCID50 of VEE (Venezuelan equine encephalitis) virus frozen using the classical method of ETOH and dry ice slurry or BioCision's CoolRack equilibrated on dry ice (10 min). The frozen samples were stored overnight (influenza virus) or three days (VEE) in a -80°C freezer. Samples were thawed and the titers assayed by TCID50. Results represent an average of three samples. ### Conclusion: Virus titers recovered from freezing with BioCision's CoolRack module on dry ice are equivalent to conventional freezing in ETOH/dry ice, as shown in Figure 2. The CoolRack method provides reproducible, ethanol-free freezing of viral samples while minimizing risk of contamination and keeping cryogenic vials organized and dry. Samples can also be safely transferred to storage areas while still seated in CoolRack module. Automated Storage Systems Cryopreservation & Cold Chain Solutions Informatics & Technical Solutions Sample Storage, Lab Services & Transport Sample Consumables & Instruments ### PRODUCT SELECTION GUIDE | CoolRack® M-PF thermo-conductive tube modules for conical microcentifuge tubes | | | | |--|--|--|--| | Item No | Description | For use with | Dimensions | | BCS-137
BCS-127
BCS-128 | CoolRack M30-PF (500 uL)
CoolRack M15-PF
CoolRack M30-PF | 30 wells, 0.5 mL conical microfuge tubes
15 wells, 1.5 mL conical microfuge tubes
30 wells, 1.5 mL conical microfuge tubes | L 12.0 x W 10.2 x H 3.8 cm.
L 10.2 x W 6.4 x H 3.8 cm.
L 12.0 x W 10.2 x H 3.8 cm. | | CoolRack M thermo-conductive microfuge tube modules for 1.5 mL and 2.0 mL tubes | | | | |---|----------------|--|-----------------------------| | Item No | Description | For use with | Dimensions | | BCS-163 | CoolRack M6 | 6 wells, 1.5 mL or 2.0 mL microfuge tubes | L 6.0 x W 4.3 x H 3.8 cm. | | BCS-125 | CoolRack M15 | 15 wells, 1.5 mL or 2.0 mL microfuge tubes | L 10.2 x W 6.4 x H 3.8 cm. | | BCS-108 | CoolRack M30 | 30 wells, 1.5 mL or 2.0 mL microfuge tubes | L 12.0 x W 10.2 x H 3.8 cm. | | BCS-102 | CoolRack M90 | 90 wells, 1.5 mL or 2.0 mL microfuge tubes | L 26.8 x W 11.2 x H 3.8 cm. | | BCS-116 | CoolRack M96ID | 96 wells, 1.5 mL or 2.0 mL microfuge tubes | L 25.4 x W 15.2 x H 3.8 cm. | | CoolRack CF thermo-conductive tube modules for cryogenic vials | | | | |--|--|--|---| | Item No | Description | For use with | Dimensions | | BCS-126
BCS-138
BCS-105 | CoolRack CF15
CoolRack CFT30
CoolRack CF45 | 15 wells, cryogenic vials
30 wells, cryogenic vials with "grip" well design for one-hand tube open/close
45 wells, cryogenic vials | L 10.2 x W 6.4 x H 3.8 cm.
L 12.0 x W 10.2 x H 3.8 cm.
L 17.3 x W 9.7 x H 3.8 cm. | | ThermalTray platform | | | | |----------------------|-----------------|---|-----------------------------| | Item No | Description | For use with | Dimensions | | BCS-252 | ThermalTray SLP | thermo-conductive platform to support CoolRack modules in LN2 | L 28.0 x W 14.0 x H 3.2 cm. | | Ice pans | | | | |----------|--|---|--| | Item No | Description | For use with | Dimensions | | | Midi 4L Rectangular Pan
Maxi 9L Rectangular Pan | Compatible with ice, dry ice and liquid nitrogen Specify color (x): "PL" purple, "GR" green, "OR" orange, "PK" pink | L 31.1 x W 22.2 x H 11.4 cm.
L 40.6 x W 31.8 x H 11.4 cm. | Automated Storage Systems Cryopreservation & Cold Chain Solutions Informatics & Technical Solutions Sample Storage, Lab Services & Transport Storage Consumables & Instruments