
Memory-Efficient Gaussian Fitting for Depth Images in Real Time

Peter Zhi Xuan Li, Sertac Karaman, Vivienne Sze

Abstract— Computing consumes a significant portion of en-
ergy in many robotics applications, especially the ones involving
energy-constrained robots. In addition, memory access accounts
for a significant portion of the computing energy. For mapping
a 3D environment, prior approaches reduce the map size
while incurring a large memory overhead used for storing
sensor measurements and temporary variables during compu-
tation. In this work, we present a memory-efficient algorithm,
named Single-Pass Gaussian Fitting (SPGF), that accurately
constructs a compact Gaussian Mixture Model (GMM) which
approximates measurements from a depthmap generated from
a depth camera. By incrementally constructing the GMM
one pixel at a time in a single pass through the depthmap,
SPGF achieves higher throughput and orders-of-magnitude
lower memory overhead than prior multi-pass approaches. By
processing the depthmap row-by-row, SPGF exploits intrinsic
properties of the camera to efficiently and accurately infer
surface geometries, which leads to higher precision than prior
approaches while maintaining the same compactness of the
GMM. Using a low-power ARM Cortex-A57 CPU on the
NVIDIA Jetson TX2 platform, SPGF operates at 32fps, requires
43KB of memory overhead, and consumes only 0.11J per frame
(depthmap). Thus, SPGF enables real-time mapping of large 3D
environments on energy-constrained robots.

I. INTRODUCTION

Energy-constrained microrobots [1]–[3] have limited bat-
tery capacity, which limits the total amount of energy
available for both actuation and computation. During com-
putation, the energy cost of memory access can be quite
significant. For instance, the energy cost of reading a 32-bit
value from memory is more than performing a 32-bit mul-
tiplication [4]. The energy consumption of memory access
increases with the size of memory and the distance of the
memory from the processor. For instance, a CPU accessing
data stored in a larger, off-chip memory such as DRAM
(GBs of storage) requires orders-of-magnitude higher energy
than smaller, on-chip (local) CPU caches (KBs to MBs of
storage) [4]. In addition, lower-level L0 and L1 caches (a
few KBs) require significantly lower energy to access than
a L2 cache (a few MBs) [4]. Thus, algorithms designed
for many robotics applications, especially the ones involving
energy-constrained robots, should reduce memory overhead
so that most data and variables used during computation can
be stored in and accessed from lower-level caches.

Achieving memory efficiency is even more crucial for al-
gorithms enabling 3D mapping on energy-constrained robots.
During map construction, the memory usage is not limited
to the storage of map itself, but also includes overheads for

Authors are with the Massachusetts Institute of Technology, Cambridge,
MA 02139, USA. Emails: {peterli, sertac, sze}@mit.edu. This
work was partially funded by the NSF RTML 1937501 and the NSF CPS
1837212. Source code: https://github.com/mit-lean/spgf

(a) H-EM [11] - RMSE: 13cm,
Memory overhead: 6MB, Through-
put: 0.0007fps, Energy: 2756J/frame.

(b) NDT [7] - RMSE: 15cm, Mem-
ory overhead: 3.5MB, Throughput:
6.31fps, Energy: 0.36J/frame.

(c) RG [10] - RMSE: 11cm, Mem-
ory overhead: 0.49MB, Throughput:
0.49fps, Energy: 4.25J/frame.

(d) SPGF (this work) - RMSE: 9cm,
Memory overhead: 43KB, Through-
put: 32fps, Energy: 0.11J/frame.

Fig. 1: Visualization of the GMMs (blue ellipsoids) con-
structed from a depthmap of a hallway from the TartanAir
Office dataset [16]. Compared with prior approaches (a, b,
c), SPGF (d) generates a more accurate GMM representation,
requires significantly less memory overhead, executes in real
time (i.e., >30fps), and consumes much less energy using an
ARM Cortex-A57 CPU on the NVIDIA Jetson TX2.

storing the sensor measurements and temporary variables.
Mapping algorithms with significant memory overhead not
only lead to higher energy consumption but also reduce the
already limited memory available for map storage.

Since popular mapping frameworks such as the occupancy
grid map [5] and OctoMap [6] are not sufficiently compact
for storage on energy-constrained robots, recent works [7]–
[11] focused on building compact maps comprised of Gaus-
sian Mixture Models (GMMs) generated using measure-
ments obtained from a depth camera, which enable pose
estimation [12], [13] and path planning [14], [15]. Since
a depth camera generates depthmaps (frames) containing
millions of measurements per second, constructing GMMs
that accurately approximate each depthmap in real time (i.e.,
30fps) is necessary. Recent works [7], [10], [11] only focused
on reducing the time complexity for constructing GMMs.
Since energy-constrained robots might use only a low-power
CPU (i.e., no GPU) for computation, these works not only are
unable to operate in real time on a CPU alone but also require
significant memory overhead from the multi-pass processing
of the depthmap or its intermediate representations.

GMMs are typically constructed using the computationally
demanding Expectation Maximization (EM) algorithm [17].

To reduce time complexity, Eckart et al. [11] introduced the
Hierarchical EM (H-EM) that re-arranges computation using
a tree. However, the H-EM applies an optimization procedure
derived from the traditional EM to the entire depthmap at
each level of the tree, which is neither computationally nor
memory efficient (i.e., storing an entire depthmap and a
correspondence matrix in memory). Thus, a 140W NVIDIA
GTX660 GPU is required for real-time operation.

Saarinen et al. [7] proposed the Normal Distance Trans-
form (NDT) that partitions the minimum bounding box
of the environment into voxels, and uses a Gaussian to
represent all measurements within each voxel. The minimum
bounding box depends on the geometries in the environment
which are often unknown a-priori. Thus, the authors’ NDT
implementation1 determines the minimum bounding box via
an additional pass through the entire depthmap stored in
memory, which increases memory overhead.

Recently, Dhawale et al. [10] proposed the Region Grow-
ing (RG) algorithm that starts by discretizing a depthmap
using grids. An intermediate GMM representation is con-
structed using pixels within each grid. Finally, this interme-
diate representation is refined at different fidelities by itera-
tively merging Gaussians in neighboring grids that represent
the same surface in the environment. However, the repeated
refinement and storage of such intermediate representation
greatly reduces the computational and memory efficiency.

In this work, we propose the Single-Pass Gaussian Fitting
(SPGF) algorithm that accurately constructs a GMM from
a depthmap in real time with orders-of-magnitude lower
memory overhead than prior approaches [7], [10], [11]. The
computational and memory efficiencies are enabled by the
incremental updates of GMM parameters one depth pixel
at a time without storing any previously visited pixels (i.e.,
in a single pass). By processing the depthmap row-by-
row, SPGF exploits the intrinsic properties of the camera
to efficiently infer surface geometries so that the accuracy
and compactness of the GMM are maintained. With similar
number of Gaussians, SPGF achieves superior accuracy than
prior multi-pass approaches. To our best knowledge, SPGF
is the first algorithm that constructs GMM at 32fps, requires
just 43KB of memory overhead, and consumes only 0.11J per
frame using a low-power ARM Cortex-A57 CPU, as shown
in Fig. 1. Thus, SPGF enables the real-time 3D mapping of
large environments on energy-constrained robots.

II. PROPOSED ALGORITHM

In this section, we describe the Single-Pass Gaussian
Fitting (SPGF) algorithm that constructs a GMM from the
scanlines (rows) of a depthmap so that surface geometries
can be inferred accurately and efficiently in a single pass.
As described in Alg. 1, SPGF executes the following two
procedures for each scanline:

1) Scanline Segmentation (Line 4): Partitions the pixels
from each scanline into segments that represent planar
surfaces with distinct orientations.

1https://github.com/OrebroUniversity/perception oru/tree/port-kinetic

Algorithm 1: Single-Pass Gaussian Fitting (SPGF)
Input: Depthmap D containing an array of scanlines

[L0, L1, . . . , LV –1]
Output: A set of Gaussians G

1 function constructGMM(D)
2 G← ∅, Gprev ← ∅
3 for (v = 0; v < V ; v = v + 1) {
4 S ← segmentScanline(D[v])
5 if v = 0 then
6 Gprev ← S
7 else
8 Gprev, Gcomp ← fuseSegments(Gprev, S)
9 G← G ∪Gcomp

10 G← G ∪Gprev

11 return G

V

L0
L1
L2

LV-1

s0,0
s1,0
s2,0

s0,1 s0,2
s1,1 s1,2

s1,2

sV-1,0 sV-1,1

g1 g2

g3

gJ-2

g0

gJ-1

U

Depthmap

Fig. 2: Visualization of the notations used for describing the
SPGF algorithm.

2) Segment Fusion (Line 8): Fuses segments that rep-
resent the same surface across adjacent scanlines into
Gaussians.

Since Scanline Segmentation dominates the amount of
computations in SPGF and can concurrently execute along
multiple rows using multiple cores, the SPGF algorithm is
highly parallelizable. The rest of this section is organized as
follows. In Section II-A, we present preliminary concepts.
Then, we describe Scanline Segmentation in Section II-B,
and Segment Fusion in Section II-C.

A. Preliminaries

Let the depthmap generated by a depth camera have a
width U and height V . Each pixel within the depthmap has
a depth measurement denoted by d(u,v), where u and v are
the pixel coordinates. Using the pinhole camera model, the
depth measurement d(u,v) has an associated coordinate p =
[px, py, pz] in the ambient space R3 given by

p = Φ–1(u, v, d(u,v)), (1)

where Φ–1(·) is the inverse projection function defined using
the camera’s intrinsic parameters. Note that the x-axis is
defined along the width of the depthmap, and the z-axis is
perpendicular to the depthmap.

The depthmap is partitioned into a set of V scanlines
{L0, L1, . . . , LV –1}, as shown in Fig. 2. Scanline Seg-
mentation partitions each scanline into a set of segments
S = {sv,0, sv,1, . . . } such that each segment represents a

Algorithm 2: Scanline Segmentation
Input: An array of depth pixels along a scanline Lv

Output: A set of line segments S
1 function segmentScanline(Lv)
2 S ← ∅, M ← ∅
3 for (u = 0; u < U ; u = u+ 1) {
4 d← Lv[u]
5 p← Φ–1(u, v, d)
6 xt, zt ← adaptiveThresh(d, a, b)
7 bmerge ← false
8 foreach s ∈M do
9 if bmerge = false then

10 if numPixels(s) < tfit then
11 if distZ(s,p) < zt and

distX(s,p) < xt then
12 s← addPoint(s, p)
13 bmerge ← true
14 else
15 s← occluded(s)

16 else
17 if distLine(s,p) < zt then
18 s← addPoint(s, p)
19 bmerge ← true
20 else
21 s← occluded(s)

22 else
23 s← occluded(s)

24 if isOccluded(s) and
numOccludedPixels(s) > tocc then

25 S ← S ∪ s, M ←M \ s

26 if bmerge = false then
27 k ← createNewSegment(u, v,p)
28 M ←M ∪ k
29 if |M | > β then
30 e← earliestSegment(M)
31 S ← S ∪ e, M ←M \ e

32 S ← S ∪M
33 return S

planar surface with a distinct orientation. Then, Segment
Fusion merge segments representing the same surface across
adjacent scanlines into a set of Gaussians G = {g0, g1, . . . }
which forms the final GMM model M defined as:

M(p) =

J –1∑
i=0

wigi(p | µi,Σi), (2)

where wi is the mixture weight of the Gaussian gi with mean
µi and covariance Σi.

B. Scanline Segmentation

As described in Alg. 2, Scanline Segmentation (SS) groups
measurements within the scanline into segments representing
distinct planar surfaces. To achieve memory efficiency, SS
computes along the scanline one pixel at a time in a single
pass so that only one depth measurement is stored in memory
at any time. For each measurement p starting from the left
of the scanline (Line 3), SS needs to decide whether p
corresponds to a new surface or a segment s representing a

Scanline Lv

sv,0 sv,1 p

z

x

sv,0

sv,1

Δz1 < zt

Δz0 > zt

p

Fig. 3: Distances {∆z0,∆z1} between measurement p and
extrapolated lines from previous segments {sv,0, sv,1} are
computed. Since ∆z1 is less than the adaptive threshold zt,
measurement p should be merged with sv,1.

z

xCamera

Δx > xt
Δz > zt

Planar Surface
Segment

(a) Using low thresholds (xt, zt)
leads to the over-segmentation of
measurements for a surface further
away from the camera.

z

xCamera

Δx < xt
Δz < zt

Planar Surface
Segment

(b) Using high thresholds (xt, zt)
leads to the under-segmentation of
measurements for a surface closer
to the camera.

Fig. 4: Undesirable results for using fixed thresholds (xt, zt)
that are too low (a) or too high (b). Adaptive thresholds
(defined in Eqn. (3)) that increase with the depth of each
measurement are used to avoid under and over segmentation.

previously observed surfaces to the left of p (see Fig. 3). If p
corresponds to segment s, parameters of s (mean, covariance,
weight) can be incrementally updated with p as in [7].

Due to single-pass processing, SS cannot resolve in-
accurate measurement-to-segment correspondences which
are typically reduced with additional passes through the
depthmap in prior works [10], [11]. These inaccurate cor-
respondences are caused by unreliable estimates of the
segment’s parameters when such segment is initialized with
a few noisy measurements (i.e., less than a threshold tfit).
By the pinhole camera model, scanline measurements of
the same planar surface form a line segment in the ambient
space. Thus, SS exploits this property to efficiently reduce
inaccurate correspondences for two cases: the number of
measurements in s is 1) less than tfit, and 2) equals to or
greater than tfit. Since the y coordinates for measurements
within the same scanline do not vary significantly, SS is
executed for the projection of the scanline on the xz plane.

Case 1 (Lines 11 to 15): If the line segment s is initialized
with less than tfit measurements, the parameters of the line
cannot be reliably estimated. Instead of extrapolating the
line towards p, the measurement p corresponds to s if the
distances (∆x, ∆z) between p and the closest measurement
in s are less than certain thresholds (xt and zt in Line 11).
In prior work [10], these thresholds (xt, zt) are fixed hyper-
parameters, which could reduce the compactness (due to
over-segmentation) or accuracy (due to under-segmentation)
of the GMM (see Fig. 4 for an example). Because each

oint
ounion

g0
g2 g3g1

s

Lv-2
Lv-1

Lv

sv-1

Fig. 5: Computation of the intersection to union ratio (r =
oint/ounion) between the number of pixels in segment s and
segment sv–1 (contained within Gaussian g2).

segment represents a line, SS is able to compute desirable
thresholds that adapt to the depth of the measurement p, i.e.,

xt =
d2

fb
, zt = axt, (3)

where a and b are respectively the slope and z-intercept of
the line formed from the intersection of the planar surface
and the xz-plane, d is the value of the depth pixel for
measurement p, and f is the focal length of the camera.
The parameters a and b are set to predetermined values in
Table II to accommodate a variety of surface orientations.

Case 2 (Lines 17 to 21): If the line segment s contains at
least tfit measurements, the parameters of the line are reliably
estimated for extrapolation. Thus, as shown in Fig. 3, the
measurement p corresponds with s if p is sufficiently close
to the extrapolated line along the z direction (Lines 17).
Processing along a scanline also allows SS to significantly
reduce the amount of computation during parameter estima-
tion. Since each segment s represents a line, the direction
vector of s used for extrapolation can be incrementally
updated with new measurements without re-computing from
the eigen-decomposition of the covariance matrix of s (used
in a prior approach [10]), which results in a 4× higher
throughput for SPGF on the ARM Cortex-A57 CPU.

Efficient extrapolation of line segments also allows SS to
address the over-segmentation of surfaces caused by object
occlusions (ignored in prior works to enhance throughput).
The surface of a large object (e.g., a wall) can be occluded
by the surface of a smaller object (e.g., a chair) that is
closer to the camera. Thus, the segment that represents the
occluded surface will encounter a temporary discontinuity
along the scanline, which causes over-segmentation. To
avoid such discontinuity, we select up to β = 4 closest
segments (represented by a set M in Alg. 2) as candidates
for determining the correspondence of each measurement
p. A segment s representing a previously observed surface
is transferred from M to the output set S if s does not
correspond to tocc consecutive new measurements (Lines 24
and 25).

C. Segment Fusion

As described in Alg. 3, Segment Fusion (SF) fuses each
line segment s ∈ S (from scanline Lv) with a Gaussian
gmax ∈ Gprev (from prior scanlines) if s corresponds to (i.e.,
lies on) the same plane represented by gmax. Thus, verifying
segment-to-Gaussian correspondences dominates the amount
of computations in SF. By incrementally constructing each

Algorithm 3: Segment Fusion
Input: A set of line segments S and incomplete Gaussians

Gprev from previous scanlines
Output: A set of incomplete Gaussians Gincomp and

completed Gaussians Gcomp

1 function fuseSegments(Gprev, S)
2 Gcomp ← ∅, Gincomp ← ∅
3 foreach s ∈ S do
4 gmax ← maxIntersectionToUnion(s,Gprev)
5 if cosineAngle(gmax, s) > tcos and

distPlane(gmax, s) < nmin then
6 gmax ← addSegment(gmax, s)
7 else
8 Gincomp ← Gincomp ∪ s

9 foreach g ∈ Gprev do
10 if notUpdated(g) then
11 Gcomp ← Gcomp ∪ g
12 else
13 Gincomp ← Gincomp ∪ g

14 return Gincomp, Gcomp

gmax g1

s

z
x

y

(a) Criteria 1: The direction vector
of the segment s should be parallel
with the direction vector of sv–1 in
the Gaussian gmax.

gmax g1

s

z
x

y

n

(b) Criteria 2: The mean of the
segment s should be sufficiently
close to the plane represented by the
Gaussian gmax.

Fig. 6: Two criteria for verifying if a segment s corresponds
to a planar Gaussian gmax.

Gaussian using line segments, SF exploits geometric proper-
ties within each Gaussian so that each segment-to-Gaussian
correspondence is verified more efficiently than the generic
Gaussian-to-Gaussian correspondences from [10].

To reduce the amount correspondence verification for each
segment s ∈ S, SF exploits the property of the depthmap to
efficiently select the best candidate gmax ∈ Gprev that could
correspond to s. Note that every Gaussian in the set Gprev

contains a segment sv–1 from the previous scanline Lv–1. In
the depthmap, measurements of the same surface appears in
the same pixel region. Thus, in Line 4, the best candidate
gmax is chosen to obtain the largest intersection to union
ratio between pixels of segments sv–1 and s (see Fig. 5).

Once gmax is chosen, we verify if segment s corresponds
to the same plane represented by gmax. This verification is
completed using two criteria in Line 5. Firstly, segment s
should be sufficiently parallel to segment sv–1 in gmax (see
Fig. 6(a)). Since both s and sv–1 are line segments, their
parallelism is efficiently verified using a dot product of their
direction vectors. Secondly, the mean of the segment s should
be sufficiently close to the plane represented by gmax, which
requires the normal vector typically computed using eigen-

decomposition of the covariance matrix of gmax [10]. By
constructing each Gaussian using line segments, SF easily
obtains two planar vectors in gmax to efficiently compute its
normal vector via a cross product. As shown in Fig. 6(b),
one vector is derived using a line segment in gmax. The
other vector is derived using the means of all segments in
gmax. If eigen-decomposition were computed instead of cross
product, the throughput of the SPGF algorithm would be
reduced by around 10% on the ARM Cortex-A57 CPU.

If the segment s corresponds with gmax, parameters of s
(i.e., mean, covariance, and weight) are fused with those from
gmax using the technique in [7] (Line 6). Otherwise, segment
s represents a newly observed surface and is appended to
Gincomp (Line 8) which is the input to SF for the next
scanline. If a Gaussian in Gprev does not correspond with any
segment in S, such Gaussian is appended to Gcomp (Line 11)
which belongs to the final GMM G in Line 9 of Alg. 1.

III. RESULTS

In this section, we compare the accuracy, throughput,
memory overhead and energy consumption of the Single-
Pass Gaussian Fitting (SPGF) algorithm against the following
state-of-the-art algorithms: Hierarchical EM (H-EM) [11],
Normal Distance Transform (NDT) [7] and Region Growing
(RG) [10]. To emulate an energy-constrained setting, we
obtained our results using only the ARM Cortex-A57 CPU on
the NVIDIA Jetson TX2 platform. All algorithms were tested
using both synthetic (TartanAir [16]) and real-world (TUM
RGB-D [18]) datasets to emulate diverse environments and
sensor properties (see Table I).

A. Accuracy of Representation

We are interested in how accurate GMMs generated from
SPGF and existing approaches can model the measurements
from a depthmap. For fairness, we chose the parameters
such that the average number of Gaussians per depthmap
generated across all algorithms is similar. For H-EM, we
created a GMM tree with 4 levels and 4 Gaussians per
node. For NDT, we chose a grid size of 2.0m and 0.5m
for TartanAir Office and TUM Room dataset, respectively.
For RG, we altered the threshold λ parameters based on
the sensor properties and obtained all other parameters from
[10]. The parameters used in SPGF are presented in Table II.

We reconstructed the original point cloud from each
depthmap by randomly sampling the corresponding GMM.
The Root Mean Squared Error (RMSE) associated with the
precision of such reconstruction was calculated from each
point in the reconstructed point cloud to the closest point
in the original point cloud. The RMSE associated with the
recall of such reconstruction was calculated in the opposite
direction. A GMM with low precision error and high recall

TABLE I: Properties of the datasets used for evaluation.
Dataset TartanAir [16] TUM RGB-D [18]

Environment Office Freiburg1 Room
Dimensions 37.23m× 30.04m× 6.32m 11.30m× 11.94m× 3.41m

Depth Range 0.37m→ 20.00m 0.47m→ 9.04m
Depthmap Resolution 640× 480 640× 480

Number of Depthmaps 1395 1311

error means that each Gaussian models its corresponding
surface accurately, but not all surfaces from the original point
cloud are modeled.

From Table III, SPGF achieves higher precision than prior
approaches even though SPGF processes the depthmap in
a single pass. Furthermore, SPGF adjusts the number of
Gaussians in the GMM solely based on the complexity of
environment so that the precision of the GMM representation
is maintained for each depthmap (i.e., lower standard devi-
ation for precision RMSE). On the other hand, the number
of Gaussians produced by other approaches is constrained
by properties that increase throughput at the expense of
precision, such as the number of nodes in the tree (H-EM),
voxelization (NDT), and image-plane discretization (RG).

To eliminate the modeling of spurious measurements in
SPGF, we pruned away Gaussians containing less than 200
measurements. Since small surfaces that are further away
from the camera contain fewer measurements, SPGF occa-
sionally treats these measurements as spurious which leads to
a slightly larger recall error for the synthetic TartanAir Office
dataset that contains measurements up to 20m. However, the
recall error of SPGF is comparable with prior works in the
TUM Room dataset where the range of the Kinect sensor is
lower (up to 9m). A visualization of the GMMs generated
from SPGF and prior approaches is shown in Fig. 1.

B. Throughput

Table III summarizes the throughput of the SPGF and
prior approaches which were implemented and optimized
similarly in C++. The throughputs for all algorithms are
higher for the TUM Room dataset due to the presence of
invalid measurements which were ignored during computa-
tion. Due to computationally efficient scanline processing,
SPGF achieves superior throughput compared with prior
multi-pass approaches. Using just one CPU core, the SPGF
operates at 8fps for TartanAir Office dataset and 12fps for
the TUM Room dataset, which are at least 32% faster than
prior approaches. Using all four cores, SPGF is effectively

TABLE II: Parameters used in the SPGF algorithm.
Dataset nmin β a b tfit tocc tcos

TartanAir Office 0.05 4 6 1.43 16 10 0.5
TUM Room 0.08 4 6 0.42 16 10 0.5

TABLE III: Performance of SPGF vs. existing algorithms
evaluated on the ARM Cortex-A57 CPU. The number of
CPU cores is indicated in brackets.

Algorithm Precision
RMSE (m)

Recall
RMSE (m)

Number of
Gaussians

Throughput
(fps)

TartanAir Office

H-EM (1C) 0.13± 0.08 0.03± 0.04 50± 6 0.0007± 0.0002
NDT (1C) 0.15± 0.04 0.03± 0.01 65± 42 6.31± 0.13
RG (1C) 0.11± 0.04 0.03± 0.02 59± 23 0.49± 0.02

SPGF (1C)
0.09± 0.01 0.06± 0.05 59± 34

8.33± 0.11
SPGF (4C) 32.31± 1.03

TUM RGB-D Room

H-EM (1C) 0.035± 0.014 0.008± 0.007 52± 5 0.0008± 0.0002
NDT (1C) 0.045± 0.008 0.009± 0.002 47± 26 8.37± 0.71
RG (1C) 0.043± 0.013 0.008± 0.003 52± 15 0.63± 0.04

SPGF (1C)
0.033± 0.004 0.012± 0.014 45± 16

11.57± 0.75
SPGF (4C) 44.08± 3.43

parallelized and executes in real time at 32fps and 44fps on
the TartanAir Office and TUM Room datasets, respectively.
Multi-core implementations of prior works are not publicly
available. Even if these works can be parallelized, their
throughputs are expected to be 4× higher, which are still
much lower than the multi-core implementation of SPGF.

C. Memory Overhead

In Fig. 7, we compare the maximum memory overhead for
storing the input (i.e., depth pixels) and temporary variables
(only used during computation) in SPGF against prior works.
Across all works, pixels in each depthmap are stored as
float32 and most other variables are stored as float64.

Since Scanline Segmentation in SPGF processes each row
of the depthmap one pixel at a time in a single pass, SPGF
only requires one depth pixel in memory (4B for one core) at
any time, which is at least 98% lower than prior approaches.
In particular, H-EM and NDT require the storage of all
valid measurements from entire depthmap (up to 3.5MB) in
memory due to the multi-pass optimization procedure (in H-
EM) or the determination of minimum bounding box for the
environment (in NDT). RG requires the storage of a subset
of depthmap pixels (0.25KB) for initializing the Gaussians.

The amount of temporary variables in SPGF (up to
13KB for one core) is dictated by the maximum number
of segments generated by Scanline Segmentation across all
scanlines, which is at least 97% lower than H-EM and RG. In
particular, the amount of temporary variables in H-EM (up to
2.3MB) is dictated by the pixel-to-Gaussian correspondence
matrix used for optimizing GMM parameters. The amount
of temporary variables for RG (up to 0.48MB) is dominated
by a large intermediate representation of the depthmap used
to refine the GMM parameters. The amount of temporary
variables in NDT (up to 11KB) is slightly lower than
SPGF and is dominated by a voxel-based data structure that
partitions the minimum bounding box of the environment.

Since Scanline Segmentation for each row of depthmap
can be executed independently on a CPU core, the memory
overhead associated with input and temporary variables for
our multi-core SPGF implementation scales with the number
of cores. From Fig. 7, SPGF implemented with four cores
requires up to 43KB of total memory overhead which is only
2.4× higher than the maximum size of the output GMM (up
to 18KB). In contrast, the single-core implementation for
each prior work requires a total memory overhead that is
33× to 959× higher than the maximum size of the GMM.

D. Energy Consumption

Table IV summarizes the average energy consumption per
frame (depthmap) for SPGF and prior approaches. Across all
algorithms, the energy consumption of the DRAM is compa-
rable to that of the CPU, which underscores the importance
of minimizing memory overhead in addition to computation.
Since SPGF is more computationally efficient, its single core
implementation consumes at least 16% less CPU energy
compared with prior approaches. From Fig. 7, the total
memory overhead of SPGF’s single core implementation

H-EM
(1C)

NDT
(1C)

RG
(1C)

SPGF
(1C)

SPGF
(4C)

10−2

10−1

100

101

102

103

104

M
ax

im
um

 M
em

or
y

(k
B)

Input Depth Pixels
Temporary Variables
Output Gaussian Parameters
Maximum Overhead3.

5M
B

0.
25
K
B

4.
0B 16

B

2.
3M
B

8.
9K
B

0.
48
M
B

13
K
B 42
K
B

3.
5M
B

6.
3K
B

18
K
B

14
K
B

18
K
B

18
K
B

5.
9M
B

3.
5M
B

0.
49
M
B

13
K
B 43
K
B

(a) TartanAir Office dataset [16]

H-EM
(1C)

NDT
(1C)

RG
(1C)

SPGF
(1C)

SPGF
(4C)

10−2

10−1

100

101

102

103

104

M
ax

im
um

 M
em

or
y

(k
B)

Input Depth Pixels
Temporary Variables
Output Gaussian Parameters
Maximum Overhead3.

0M
B

0.
25
K
B

4.
0B 16

B

2.
0M
B

11
K
B

0.
41
M
B

8.
7K
B 28
K
B

3.
0M
B

6.
3K
B 22
K
B

13
K
B

12
K
B

12
K
B

4.
9M
B

3.
0M
B

0.
42
M
B

8.
7K
B 28
K
B

(b) TUM RGB-D Room dataset [18]

Fig. 7: Maximum memory usage for the input depth pixels,
temporary variables and output Gaussian parameters during
the execution of SPGF and existing algorithms. The number
of cores used in each algorithm is also annotated.

is at most 13KB which is less than the size of L1 data
cache (32KB per core [19]) in the ARM Cortex-A57 CPU.
Thus, SPGF seeks to reduce the amount of DRAM accesses.
In fact, SPGF’s single core implementation requires least
27% less DRAM energy than those from prior approaches.
SPGF’s multi-core implementation is more energy efficient
as the power consumption of CPU and DRAM is amortized
across four CPU cores. Using four cores, the total energy
consumption of SPGF is only 0.11J/frame, which is at least
69% less than prior approaches across both datasets.

IV. CONCLUSION

In this work, we proposed the Single-Pass Gaussian Fitting
(SPGF) algorithm that processes the depthmap row-by-row
to construct a GMM while using only 43KB of memory. Due
to its computational and memory efficiencies, the SPGF op-
erates at 32fps on a low-power ARM CPU and consumes at
least 69% less energy compared with prior approaches. Thus,
SPGF finally enables large-scale 3D mapping for energy-
constrained robots in real time. The superior performance
of SPGF demonstrates the importance of memory-efficient
algorithms for enabling autonomy on these robots.

TABLE IV: Average energy consumption per frame for
SPGF vs. existing algorithms evaluated using the ARM
Cortex-A57 CPU on the NVIDIA Jetson TX2 platform.

Algorithm TartanAir Office TUM RGB-D Room
CPU DRAM Total CPU DRAM Total

H-EM (1C) 1529J 1227J 2756J 1402J 1125J 2527J
NDT (1C) 0.18J 0.18J 0.36J 0.14J 0.13J 0.27J
RG (1C) 2.36J 1.89J 4.25J 1.81J 1.45J 3.26J

SPGF (1C) 0.15J 0.13J 0.28J 0.11J 0.09J 0.20J
SPGF (4C) 0.07J 0.04J 0.11J 0.05J 0.03J 0.08J

REFERENCES

[1] K. P. Valavanis and G. J. Vachtsevanos, Handbook of unmanned aerial
vehicles, vol. 2077. Springer, 2015.

[2] M. Keennon, K. Klingebiel, and H. Won, “Development of the nano
hummingbird: A tailless flapping wing micro air vehicle,” in 50th
AIAA aerospace sciences meeting including the new horizons forum
and aerospace exposition, p. 588, 2012.

[3] R. He, S. Sato, and M. Drela, “Design of single-motor nano aerial
vehicle with a gearless torque-canceling mechanism,” in 46th AIAA
Aerospace Sciences Meeting and Exhibit, p. 1417, 2008.

[4] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), pp. 10–14, 2014.

[5] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, no. 6, pp. 46–57, 1989.

[6] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: An efficient probabilistic 3d mapping framework
based on octrees,” Autonomous robots, vol. 34, no. 3, pp. 189–206,
2013.

[7] J. P. Saarinen, H. Andreasson, T. Stoyanov, and A. J. Lilienthal, “3d
normal distributions transform occupancy maps: An efficient repre-
sentation for mapping in dynamic environments,” The International
Journal of Robotics Research, vol. 32, no. 14, pp. 1627–1644, 2013.

[8] F. Ramos and L. Ott, “Hilbert maps: Scalable continuous occupancy
mapping with stochastic gradient descent,” The International Journal
of Robotics Research, vol. 35, no. 14, pp. 1717–1730, 2016.

[9] S. Srivastava and N. Michael, “Efficient, multifidelity perceptual rep-
resentations via hierarchical gaussian mixture models,” IEEE Trans-
actions on Robotics, vol. 35, no. 1, pp. 248–260, 2018.

[10] A. Dhawale and N. Michael, “Efficient parametric multi-fidelity sur-
face mapping,” in Robotics: Science and Systems (RSS), vol. 2, p. 5,
2020.

[11] B. Eckart, K. Kim, A. Troccoli, A. Kelly, and J. Kautz, “Accelerated
generative models for 3d point cloud data,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 5497–
5505, 2016.

[12] A. Dhawale, K. S. Shankar, and N. Michael, “Fast monte-carlo
localization on aerial vehicles using approximate continuous belief
representations,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5851–5859, 2018.

[13] W. Tabib, C. O’Meadhra, and N. Michael, “On-manifold gmm registra-
tion,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3805–
3812, 2018.

[14] A. Dhawale, X. Yang, and N. Michael, “Reactive collision avoidance
using real-time local gaussian mixture model maps,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 3545–3550, IEEE, 2018.

[15] W. Tabib, K. Goel, J. Yao, M. Dabhi, C. Boirum, and N. Michael,
“Real-time information-theoretic exploration with gaussian mixture
model maps.,” in Robotics: Science and Systems, 2019.

[16] W. Wang, D. Zhu, X. Wang, Y. Hu, Y. Qiu, C. Wang, Y. Hu, A. Kapoor,
and S. Scherer, “Tartanair: A dataset to push the limits of visual slam,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4909–4916, IEEE, 2020.

[17] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 39, no. 1, pp. 1–
22, 1977.

[18] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in Proc. of the
International Conference on Intelligent Robot Systems (IROS), Oct.
2012.

[19] “Jetson Download Center.” Available: https://developer.nvidia.com/
jetson-tx2-nx-system-module-data-sheet.

