
Computers and Creativity

By Molly Mielke

Project page • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com/cc

2 of 23

True creativity and invention, which are the seed
of innovation, come from people and they come
from the stories of people. They come from their
backgrounds, their passions, what moves them,
the things that worry them, the things that are
their dreams.

— Frank Moss,

The Sorcerers & Their Apprentices

Introduction
The value of computers is not inherent; it is what we are able to do with them that

makes them valuable. But what we can do with computers is often limited by the depth to

which we are able to think creatively, translate these thoughts into computationally

articulated work, and then share that work with others. For this reason, digital tools that

foster creativity and collaboration hold immeasurable power. So how can we push digital

creative tools to their full potential as co-creators, thus harnessing the full power of

creative thought and computational actualization to enable human innovation? Ultimately,

I will be arguing that to foster optimal human innovation, digital creative tools need to be

interoperable, moldable, efficient, and community-driven.

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

3 of 23

Early creative tools
Beginning with the early days of the workplace computer in the 1950s, computers

began as purely logical room-sized execution machines that operated on paper and

punch cards. A human would feed the computer tasks in the precise way the computer

understood, and the computer would perform a desired function for the operator. Usually,

those functions were basic mathematical operations. This was revolutionary for its time

and embodied a task-based relationship between computer and machine that continues

to define how we operate computers today.

However, a new way of thinking about these machines began to emerge in the late

1980s. From the punch card came the spreadsheet, which eliminated the need to provide

physical inputs and allowed us to utilize math in a new way. Meanwhile, creative

applications for computers began to emerge. As the Victoria and Albert Museum present

in “A History of Computer Art,” “In the 1950s, many artists and designers were working

with mechanical devices and analogue computers in a way that can be seen as a

precursor to the work of the early digital pioneers who followed. One of the earliest

electronic works in the V&A's collection is ‘Oscillon 40’ dating from 1952. The artist, Ben

Laposky, used an oscilloscope to manipulate electronic waves that appeared on the small

fluorescent screen.” Throughout the history of digital tools, a common theme is the

technological advancement spurred by artists pushing the limits of the existing tools and

creating their own adjacent tools to better serve their needs.

Historically, the primary strains of creative tools have been text editors,

spreadsheets, HyperText,1 and Computer Aided Design (CAD) software. For the purposes

of this essay, “digital creative tool” will refer to tools that foster creative thought in their

human users, whether that be a design, writing, or multimedia tool. With the introduction

of Superpaint,2 one of the first image editing programs in 1984, the concept of the digital

creative tool began to take its initial form—pioneering conventions that are still in use

today such as the digital canvas and the tooling menu. However, it is worth reconsidering

aspects of these historical conventions in the interest of fostering greater human

creativity using digital tools.

2 Superpaint was created by Xerox PARC employee Richard Shoup, among others.

1 Hypertext was first coined by Ted Nelson and refers to text that links to other texts.

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

4 of 23

The genesis of many original creative tools were inspired by the work of thinkers

such as Douglas Engelbart, who published a vision of tools empowering humans in his

pioneering 1962 paper Augmenting Human Intellect: A Conceptual Framework. As could

be surmised, his goal was to use digital tools to augment human intelligence and thus

boost our collective intellect. Engelbart’s work, along with many other designers and

programmers such as Ivan Sutherland (Sketchpad3), J.C.R. Licklider (Intergalactic

Computer Network4) and Alan Kay (Dynabook5 and OOP6) clarified a new approach in

which computers weren’t merely executors, but “joyful” machines that could expand

human thought itself (Engelbart). As Engelbart put it, “tools… will serve as new media of

expression and inspiration to creativity.” Engelbart was not alone in this thinking and

inspired other computer scientists like Alan Kay to study how computers could amplify

imagination. While these early manifestations of creative tools unlocked pioneering ideas

on the relationship between humans and machines, they were largely conceptual in

nature. Engelbart and Kay’s work hinted at a future of creative tools built to serve the

human mind’s creativity, but were missing the financial support from technology

companies to invest further in the relationship between humans and machines as

opposed to investing primarily in machines themselves.

6 Object-oriented programming, or OOP, is a programming paradigm pioneered by Alan Kay using
the concept of "objects" containing data and code.

5 Dynabook was Alan Kay’s vision of a "personal computer for children of all ages."

4 The Intergalactic Computer Network was a computer networking concept similar to today's
Internet that was imagined by J.C.R. Licklider as an “electronic commons open to all.”

3 Sketchpad was the first CAD program to have a complete graphical user interface.

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

5 of 23

Other visions of creating space for creativity and human thought can be found

within the bordering space of software development. It was the people that created

Apple’s OpenDoc7 (1997) that pioneered one of the first steps towards standardization

and collaboration between creative tools. As Kristi Coale states in “Closing OpenDoc-a

Great Leap Backward,” “In its heyday, OpenDoc was seen as the future of document

creation. No longer were users limited by the capabilities of an application in making a

document; they could include video, audio, and spreadsheet input created in other

applications and tie them into a single large document.” This approach to standardizing

digital files offered a new opportunity for far more people to use computers in creative

ways. OpenDoc did not necessitate the selection of a single media type and instead

allowed for mixtures of different kinds of media. While there was still far more work to be

done for OpenDoc to reach true interoperability, the software established the idea of

making digital creative work tool agnostic. However, it is worth noting that the structure of

OpenDoc was still adhering to replicating the formation practices of physical work. The

project as a whole was eventually discontinued by Apple due to an unsuccessful business

model.

However, another of Apple’s earlier projects called the Hypercard8 (1987) found

greater success and proved the potential of a moldable approach to software

development. As Samuel Arbesman states in “The forgotten software that inspired our

modern world,” “Bill Atkinson, its developer, described HyperCard as 'an erector set for

building applications. Simply put, you could build your own software using HyperCard,

with each program made up of ‘stacks’ of ‘cards’. Each card could contain text and images,

as well as interactive elements like buttons, with the ability to interconnect between other

cards.” HyperCard was a tool for making tools, and was unique in its focus on encouraging

open collaboration between users. This approach helped foster a powerful community of

people who contributed to the moldable tool’s development and evolution.

8 Apple’s Hypercard was a software application and development kit for Apple Macintosh and
Apple IIGS computers, and was one of the first hypermedia systems predating the World Wide
Web. HyperCard pioneered the first wiki, which in turn served as the inspiration for Wikipedia.

7 Apple's OpenDoc was a component-based framework standard for compound documents,
inspired by (and intended as an alternative to) Microsoft's Object Linking and Embedding (OLE)
technology.

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

6 of 23

Digging deeper into the history of creative tooling communities reveals the lasting

prevalence of the communities surrounding Flash9 and Actionscript10 in the early 2000s.

Flash and Actionscript were popular, easily manipulated, low-bandwidth tools that

created the first interactive experiences on the web. As Joshua Granick states in his

article on ActionScript 3.0, “In 2001, the popularity of Flash and ActionScript continued to

grow as artists and developers discovered the infinite possibilities of an expressive web

platform.” Before being acquired by Adobe, the tool itself was deeply embedded in its

community’s contributions, despite never going so far as to be open-source. This

relationship between Flash and its users was most clearly seen in the online discussion

forums, which pioneered the expectation that community members would frequently

share tips, feedback, and projects with one another. This culture, combined with the

abstracted and efficient nature of the scripting language, fueled Flash and Actionscript’s

widespread adoption and quickly reshaped the web to become interactive and animated.

Actionscript enabled projects like a map generator, a prebuilt ActionScript 3 library for

integrating Flash games, the Starling Extension Particle System, and many other projects

(Github, “Awesome Actionscript”). Powered by community, Flash serves as a proof point

that widespread ownership over an abstracted and moldable creative tool holds immense

potential to enable creativity in people at scale and spur organic user growth and

adoption as a byproduct.

More broadly, the role of collaboration in digital creative tools has been complex

and multifaceted. The shift to computing in a network has redefined how we think about

collaboration using digital tools. Beginning with the birth of the internet with the help of

those such as Ted Nelson,11 we quickly moved on to a period of mobile technology

proliferation. Collaborative software as we know it was born soon after in the form of

Google Sheets, the first simultaneous multiplayer software. The state of collaborative

11 Ted Nelson is an American pioneer of information technology, philosopher, and sociologist. He
coined the terms hypertext and hypermedia in 1963 and published them in 1965. Nelson also
introduced the term intertwingularity.

10 ActionScript was an object-oriented programming language by Macromedia used primarily to
develop websites and software using the Adobe Flash Player platform.

9 Flash was an authoring program originally created by Macromedia and used to create vector
graphics-based animation programs, usually for the web.

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

7 of 23

software today is a testament to the progression of tools for creativity, as well as the

room we still have left to help them reach their full potential.

The origins of digital creative tools show that the most boundary-pushing and

high-potential tools were often interoperable, moldable, community-driven, abstracted,

and efficient, thus actualizing creativity within the tool itself. Upon review, it is clear that

the fundamental human-computer interaction principles of the past have remained

unchanged, such as the direct manipulation of graphical objects, the mouse, and

windows. However, it is also evident that our expectations for a computer’s capacity to

understand and serve us has expanded considerably (Brad Myers, “A Brief History of

Human Computer Interaction Technology”). We will now examine this gap between our

historical-ideals-driven expectations and the contemporary reality of digital creative tools.

Creative tools today
Today, computers have become a melded version of both a task-based execution

machine (calculations, programming) and an intelligent creative co-creator (writing and

design tools). As João Miguel Cunha states in “Generation of Concept-Representative

Symbols,” we are in the process of “shift[ing] away from using computers as tools and

see[ing] them [instead] as partners, as well as mak[ing] computational co-creativity

applications available to the general public.” However, in recent decades, this shift has

been slow and undefined, only noticeable to the computer-using public in new consumer

softwares boasting mainly efficiency upgrades.

So if this shift to co-creation is happening (albeit slowly), where exactly is it taking

place and who is leading the charge? Despite their brief moment in the internet limelight,

creative computing communities have failed to maintain power over the software they

operate. A close examination of the digital creative tools landscape today reveals that

most innovation in this space has shifted away from the computer users (as seen through

Actionscript and Flash) to instead by owned by the heavily funded R&D departments of

the dominant Silicon Valley technology companies. As Alexis Madrigal states in “Silicon

Valley Abandons the Culture That Made It the Envy of the World,” “Quantitative research

suggests that big companies do different kinds of R&D than their more modest

counterparts. Instead of coming up with new products, they come up with process

improvements. ‘If the nature of innovation is distorted toward selling to an incumbent,

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

8 of 23

you’re going to get more feature-driven innovation rather than systemic disruption.’” This

statement is directly reflected in digital creative tools' lack of concept-level innovation in

the past ten years. We see this further exemplified through tools looking and operating

very similarly to how they did at their founding.

However, it is worth noting the significant advancements that have been made

within the existing creative tooling structures. Integrating collaboration features into

creative tools has been a major development in the past decade and initiated the creation

of new spaces for cross-functional creative work. In part as a result, digital real-time

collaboration applications such as Figma have seen great success. The increasing

prevalence of these collaborative creative tools also means that functional interoperability

between them has become increasingly relevant to the work that we are all doing. Today’s

projects need to accommodate a multitude of different media types within

cross-functional spaces, yet editing each piece is still largely constrained to whichever

tool it was created in. This reality pinpoints an opportunity for both interoperability and

further innovation in the collaboration-between-tools space.

The lack of concept development in digital creative tools poses another question:

where have the technology industry’s resources been funneled? A mere cursory look at

technology news reveals the industry’s heightened focus on artificial intelligence

(AI)-fueled digital products. As Frederick Brooks explains in “The Computer Scientist as

Toolsmith II,” “A tremendous national investment has been made, over the course of more

than three decades. Indeed, a large amount of this country’s public investment in

computer science research has gone into AI, compared with other promising

opportunities. More serious even than the diversion of dollars was the diversion of the

very best computer science minds of a generation, and much of the efforts of the very

best academic laboratories.”

While the opportunity AI promises is immense, the benefits of its innovation fail to

articulate how they might be widespread enough to have a significant positive impact on

human needs or creativity, in the case of our line of inquiry. Instead, these innovations

seem to be solely in service of corporations. AI offers businesses the ability to make a

single investment in a machine, as opposed to paying human workers indefinitely. For

example, Alana Semuels of Time Magazine states in “Millions of Americans Have Lost

Jobs in the Pandemic—And Robots and AI Are Replacing Them Faster Than Ever,” “Now,

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

9 of 23

as automation lets companies do more with fewer people, successful companies don’t

need as many workers.” This business-driven innovation fails to invest in the creativity of

human beings themselves, instead seeking to streamline our capability to act as an

execution machine. Directionally, this thinking is clearly in contradiction with the ideas of

early digital creative tool pioneers such as Engelbart and Kay. Furthermore, this reality

proves the need for us to reconsider our priorities for progress if we truly wish to foster

greater human innovation.

Despite the technology industry’s widespread investment in recreating human

intelligence, the computer’s capacity to be creative is still entirely dependent upon the

human’s ability to program that prescriptive creativity step-by-step into a machine. As

Tony McCaffrey of “There Will Always Be Limits to How Creative a Computer Can Be

states,” “The fastest modern supercomputer couldn’t list or explore all the features of an

object/thing even if it had started working on the problem way back in the 1950s. When

considering the Obscure Features Hypothesis for Innovation,12 which states that every

innovative solution is built upon at least one new or commonly overlooked feature of a

problem, you can see how AI may never advance enough to take the jobs of Chief

Innovation Officers.” While there are situations in which computers are able to figure out

the steps needed to get from state A to state B, it is still within the limitations of

pre-human-mandated decomposition. This means that the actions we take with

computers are steps that we have already broken down in our head in order to achieve an

end result. This is often a highly repetitive process, and makes clear that there is room for

computers to become better co-creators in order to make space for human creativity.

Acknowledging that computers themselves are not inherently creative should not

come as a surprise. Instead, this truth identifies an opportunity for computers to more

fully assume the role of co-creator — not idea-generator, but actualizer. Furthermore, it is

worth acknowledging that human creativity and innovation is not a solitary sport. In fact,

most great digital innovations are the product of a commitment to collaboration and the

melding of many different perspectives.

Facilitating collaboration in a digital tool is a key multiplier for creativity. When you

bring people together to create in the same space (whether it be digital or physical), they

are able to learn from and build upon each other's work through the process of

12 The Obscure Features Hypothesis (OFH) states that all innovative solutions are built upon at
least one overlooked feature of the problem at hand.

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

10 of 23

collaborative knowledge creation. This reality again highlights the pertinence of functional

interoperability since the cross-pollination of digital work between different tools is

necessary for collaboration to function as smoothly as possible. Fostering both creativity

and collaboration in a co-creation tool harnesses the power of computation and the

potential of multiple human perspectives.

As Steve Jobs once explained during an interview in “Memory & Imagination: New

Pathways to the Library of Congress,” “that’s what a computer is to me… it’s the most

remarkable tool that we’ve ever come up with, and it’s the equivalent of a bicycle for our

minds.” This framing steers our attention away from automating digital tools to become

creators themselves. Instead, we can reconfigure our goal towards aiming to construct

software intelligent enough to figure out the steps needed to produce a desired outcome

in service of the human or group's broader creative vision. As Shan Carter and Michael

Nielsen explain succinctly in “Using Artificial Intelligence to Augment Human Intelligence,”

“Intelligence Augmentation (IA), is all about empowering humans with tools that make

them more capable and more intelligent, while Artificial Intelligence (AI) has been about

removing humans fully from the loop.” Using this perspective, my argument will propose

several ways that we can refocus on Engelbart, Carter, Nielsen, and Job’s shared vision of

augmenting human intelligence using digital creative tools.

Significance
By reviewing the history of digital creative tools and the ways computers foster

creativity and collaboration today, we can begin to synthesize the requirements for

co-creation tools. Focusing on enabling creativity optimizes for the type of innovation only

humans are able to perform using a computer, which in turn offers the potential to

reshape humanity in new, and hopefully better, ways. While I am not asserting that

technology holds all the solutions, I am arguing that when appropriately applied,

technology can solve large problems, enable creativity, and change lives. So we return to

our question: how can digital co-creation tools augment human creativity and

collaboration?

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

11 of 23

Standardization
Taking a step back, we might consider the fundamental form in which creative

work is created, recorded, and stored. Today, there is next to no standardization between

digital creative tool files. While there are sometimes ways to convert one tool's file type to

another, the process is tedious at best, unusable at worst. The lack of interoperability13

between creative tools means that all work created within a tool is confined to the

limitations of that tool itself, posing a hindrance to collaboration and limiting creative

possibility. If tools are meant to amplify the power of our brains and take over the

mechanical aspects of human thought, limiting creation to a single piece of software’s

capabilities is clearly antithetical to creativity.

Returning to our comparison between the development and design communities,

the development community’s prioritization of functional standardization has led to far

greater leaps in collaboration and wider scale public ownership over innovation. A culture

of building things with the express purpose to be shared and built upon has created a

baseline standard of interoperability within these communities. This has enabled scaled

contributions on Github projects such as Microsoft’s open-source VS Code text editing

software (Nick Kolakowski, “Top 10 Most Popular Open Source Projects on GitHub”).

Interoperability has been key to sufficiently building upon each other's innovations and

contributions, while spurring the field of development’s speed of innovation.

The ongoing efforts of companies such as GitHub to incentivize the creation and

maintenance of open source software and programming languages is worth

contextualizing. As Sidney Fussell explains in “The Schism at the Heart of the

Open-Source Movement,” “technology firms rely on open-source licensing, a legal

framework that lets users borrow ideas and pool together the insights and labor of

volunteer developers. GitHub is itself built on open-source tools, and sometimes uses

code hosted on the platform to improve itself.” However, the reality of open-source

projects themselves begs reexamination. As Nadia Eghbal writes in her book Working in
Public, “One study found that in more than 85% of the open source projects the

researchers examined on GitHub, less than 5% of developers were responsible for over

95% of code and social interactions.” While there is impressive work being done to

13 In this context, interoperability refers to the ability for different computers to connect and
exchange information.

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

12 of 23

standardize computing and make development more interoperable and accessible, it still

lacks the distributed ownership that incentivizes widespread interoperability.

Nonetheless, programming languages themselves have seen moderate success in

standardization. The partnership between R, a free software environment for statistical

computing and graphics, and Python, an interpreted, widely-used programming language,

serves as a poignant example of the global value derived by interoperability. As Dan Kopf

states in “R and Python are joining forces in the most ambitious crossover event of the

year for programmers,” “[Python] will partner with RStudio [R]... The main goals…are to

make it easier for data scientists working in different programming languages to

collaborate, and avoid redundant work by developers across languages.” Increased

collaboration and efficiency directly exemplify the benefits of interoperability at scale.

However, it is also worth examining the issues associated with interoperability.

Interoperability can often slow down improvements and lead to inconsistent adoption of

open standards. A poignant example of this can be found in the lack of universal browser

compatibility for HTML/CSS features, which adds unnecessary complexity to web

development work. Another consideration is the risk that standardization may

commoditize a set of tools, thus diminishing the innovation made possible by healthy

competition. An example of this can be seen in the state of web browsers today. When

web developers do not properly support all the different web browsers, they inadvertently

drive adoption towards their own tools of choice. This is exemplified through the

contrasting support and usage of Google’s Chrome and Mozilla's Firefox. However, these

considerations are largely the result of building upon a highly functional but extremely

fragmented structure of programming that only implemented consistency and standards

after much of the architecture of the web had already been built. Digital creative tools,

however, are at a different place in their evolution. Defining interoperable standards

between these tools would be altogether new and informed by learnings from similar

implementations in other industries. Standardization would amplify the power of each tool

and vastly expand the possibilities of digital creation.

Taking further inspiration from the development example, we can begin to visualize

the possibilities of standardization if employed for digital media. We might imagine

interoperable source files being stored in a repository structure that could then be

opened and modified by any creative tool of choice. This would require standardization of

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

13 of 23

file types, metadata, and a single substrate. Source files might take inspiration from

Extensible Markup Language, or XML files today. XML files are unique in their being both

human and machine-readable, lightweight, and widely recognized by almost any software

tool.

This concept would not only open doors to further collaboration at scale—it would

also effectively turn the computer into a breeding ground for human innovation.

Standardization would fundamentally change the tide of digital creative tools for the

better by allowing in more collaborators, making space for greater tooling innovation, and

expanding a project’s creative constraints beyond any one tool itself.

Moldability
Beyond standardization, there is still more to be done within the confines of the

digital tool to make it a better co-creator with its human counterpart. Today, the way that

we use creative tools is relegated to the boundaries drawn by the software company who

created the tool. However, when considering the ingredients needed to facilitate

creativity, a common theme that arises is the need for software moldability, or the ability

for the user to tailor their software to better address the problem they are trying to solve.

I will argue that making tools moldable to their users’ preferences while cultivating

communities that inspire and help members shape their own tools is the next logical step

for computers to become better co-creators.

Returning to Engelbart’s guiding principle, computers have the power to change

and expand human thought. But to do so, the software must adapt to suit the user's

unique thought process. This idea shines a light on the importance of a tool’s moldability,

as measured by how easily the software can be customized to the average

non-programmer’s needs. As Mohamed Fayad and Marshall P. Cline state in “Aspects of

Software Adaptability,” “Flexibility means it is easy to change the system’s capabilities in

kind. For example, taking something that was a graphical system and making it

sensory-or sound based. Flexibility is often harder than extensibility, especially when

on-the-fly changes are desired.” Fayad and Cline highlight that there is a clear correlation

between how flexible the software's codebase is and the user's experience of how

moldable the tool is to their creative process.

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

14 of 23

A moldable development environment called “GToolkit” exemplifies a similar

correlation within the field of development. As Tudor Girba states in his presentation

about GToolkit called “Molding Objects with Moldable Tools:” “these tools can be

customized live with very little effort. The low moldability cost, and we often talk about

minutes to adapt the tools, opens new ways to approach understanding code and runtime

through live objects.” In this context, moldability refers to the tool’s readiness to

accommodate many different tasks in many different ways, without forcing the user to

conform to any set processes defined by the software.

A common argument against moldability is the increased cost of maintaining

integrations or modifications that exist on top of a perpetually changing piece of

software. This is a real issue, as evidenced by the fragility of plugin ecosystems such as

those of the free content management system, Wordpress. However, this points to the

fact that there are many different types of moldability to consider. Moving beyond

building on top of existing software, we can begin to imagine what a piece of software

could look like if it itself was moldable, or built to be modified by the user. As the Victoria

and Albert Museum explain, an interesting example of this can be seen in the early 1960s:

“by writing their own programs, artists and computer scientists were able to experiment

more freely with the creative potential of the computer.” However, the evolution and

global spread of personal computing since then has meant that this capability is no longer

limited just to programmers. By simplifying and contextualizing the process of shaping the

tool to their needs, the user is able to make the tool exactly what they need to foster their

unique creativity.

No tool exemplifies moldability better than music digital audio workstations, or

DAWs. DAWs such as Apple’s Logic Pro and Ableton Live are unique in their extensive

ability to be customized and accommodate plugins, hardware, and files of all types. In

part for these reasons, DAWs are widely loved by their users and serve as a shining

example of software making very little assumptions about the user’s creative workflows.

Instead, DAWs accommodate numerous paths to reach a desired outcome, in addition to

providing the resources and community to teach the user how to create any missing

feature themself. Similarly within creative tooling, Robofont also comes to mind when

thinking of moldability. The “fully featured font editor with all the tools required for

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

15 of 23

drawing typefaces” was designed to be built on top of, with customization options and

integrations for a multitude of different scripting languages at its core.

Moldability as seen through scripting languages can also be seen exemplified

through Actionscript in its early years. Interjectable scripting languages effectively

removed the steep learning curve that users would need to climb to fully understand how

to build their own tools themself. Actionscript provided users with abstracted,

easy-to-understand coding building blocks, accompanied by a community of other users

sharing their creations, learning, and pushing the bounds of the tool itself. Within the

broader context of the community as a whole, the object-oriented programming language

inspired a sense of play and experimentation in the user that served as a potent incentive

to create. As Bill Gaver wrote in Designing for Homo Ludens: “The designer’s role in this is

not like that of a doctor, prescribing cures for people’s ills; nor is the designer a kind of

servant, developing technologies that people know they want. Instead, designers should

be provocateurs, seeking out new possibilities for play and crafting technologies that

entice people to explore them.”

ActionScript and Flash attest that the success of a moldable tool often comes

down to the tool’s ability to inspire exploration and spur a vibrant tooling community.

Pioneering users that share their creations and anecdotally attest to the tool’s viability

and promise can be seen as toolmakers. Toolmakers are essential to bringing moldable

software building blocks to the average user—the toolmaker’s shared creations serve as

invitations for the average user to join and create something themself. However, it is also

vital that the tool’s moldability is abstracted enough to be widely accessible—usually

meaning that the interface should be controlled visually and require no technical

knowledge. Positioning a tool in this way allows toolmakers to lead the way and inspire

average users to mold the tool themself.

Making tools adaptable to their user's thought process is the first step in

facilitating more human creativity with computers. Baking flexibility into software is also in

some ways advantageous for the software’s business. Moldable tools allow the user to

build for their own needs as opposed to relying solely on the software company to deliver.

This process also fosters a sustained sense of personal ownership and loyalty to the tool.

Furthermore, the communities that emerge out of moldable tools demonstrate the

creativity and collaboration that come as a result of ownership being shared between the

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

16 of 23

software creators and the software users. Allowing the tool to be customized and built

within a collaborative community serves as a powerful example of how we might facilitate

greater creativity with these tools. This concept also suggests that we consider

alternative ways in which digital tools could abstract inefficient areas of the creative

process.

Abstraction
In considering how computers might become better co-creators and actualizers,

we can begin to identify more granular ways that these machines might become more

classically “efficient” in facilitating and keeping pace with human creativity. However, it is

important that we first acknowledge the tension between efficiency and creativity. While

on the surface the two dimensions may seem at odds with one another, this does not

have to be the case. The computer’s execution skill set lends itself to minimizing the need

for any sort of repetitive or monotonous work that might hinder the creative process. This

truth refocuses our attention on fostering creative thought (such as ideation) as opposed

to linear thought (such as creating a functional architecture), seeing as the computer is

already highly adept at accommodating the latter. As Tom Vanderbilt of Nautilus explains

in “The Pleasure and Pain of Speed,” “As we have shifted from manual typewriters to

electric to, finally, digital tools… that technological speed bump has been eroding. He

cites the research of Stanford University literary scholar Andrea Lunsford, who has

examined freshmen entrance essays from 1917 until the present. While grammatical error

rates have stayed the same, the length and complexity of the essays have dramatically

increased. ‘It’s not that the kids of 1917 were stupider,’ says Thompson ‘It’s just that their

tools were getting in the way of their thought.’”

The challenge lies in training the computer to understand and execute a user’s

specific and often unique intent, with the goal of diminishing repetitive work and instead

inspiring creativity and play. A simple example of this concept can be seen today in the

form of predictive text editors. But we might also imagine how the same repetitive,

logic-based principles could be applied to visual creative tools. Through this lens, the first

step in computers becoming better co-creators would be to simplify repetitive workflows

and accommodate logic in order to increase the efficiency of assembling in the creative

tool.

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

17 of 23

Beginning with simplification, it becomes clear that this situation calls for

abstraction, or the dumbing down of something technical in order to reduce complexity

and omit unnecessary information. In abstracting repetition in the tool, we quickly realize

that doing so requires accommodating a diversity of creative processes. While creative

tools today offer components and other efficiency features, the contrast between the

efficiency of creative tools and engineering tools is stark. Concepts such as abstract

classes in development allow the programmer to apply objectified attributes while hiding

the irrelevant details. In contrast, creative tools often require the construction of applied

properties and details from scratch every time.

This repetition is a reflection of the constructive building model of canvas-based

creative tools. The “elements-on-a-canvas” convention that we see at the core of creative

tools such as Adobe Creative Suite products, Figma, and Sketch replicates the physical

process of assembly that the digital tool has replaced. This approach has proven its

worth: it allows for exploration and spatial orientation in a seemingly endless way.

Replicating this process physically would require drawing possibly hundreds of screens by

hand and then attempting to find the right one in a mess of papers. Despite the digitized

version of this process being a significant improvement, iteration in digital tools today is

still repetitive, time-consuming, and may deter potential creative contributors—especially

in the simplest of use-cases. The scenario in which human-generated iterations mimic

logical/data states proves particularly inefficient. While iteration on the digital canvas

provides a broadly understood medium for creativity, it also necessitates humans act as

machines to produce versions in the precise way the tool allows, which requires time and

creative energy.

Considering how digital tools can be more efficient throughout the creative

process from exploration to production, it becomes clear that moldability is key to

accommodating the different stages’ needs. Beginning with the exploration stage within

the example of interface design, a simple solution to abstract complexity and increase

efficiency is to temporarily minimize options. Providing a simple, scalable interface with

existing primitive elements and safe guides would help the user feel that making

contributions is easy, simple, and reversible. This simplified tool would function like a

lightweight scratchpad, providing both inexperienced and experienced users with

predefined components and allowing them both to experiment rapidly. Offering

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

18 of 23

predefined elements (shapes, text, symbols) directly exemplifies how a digital tool can

augment human intelligence by allowing the user to get into the creative flow faster and

minimize unnecessary construction work.

However, this brings up a common objection by creative people against increased

abstraction. Many believe that in minimizing options, you are effectively killing the

creativity that would come from exploring during the process of assembly. While this

argument is true, it is influenced by a comfortability with the processes of the past. The

goal of increasing abstraction is to keep pace with human thought and provide the user

with everything they need to articulate that thought without interruption. By simplifying

the experience of using the tool, it invites in far more people than previously had access

to the creative process. This fosters greater collaboration at the ideation stage, which is

arguably the most important in order to accommodate a diverse range of perspectives.

Moving further along in the creative process to assembly, it becomes clear that the

computer’s execution skillset uniquely lends itself to generating a multitude of options for

the human user to choose from. The process of assembly offers ample opportunity to tap

into the power of human + computer co-creation by enabling the user to assign

conditional logic14 and dictate numerous variations at once. Returning to our example of

interface design, we can imagine that as opposed to constructing surface-level properties

that simulate how each state of an interface would appear, each state could be visually

defined using conditional logic. Compositions would then be built from the sum of

universal parameters. Logic would form an abstracted rendition of the digital output

(code), thus providing a bridge between the creative and computational thought

processes. Both variation generation and the accommodation of logic afford the human

user greater time and mental capacity to focus on the creative choices that they are

uniquely skilled to make.

Practically, incorporating variation generation and conditional logic in interface

design is the difference between designing numerous different states of the same UI

button versus designing one state and the corresponding logic buttons should follow.

Logic shifts much of the needless production work back on the computer to follow

linearly, as opposed to the human user working as a linear machine. As Frederick G.

14 Conditional logic = { if/else made visual }

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

19 of 23

Linnemann and Carl Minichof state in “Logic Design System,” “The Logic Design System

has been constructed to avoid built in hardware obsolescence."

The creation and widespread adoption of interface design systems can be seen as

a first step towards streamlining ideation and increasing efficiency. As Clancy Stark of

Figma found in his research on “Measuring the Value of Design Systems,” “when

participants had access to a design system they completed their objective 34% faster

than without a design system.” Incorporating logic into a digital tool is the next step in

fully actualizing the computer’s potential as an execution-focused co-creator. This shift

would also allow the user to spend less time on menial production work and more time on

larger creative problems.

One level beyond logic in a creative tool can be seen exemplified in the concept of

“programming by demonstration,” as coined by Bret Victor in his piece, “Magic Ink.”

Returning to our example of interface design, the design process currently forces you to

choose between two options: either learn a programming language (intimidating) or

create mockups and have an engineer implement them (inefficient). Presently, the

mockup process is the most common. However, Victor proposes another approach

altogether called programming by demonstration; this technique involves teaching a

computer what to do by exemplifying exactly what you want to have happen. This method

means that the computer effectively infers and creates the logic needed to reproduce

your demonstration. While yet to be fully realized within creative tools, this concept holds

immense potential for further efficiency, while solidly situating the computer as

co-creator.

Extreme examples of more fully abstracting logic and inputs can be seen in rare

experimental applications of AI for creative tooling production generation. As Cade Metz

of The New York Times reported on Jordan Singer’s explorations using the machine

learning model GPT3 to generate specified code, “He fed the system a simple description

of a smartphone app, and the computer code needed to create the app. The description

was in plain English. The code was built inside Figma, a specialized design tool used by

professionals like Mr. Singer. He did this a few more times, feeding the system several

more English-language descriptions alongside the matching Figma code. And when he

was done, GPT-3 could write such code on its own” (“Meet GPT-3. It Has Learned to Code

(and Blog and Argue)”). This example demonstrates the purest form of co-creation

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

20 of 23

between human and machine. Abstraction and logic highlight how computers could take

full ownership over execution and leave the human user to focus on the creative thinking

that forms the whole.

Combining the concepts we’ve covered thus far brings us to the following

conclusion: Computers have, since their inception, been a rigid tool that the human user

has had to adapt to use. This limits what can be done with the tool because not everyone

knows how to operate the machine in the precise way it requires, nor how to go about

changing it to fit their needs. However, through standardization, moldability, and

abstraction, we can dramatically expand the utility of computers while broadening their

capacity to help more people solve their problems creatively.

Conclusion
But why does this matter? It matters because innovation is largely dependent on

the human capacity to think creatively, and there is a strong argument to be made that

technology’s primary role is to speed up the creative process and catalyze innovation at a

global scale. And yet as Lucien von Schomberg states in “Technology in the Age of

Innovation,” “in the current age… the concept of innovation is predominantly presupposed

as technological innovation.” This commonly-held viewpoint fails to capture the human

creativity that presupposes innovation of any kind, even technological innovation. As the

pioneering mathematician Richard Hamming put it in his book, The Art of Doing Science
and Engineering, “The purpose of computation is insight, not numbers.”

Interoperable, moldable, efficient, and community-driven digital creative tools hold

immeasurable potential as co-creators with human beings. Tools of this type would lower

the barrier to entry and make all users toolmakers and owners in an expanded definition

of technological innovation. As Ted Nelson puts it in Computer Lib/Dream Machines,
“everything is deeply intertwingled.”

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

21 of 23

Bibliography
Arbesman, Samuel. “The Forgotten Software That Inspired Our Modern World.” BBC

Future, BBC,

www.bbc.com/future/article/20190722-the-apple-software-that-inspired-the-inter

net.

Austin, Robert D., and Lee Devin. “Research Commentary: Weighing the Benefits and

Costs of Flexibility in Making Software: Toward a Contingency Theory of the

Determinants of Development Process Design.” Information Systems Research, vol.

20, no. 3, 2009, pp. 462–477. JSTOR, www.jstor.org/stable/23015475. Accessed 1

Jan. 2021.

Brad A. Myers. "A Brief History of Human Computer Interaction Technology." ACM

interactions. Vol. 5, no. 2, March, 1998. pp. 44-54.

Carter & Nielsen, "Using Artificial Intelligence to Augment Human Intelligence", Distill,

2017.

Coale, Kristi. “Closing OpenDoc - a Great Leap Backward?” Wired, Conde Nast, 14 Dec.

2017, www.wired.com/1997/03/closing-opendoc-a-great-leap-backward/.

Eghbal, Nadia. Working in Public: the Making and Maintenance of Open Source Software.

Stripe Press, 2020.

Fayad, Mohamed & Cline, Marshall. (1996). Aspects of Software Adaptability. Commun.

ACM. 39. 58-59. 10.1145/236156.236170.

Fussell, Sidney. “The Schism at the Heart of the Open-Source Movement.” The Atlantic,

Atlantic Media Company, 5 Jan. 2020,

www.theatlantic.com/technology/archive/2020/01/ice-contract-github-sparks-dev

eloper-protests/604339/.

Gamezpedia. “Gamezpedia/Awesome-Actionscript.” GitHub,

github.com/Gamezpedia/awesome-actionscript.

Gaver, William w. “Designing for Homo Ludens.” Computer Related Design, 21 Oct. 2014.

Kopf, Dan. “R And Python Are Joining Forces, in the Crossover Event of the Year.” Quartz,

Quartz,

qz.com/1270139/r-and-python-are-joining-forces-in-the-most-ambitious-crossove

r-event-of-the-year-for-programmers/.

Hanson, Chris, and Gerald Jay Sussman. Software Design for Flexibility: How to Avoid

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

22 of 23

Programming Yourself into a Corner. The MIT Press, 2021.

Jobs, Steve, Interviewee. Memory & Imagination: New Pathways to the Library of

Congress. 6 Oct. 2011,

www.youtube.com/watch?v=6kalMB8jDnY&feature=emb_title.

Moss, Frank. The Sorcerers & Their Apprentices: The Untold Story of MIT Media Lab.

Crown Business, 2011.

Nick Kolakowski. “Top 10 Most Popular Open Source Projects on GitHub.” Dice Insights,

8 Nov. 2019,

insights.dice.com/2019/11/08/10-popular-open-source-projects-github/.

Linnemann, Frederick G., and Carl E. Minich. “Logic Design System.” Proceedings of the

June 1971 Design Automation Workshop on Design Automation - DAC '71, 1971,

doi:10.1145/800158.805090.

Stark, Clancy. “Measuring the Value of Design Systems.” Figma,

www.figma.com/blog/measuring-the-value-of-design-systems/.

Semuels, Alana. “Machines and AI Are Taking Over Jobs Lost to Coronavirus.” Time, Time,

6 Aug. 2020, time.com/5876604/machines-jobs-coronavirus/.

Purcell, Kristen, et al. “The Impact of Digital Tools on Student Writing and How Writing Is

Taught in Schools.” Pew Research Center: Internet, Science & Tech, Pew

Research Center, 30 May 2020,

www.pewresearch.org/internet/2013/07/16/the-impact-of-digital-tools-on-student

-writing-and-how-writing-is-taught-in-schools/.

Wessner, Charles W. “Stanford and Silicon Valley.” Best Practices in State and Regional

Innovation Initiatives: Competing in the 21st Century., U.S. National Library of

Medicine, 1 Jan. 1970, www.ncbi.nlm.nih.gov/books/NBK158815/.

Vanderbilt, Tom. “The Pleasure and Pain of Speed - Issue 9: Time.” Nautilus, 23 Jan. 2014,

nautil.us/issue/9/time/the-pleasure-and-pain-of-speed.

Victor, Bret. “Magic Ink.” Magic Ink: Information Software and the Graphical Interface, 15

Mar. 2005, worrydream.com/MagicInk/#designing_a_design_tool.

Victoria and Albert Museum, Online Museum. “The Pioneers (1950-1970).” A History of

Computer Art, Victoria and Albert Museum, Cromwell Road, South Kensington,

London SW7 2RL. Telephone +44 (0)20 7942 2000. Email Vanda@Vam.ac.uk, 17

July 2013, www.vam.ac.uk/content/articles/a/computer-art-history/.

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

23 of 23

Von Schomberg, L., Blok, V. Technology in the Age of Innovation: Responsible Innovation

as a New Subdomain Within the Philosophy of Technology. Philos. Technol. (2019).

https://doi.org/10.1007/s13347-019-00386-3

Zuegel, Devon. “Episode 03 Ted Nelson.” Tools & Craft, Notion,

www.notion.so/tools-and-craft/03-ted-nelson.

Molly Mielke • UCLA Digital Media Undergrad Thesis • Last updated March 27, 2021

http://mollymielke.com

