How to identify friction material properties, which are not isotropic and vary with loading?

Material composition:
- Reduced to full
- 5 cubical samples

Previous work:
- Friction material formulation
- Typical Young's modulus
- Compression modulus

Observations/Strategy:
- Some mechanical properties are known but not the corresponding mechanisms.
- Compression modulus is low compared to the metallic matrix / Role of the different components

Two means of characterization:
- Ultrasonic measurements
 - The mechanical behavior (Anisotropic)
 - Young modulus
- Macro indentation Brinell
 - Experimental data (Load-displacement)
 - The mechanical behavior (Anisotropic)

Complexity of the problem:
- Multi-components material
- Anisotropic morphology
- Multi-axial loading

Conclusion & Outlook:
- Model 3 (Anisotropy of MmCG1 Phase) ➔ Isotropic transverse global behavior
- Validation of the Brinell indentation tests and the reverse identification FEMU.
- In-situ multiaxial indentation test in a X-ray microtomograph to investigate/verify role of the components

Acknowledgments:

Context:
- High speed train: TGV.
- Mechanical braking system of the TGV.

Mechanical characterization and modeling of heterogeneous friction pad material under multiaxial loading

Notation
- Mm
- MmC
- MmCG1
- MmCG2
- MmCG1G2

Components
- Mn: 70%
- C: 10%
- G1 & G2: 20%

Typical size (μm)
- 100-600

Compression modulus (MPa)
- Mn: 10.3
- C: 2.5
- G1 & G2: 15.5

Global behavior
- Young modulus

Two phases model:
- MmCG1+G2

Conclusion & Outlook:
- Model 3 (Anisotropy of MmCG1 Phase) ➔ Isotropic transverse global behavior