Aging of a sintered friction material - Evolution of its microstructure and friction performances

Delattre Sylvain*, Cristol Anne-Lise, Dufrenoy Philippe, Desplanques Yannick, Henrion Michèle

* Sylvain.delattre@univ-lille.fr

Context

- As-sintered friction material
- 1-4 year use on trains
- Friction material aged on train

Sampling for material analysis

- Weathering in laboratory tribometer

Method

- Tribological behaviour of train materials

Lab Weathering

- **Samples**
 - 3 cylindrical pads for material characterization
 - 2 rectangular pads for tribological testing

- **Conditions**
 - 1 week exposure to:
 - friction sequence based on field data under 95% relative humidity

Characterization of train and lab-weathered materials

Characteized Materials

- As-New (AN)
- Weathered with Friction (WF)
- Aged on Train (Train)
- After Friction Testing (+FT)

Tribology

- Average deviation of CoF (%)

Porosity

- Apparent density \(\delta_a (g.cm^{-3}) \)
- Open porosity \(\Phi_o (\%vol) \)
- Permeability \(k \ (m^2) \)

SEM - EDX

- Average Composition of Dioxides (at%) As-sintered (5 Oxydes)

Brinell Hardness

- Average hardness of friction surface (HB)

Weathering Effects

- Reduced CoF, especially at higher speeds
- Reduced open porosity and permeability
- Oxide development in pores
- Hardened friction surface

Conclusions & Outlooks

- Validation of the weathering test and material characterization
- Highlight of the CoF and material evolution during weathering
- Research now focused on the link between material and CoF evolution