Pharmacokinetics and tolerability of sublingual fentanyl in healthy Japanese and Caucasian volunteers: Phase I, open-label, single-dose study

Ulrike Lorch¹, Fiona Farrell², John Kilborn², Masami Tamaoka³, Rob Derrick⁴, Julian Howell⁴

¹Richmond Pharmacology Ltd, St George's University of London, Cranmer Terrace, Tooting, London, SW17 ORE, UK

²Kyowa Hakko UK Ltd, Bath Road, Slough, Berkshire, SL1 4DX, UK

³Kyowa Hakko Kogyo Co. Ltd, 1-6-1 Ohtemachi, Chiyoda-ku, Tokyo 100-8185, Japan

⁴ProStrakan Group plc, Galabank Business Park, Galashiels, TD1 1QH, UK

Background

- Breakthrough pain (BTP) is a transitory exacerbation of severe pain occurring on a background of otherwise controlled persistent pain.
- Oral transmucosal fentanyl citrate, an opioid with rapid onset of action, is recommended as a supplement to the fixed-opioid schedule in the treatment for BTP.^{2,3}
- Sublingual fentanyl (SLF) is a new rapidly disintegrating transmucosal delivery formulation of fast-acting fentanyl citrate developed for the management of BTP in opioid-tolerant cancer patients.
- Previously reported data show that SLF:
 - has favourable pharmacokinetic (PK) and tolerability profiles⁴
 - is quickly absorbed from the sublingual mucosa into the systemic circulation⁵
 - consists of an interactive mixture of carrier particles and fentanyl citrate with a bioadhesive component to minimise the potential for swallowing and absorption through the gastrointestinal tract⁵
 - allows for convenient and independent patient administration.⁶

Objectives

- The objectives of this study were to:
 - determine the PK and tolerability profiles of single-dose SLF in healthy male Japanese and Caucasian subjects
 - assess whether differences in the rate and extent of fentanyl absorption and elimination exist between different ethnic groups.

Methods

• This was a Phase I, UK-based, single-centre, open-label study consisting of four ascending single-dose treatment periods (Figure 1).

Figure 1. Study design

Study population

- Twenty-one healthy male Japanese and Caucasian volunteers aged 20–45 years were recruited. Subjects had to have a body weight of 55–85 kg, with a body mass index of 18–25 kg/m², and be non-smokers or light smokers.
- Subjects with any relevant clinically significant, abnormal clinical history, any major illness within 3 months of study start or a history of opioid intolerance or severe allergic disease were excluded. Subjects using any medications within 5 days of study start or any concomitant medications, excluding anti-emetics and naloxone, were also excluded.

Treatment

- Following a 2–14-day screening phase, subjects received a single ascending dose of SLF (50, 100, 150 and 200 µg) at each of the four treatment periods.
- Treatment periods were 3 days in duration, with each being separated by a ≥3-day washout period.
- At each treatment visit, blood and urine samples were collected at regular intervals for 24 hours after treatment administration.
- Subjects were monitored continuously throughout the study for signs of adverse events (AEs).

Assessments

- The primary PK parameters included:
 - maximum plasma concentration of fentanyl (C_{max})
 - time to C_{max} (t_{max})
 - time to first measurable plasma concentration of fentanyl (tfirst)
 - area under the plasma concentration versus time curve from time 0 to the last quantifiable sampling point (AUC₀₋₁)
 - area under the plasma concentration versus time curve from time 0 extrapolated to infinity (AUC_{0-∞})
 - terminal half-life of the drug (t_{1/2})

Statistical analysis

- The study was designed to include 10 evaluable Japanese subjects and 10 evaluable Caucasian subjects.
- Individual PK parameters were determined using non-compartmental methods.
- All patients were to be included in the safety analysis.

Results

Baseline demographics and characteristics

- A total of 20 subjects completed all four treatment periods.
- One subject (Caucasian) was withdrawn following a positive drug test result prior to treatment period 2.
- No clinically relevant differences in demographic characteristics were noted between the ethnic groups (Table 1).

Ethnic group	Number of subjects	Age Mean, years	Weight Mean, kg	Height Mean, m	BMI Mean, kg/m²
Caucasian	11	25.7 ± 5.61 (20–38)	69.17 ± 7.41 (56.6–79.9)	1.77 ± 0.06 (1.69–1.87)	22.09 ± 2.03 (19.40–25.15)
Japanese	10	26.7 ± 3.02 (23–34)	65.47 ± 7.04 (55.4–81.0)	1.72 ± 0.07 (1.59–1.83)	22.17 ± 1.65 (18.78–24.19)
Japanese & Caucasia	n 21	26.2 ± 4.48 (20–38)	67.41 ± 7.30 (55.4–81.0)	1.75 ± 0.07 (1.59–1.87)	22.13 ± 1.81 (18.78–25.15)

Table 1. Baseline demographics (all 21 recruited subjects; ranges are shown in brackets). BMI: body mass index.

Mean plasma concentration-time curves

• The mean plasma concentration-time curves (Figure 2) showed rapid absorption of fentanyl.

Figure 2. Mean fentanyl plasma concentration versus time in healthy male Japanese and Caucasian subjects

• No major differences were observed in plasma fentanyl levels between the ethnic groups.

Fentanyl pharmacokinetics

- Overall mean PK parameters are given in Table 2.
- For all four doses, fentanyl was first quantifiable in plasma (median tfirst) approximately 10-15 minutes after treatment, and median t_{max} was 30-45 mins for all doses.
- and C increased with according SIE dass

Pharmacokinetic	SLF dose					
variable	50 μg	100 µg	150 µg*	200 µg		
Caucasian population	l					
AUC _{0-t} (ng.h/mL)	0.372±0.1375	0.915±0.3339	1.473±0.5846	2.319±0.9542		
AUC _{0-∞} (ng.h/mL)	0.544±0.0663	1.033±0.2269	1.659±0.6110	2.803±1.307		
C _{max} (ng/mL)	0.097±0.0309	0.219±0.0608	0.292±0.0976	0.452±0.1439		
t _{max} (minutes)**	60.0	30.0	45.0	37.5		
t _{first} (minutes)**	19.98	10.02	10.02	10.02		
t _{1/2} (hours)	3.457±1.3234	3.048±0.9663	4.711±2.4730	7.607±3.7779		
Japanese population						
AUC _{0-t} (ng.h/mL)	0.321±0.1853	0.932±0.5576	1.425±0.8476	2.203±1.246		
AUC _{0-∞} (ng.h/mL)	0.672±0.2218	1.060±0.7439	1.768±1.1324	1.973±1.0147		
C_{max} (ng/mL)	0.110±0.0387	0.219±0.0650	0.301±0.0711	0.412±0.148		
t _{max} (minutes)**	37.98	30.0	30.0	52.5		
t _{first} (minutes)**	12.48	10.02	7.5	10.02		
t _{1/2} (hours)	3.327±0.9244	4.133±3.6026	4.858±3.7805	5.792±3.3680		
All subjects						
AUC ₀₋₊ (ng.h/mL)	0.347±0.1610	0.923±0.4474	1.449±0.7090	2.261±1.081		
AUC _{0-∞} (ng.h/mL)	0.592±0.1446	1.047±0.5472	1.720±0.9145	2.416±1.216		
C _{max} (ng/mL)	0.104±0.0347	0.219±0.0613	0.297±0.0832	0.432±0.143		
t _{max} (minutes)**	45.0	30.0	30.0	45.0		
t _{first} (minutes)**	15.0	10.02	10.02	10.02		
$t_{1/2}$ (hours)	3.397±1.1119	3.623±2.6851	4.794±3.1740	6.760±3.5883		

*One 50 µg tablet and one 100 µg tablet; **Median data

Table 2. Overview of the sublingual fentanyl pharmacokinetic data (mean±SD) for healthy male Japanese and Caucasian subjects

• While some degree of non-uniformity was observed across the four doses in $AUC_{0-\infty}$, t_{max} and t_{first} , overall there was no trend to indicate statistically significant ethnic differences in the rate and extent of SLF absorption (p=0.6274, p=0.7162 and p=0.8943 for AUC_{0-t} , $AUC_{0-\infty}$ and C_{max} , respectively).

Tolerability profile of SLF

- Thirty-nine AEs were reported by 13 subjects; all were mild to moderate in severity, and the majority were considered possibly or probably treatment-related.
- The most common AE was somnolence
- The incidence of AEs increased in proportion to ascending SLF dose; however, no marked differences were observed between the ethnic groups (19 AEs reported by five Caucasian subjects and 20 reported by eight Japanese subjects).

Conclusions

- Fentanyl plasma concentrations increased as a function of ascending dose.
- Plasma concentration data indicate that fentanyl was rapidly absorbed (t_{first} and t_{max}), irrespective of ethnicity or dose.
- SLF had a good tolerability profile within these volunteers, with no differences attributable to ethnicity.
- The lack of ethnic differences in kinetics is encouraging and suggests that no specific modifications in dosing between Caucasian and Japanese subjects are needed.

References

- . Portenoy RK and Hagen NA. *Pain* 1990;41:273–281.
- 2. Hanks GW et al. Br J Cancer 2001;84:587-593.
- 3. Zeppetella G and Ribeiro MDC. Cochrane Database of Systematic Reviews 2006, Issue 1.
- 4. Lennernäs B et al. Br J Clin Pharmacol 2004;59:249-253.
- 5. Bredenberg S et al. Eur J Pharm Sci 2003;20:327-334.
- 6. Zeppetella G. Palliat Med 2001;15:323-328.