

GASTRIC ACID SUPPRESSION EFFECT OF TAK-438, A POTASSIUM-COMPETITIVE ACID BLOCKER FOLLOWING ASCENDING SINGLE DOSES IN HEALTHY SUBJECTS

Y. Sakurai ¹, A. Nishimura ¹, G. Kennedy ², M. Hibberd ², H. Okamoto ¹, H. Jenkins ², K. Ashida ³, J. Taubel ⁴

Results

(a)

1: Takeda Pharmaceutical Company, Ltd., Osaka, Japan, 2: Takeda Global R&D (Europe) Centre Ltd, London, United Kingdom, 3: Osaka Saiseikai Nakatsu Hospital, Osaka, Japan, 4: Richmond Pharmacology Ltd, London, United Kingdom

Introduction

TAK-438 is a small molecule, oral potassiumcompetitive acid blocker under development for the treatment of acid-related disorders. Faster, higher, and longer increases in gastric pH compared with proton-pump inhibitors (PPIs) may offer a clinical advantage for the treatment of acid-related disorders.

The objective of these studies was to investigate the safety, tolerability, pharmacokinetics and pharmacodynamics of single rising doses of TAK-438 in healthy male subjects.

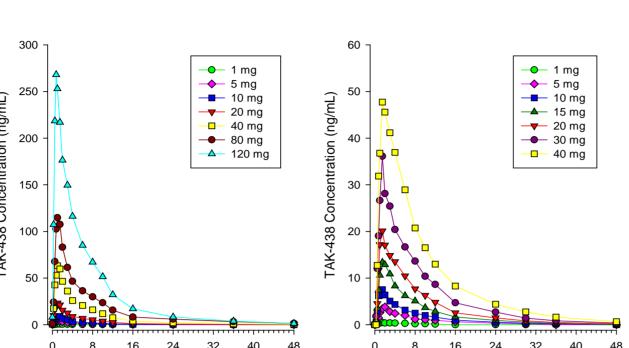
Methodology

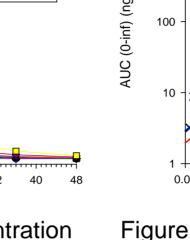
Two separate studies of similar design were conducted in Japan (JP) and the United Kingdom (UK). Healthy male subjects received single rising doses of TAK-438 ranging from 1 mg to 120 mg as described Table 1.

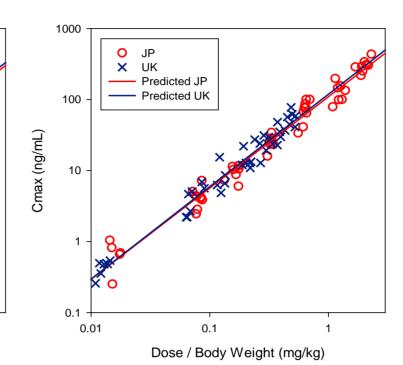
Study Overview

Table 1 Study Overview							
Region	JP (N=84)	UK (N=63)					
Study design	Double blind, placebo controlled, randomized study	Double blind, placebo controlled, randomized study					
Subjects	Healthy male Age: 26.1 (years) Body weight: 62.5 (kg)	Healthy male Age: 26.1 (years) Body weight: 77.7 (kg)					
Study Drug	Dose escalation: TAK-438 1, 5, 10, 20, 40, 80, 120 mg (N=9/group) Placebo (N=21)	Dose escalation: TAK-438 1, 5, 10, 15, 20, 30, 40 mg (N=6/group) Placebo (N=21)					
	Food Effect: TAK-438 10, 40 mg	Food effect: TAK-438 20 mg					
Endpoint	Safety, PK, and PD	Safety, PK, and PD					

24-h (JP) / 96-h (UK) intragastric pH monitoring was performed continuously using a calibrated pH monitor. The study was approved by the local Ethics Committee and was conducted under GCP conditions and all applicable local regulations.

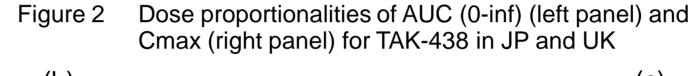

Primary variables

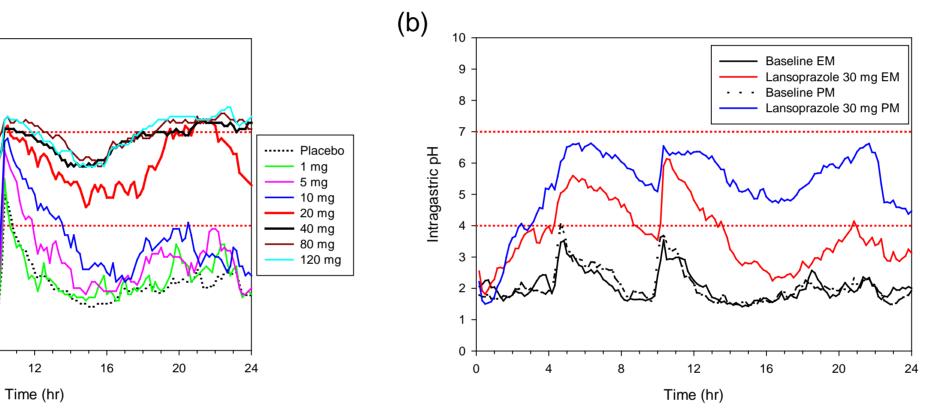

Adverse events, vital signs, ECGs, and Safety:

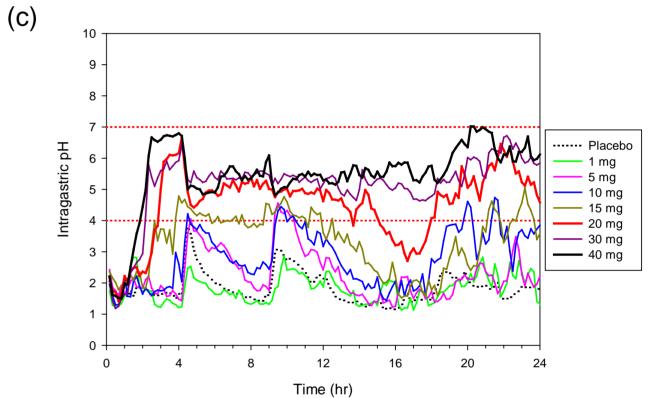

laboratory test results PK: AUC(0-inf), Cmax

Time course of 24h pH, percentage time pH>4 PD:

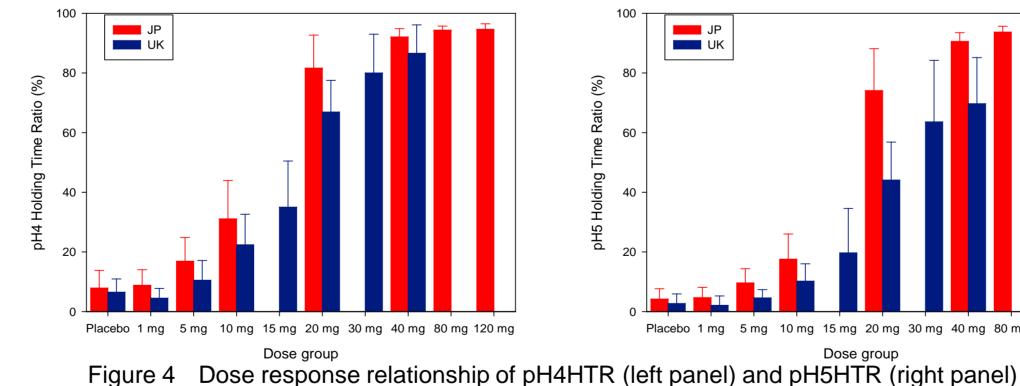
in the 24h period post dose

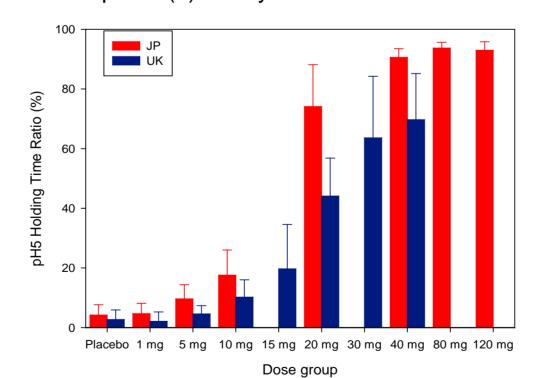



Evaluation of Dose Proportionality and Ethnic Difference for AUC(0-tau) and Cmax


		and C	παλ	
PK		Estimate	95% CI	
Parameter			Lower	Upper
AUC(0-tau)	Intercept	6.601	6.481	6.721
	In (dose/BW)	1.286	1.222	1.350
	region UK	0.148	-0.087	0.384
	region JP	0		
	In (dose/BW)*region UK	-0.054	-0.163	0.056
	In (dose/BW)*region JP	0		
Cmax	Intercept	4.697	4.588	4.806
	In (dose/BW)	1.285	1.227	1.344
	region UK	0.083	-0.131	0.296
	region JP	0		
	In (dose/BW)*region UK	0.017	-0.083	0.116
	In (dose/BW)*region JP	0		

Time course of plasma TAK-438 concentration Figure 1 in JP(left panel) and in UK (right panel)




Dose / Body Weight (mg/kg)

Mean intragastric pH profiles with TAK-438 in JP (a), Lansoprazole in JP (b), and TAK-438 in UK (c). Figure 3 EM, extensive metabolizer(CYP2C19 *1/*1, *1/*2, or *1/*3); PM, poor metabolizer (CYP2C19 *2/*2, *2/*3, or *3/*3) Note: Lansoprazole data in panel (b) is Day 1 data derived from TAK-390MR/CPH-002 study¹ (Not published).

Treatment-Emergent AEs by Preferred Term in UK study

		J		,				,
	Placebo (21)	1 mg (6)	5 mg (6)	10 mg (6)	15 mg (6)	20 mg (6)	30 mg (6)	40 mg (6)
Abdominal pain							1	
Diarrhea							1	
Toothache		1						
Dizziness	1	1						
Headache				1				
Epistaxis					1			
Nasal discomfort	1							
Rhinorrhea	1							
Erythema		1		1				
Dry skin				1				

Results

- **Efficacy** Peak plasma concentrations of TAK-438 occurred by 2 h, declining with an apparent half-life of up to 9 h (Figure 1).
- Plasma exposure for TAK-438 increased with dose, in a slightly greater than dose-proportional manner.
- No statistical difference for AUC(0-tau) and Cmax was observed between JP and UK subjects (Figure 2 and Table 2).
- 24-h intragastric pH profiles at different doses show a dose-dependent antisecretory effect.
- Onset of antisecretory effect of TAK-438 appears to be faster when historically compared with Lansoprazole from a separate study (Figure 3).
- A clear dose response relationship was observed in pH4HTR (percentage time pH>4) and pH5HTR (percentage time pH>5) (Figure 4)
- Nighttime values (from 12 to 24 h post dose) for pH >4 and >5, for the 40 mg dose, were 100 and 99% respectively in Japanese subjects. For Caucasian subjects nighttime values (20:00 to 08:00) for pH >4 and >5, for the 40 mg dose, were 90 and 79% respectively (data are not shown).

Safety

- No AEs were reported in the JP study.
- A total of 10 of 63 subjects (15.9%) experienced 12 treatment-emergent AEs in the UK single rising dose study (Cohorts 1 - 7) with no dose-response evident across the cohorts (Table 3).
- No SAEs were reported in either the JP or the UK study.
- In both studies, increased serum gastrin, pepsinogen I and Il levels were observed at doses ≥ 10 mg (data not shown).
- TAK-438 was well tolerated in both studies at doses up to 120 mg in JP and 40 mg in the UK.

Summary & Conclusion

Gastric acid secretion was suppressed by TAK-438 rapidly, strongly and for a long duration (including nighttime) at single oral doses between 20 and 120 mg and was well tolerated at all doses studied (1 to 120 mg) in healthy subjects.

TAK-438 may therefore offer a safe and well tolerated alternative to PPIs with potential for a greater clinical benefit for the treatment of acid-related disorders.

Reference

1. TAK-390MR/CPH-002 Clinical Study Report, A Phase I, Randomized, Double-Blind, AG-1749 Controlled, Ascending Multiple Dose Study of the Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of TAK-390MR in Healthy Male Subjects