

Battery-free dynamical sensors for cold-chain monitoring and asset tracking

Enables battery-free, continuous data logging of historical conditions such as temperature, vibration, or light

Technology Summary:

Our silicon-based quantum sensor can continuously sense and record information without the need for batteries. By interrogating the stored information at a later time instant, the recipient can retroactively monitor the environmental conditions the sensor experienced.

Advantages:

- Continuously logs data from environmental stimuli without external power or batteries
- Provides cumulative, time-integrated information for later retrieval
- Leverages mature silicon manufacturing to reduce cost
- Reduces gap in coverage by augmenting existing periodic, batterybased solutions

Covid-19 Use Cases:

- Temperature Compliance: Ensures that vaccines did not exceed their rated storage temperature
- Per-vial Monitoring: tiny (< 1mm2) size and low-cost allows each vial to have its own sensor</p>
- End-user Verifiable: sensor data provides decision support prior to administration of medication

Use Cases:

- Radio-frequency Sniffing: high input sensitivity allows logging of ambient RF signal signatures for asset security
- Asset Tracking: always-on sensing/data logging of high-value assets' environmental condition
- MRE Safety Verification: track individual MREs through the supply chain and detect spoilage before use

Cost Estimate for Phase II: \$1.2M (15 months)

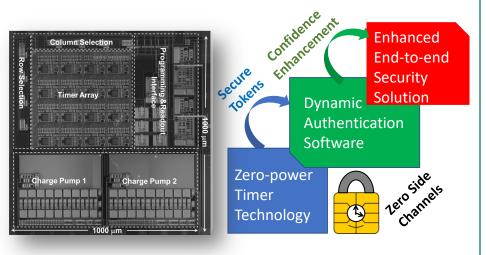
>	Wafer run for fabricating >100,000 chipsets	6 months
>	Packaging	3 months
>	Software + API development	6 months
>	Validation and Destructive Testing	2 months
>	Field Demonstration	3 months

Traction:

>	National Science Foundation (\$600k)	2015-2020
>	Semiconductor Research Corporation (\$75k)	2015-2019
>	National Institute of Health (\$450k)	2017-2020
>	Leadership and Entrepreneurship Acceleration Program Award (\$50k)	2019
>	NSIN National Security Academic Accelerator Pilot Cohort Award (\$54k)	2020-2021

Company Contact Info:

Kenji Aono, President, kenji@freedynamics.tech (734) 272-6174, https://ireedynamics.tech



IoT Security Solutions using Zero-power Timers

2019

2020-2021

Ultra-secure root-of-trust for resource constrained internetof-things (IoTs) like sensors and wearables

Technology Summary:

Our zero-power timekeeping technology uses quantum tunneling to implement chip-scale synchronized clocks that can operate without any external powering. This can be used for security and for single and two-way authentication. The device has zero side-channels and is immune to snooping and tampering.

Advantages:

- Provides ultra-secure root-of-trust for fast authentication of IoT transactions.
- Reduces computational footprint compared to other authentication technologies.
- Allows mutual authentication where IoTs and their readers can verify each other.

Use Cases:

- Sensors and healthcare IoTs: A low-cost solution that can be used to securely sign the signal source and verify the received signals.
- **Passive IoTs:** Battery-free operation allows more secure authentication with passive tags and access cards.
- Hardware root-of-trust: Dynamic tokens are generated for trust verification and for securing vulnerable transactions like software upgrades.
- Intellectual property protection: Time-sensitive tokens can be used to disable specific IPs or information on a hardware asset (e.g. obsolete address or passwords).
- Dynamic bar-codes: Identifiers can change with time to become immune to theft and tampering.

Cost Estimate for Phase II: \$1.2M (15 months)

>	Wafer run for fabricating >100,000 chipsets	6 months
>	Packaging	3 months
>	Software + API development	6 months
>	Validation and Destructive Testing	2 months
>	Field Demonstration	3 months

Leadership and Entrepreneurship Acceleration Program Award (\$50k)

Traction:

>	National Science Foundation (\$600k)	2015-2020
>	Semiconductor Research Corporation (\$75k)	2015-2019
>	National Institute of Health (\$450k)	2017-2020

NSIN National Security Academic Accelerator Pilot Cohort Award (\$54k)

Company Contact Info:

Kenji Aono, President, kenji@freedynamics.tech (734) 272-6174, https://freedynamics.tech